1
|
Feng X, Ji F, Xu W, Song C, Xu J, Jia P, Dong X, Xi W, Yan Z, Niu F. Characteristics and environmental driving mechanisms of bacterial communities in the Bohai Sea. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106996. [PMID: 39929087 DOI: 10.1016/j.marenvres.2025.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 03/08/2025]
Abstract
The Bohai Sea, a semi-enclosed marginal sea, hosts a diverse array of bacterial communities that play pivotal roles in marine biogeochemical cycles. However, understanding of bacterial communities remains fragmented in the Bohai Sea, with unclear links between environmental factors and key species, and limited insights into the roles of environment and space in shaping the bacterial communities. In this study, we compiled a series of data, and investigated how spatial and environmental factors influence the region's distribution, assembly, and function of bacterial communities using high-throughput sequencing and statistical analyses. The results revealed that the bacterial communities in the Bohai Sea exhibited a high heterogeneity of spatial and environmental factors. Major drivers of community assembly included geographic location, nutrient availability (NO2-N, NO3-N, and NH4-N), temperature, and dissolved oxygen. Additionally, we found that the bacterial community structure in the nearshore waters of the Bohai Sea was distinctly different from that in the distant seas. Furthermore, we identified key bacterial species, including Marinimicrobia, Proteobacteria, Lentisphaerae, and Cyanobacteria that significantly contributed to community structure and function by random forest analysis. Notably, the abundance of Cyanobacteria was strongly correlated with environmental factors (NO2-N, NO3-N, and NH4-N), suggesting their potential as bioindicators of environmental change in marine ecosystems. More importantly, deterministic processes in the assembly of bacterial communities played a greater role than stochastic processes in highly polluted regions (BS3). The results of this research enhanced our understanding of the ecological processes governing bacterial community dynamics and provided valuable insights for monitoring and management marine ecosystem.
Collapse
Affiliation(s)
- Xu Feng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China.
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China.
| | - Changmin Song
- Marine Ecology Laboratory, Dalian Boyuan Testing and Evaluation Center Co., Ltd., Dalian, 116699, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China; School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS), Dalian University of Technology, Panjin, 124221, China
| | - Peng Jia
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, China
| | - Xiaoying Dong
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Wenqiu Xi
- Research & Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, 124200, China
| | - Zhigang Yan
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, 124221, China
| | - Fengjuan Niu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| |
Collapse
|
2
|
Xia F, Liu Z, Zhang Y, Li Q, Zhao M, He H, Bao Q, Chen B, He Q, Lai C, He X, Ma Z, Zhou Y. Calcium regulates the interactions between dissolved organic matter and planktonic bacteria in Erhai Lake, Yunnan Province, China. WATER RESEARCH 2024; 261:121982. [PMID: 38936236 DOI: 10.1016/j.watres.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
In recent years, the global carbon cycle has garnered significant research attention. However, details of the intricate relationship between planktonic bacteria, hydrochemistry, and dissolved organic matter (DOM) in inland waters remain unclear, especially their effects on lake carbon sequestration. In this study, we analyzed 16S rRNA, chromophoric dissolved organic matter (CDOM), and inorganic nutrients in Erhai Lake, Yunnan Province, China. The results revealed that allochthonous DOM (C3) significantly regulated the microbial community, and that autochthonous DOM, generated via microbial mineralization (C2), was not preferred as a food source by lake bacteria, and neither was allochthonous DOM after microbial mineralization (C4). Specifically, the correlation between the fluorescence index and functional genes (FAPRPTAX) showed that the degree of utilization of DOM was a critical factor in regulating planktonic bacteria associated with the carbon cycle. Further examination of the correlation between environmental factors and planktonic bacteria revealed that Ca2+ had a regulatory influence on the community structure of planktonic bacteria, particularly those linked to the carbon cycle. Consequently, the utilization strategy of DOM by planktonic bacteria was also determined by elevated Ca2+ levels. This in turn influenced the development of specific recalcitrant autochthonous DOM within the high Ca2+ environment of Erhai Lake. These findings are significant for the exploration of the stability of DOM within karst aquatic ecosystems, offering a new perspective for the investigation of terrestrial carbon sinks.
Collapse
Affiliation(s)
- Fan Xia
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Yunling Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Min Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, 610068, China
| | - Bo Chen
- Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Qiufang He
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400700, China; Key Laboratory of Karst Dynamics, Ministry of Nature Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
3
|
Ren K, Mo Y, Xiao P, Rønn R, Xu Z, Xue Y, Chen H, Rivera WL, Rensing C, Yang J. Microeukaryotic plankton evolutionary constraints in a subtropical river explained by environment and bacteria along differing taxonomic resolutions. ISME COMMUNICATIONS 2024; 4:ycae026. [PMID: 38559570 PMCID: PMC10980835 DOI: 10.1093/ismeco/ycae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Microeukaryotic plankton communities are keystone components for keeping aquatic primary productivity. Currently, variations in microeukaryotic plankton diversity have often been explained by local ecological factors but not by evolutionary constraints. We used amplicon sequencing of 100 water samples across five years to investigate the ecological preferences of the microeukaryotic plankton community in a subtropical riverine ecosystem. We found that microeukaryotic plankton diversity was less associated with bacterial abundance (16S rRNA gene copy number) than bacterial diversity. Further, environmental effects exhibited a larger influence on microeukaryotic plankton community composition than bacterial community composition, especially at fine taxonomic levels. The evolutionary constraints of microeukaryotic plankton community increased with decreasing taxonomic resolution (from 97% to 91% similarity levels), but not significant change from 85% to 70% similarity levels. However, compared with the bacterial community, the evolutionary constraints were shown to be more affected by environmental variables. This study illustrated possible controlling environmental and bacterial drivers of microeukaryotic diversity and community assembly in a subtropical river, thereby indirectly reflecting on the quality status of the water environment by providing new clues on the microeukaryotic community assembly.
Collapse
Affiliation(s)
- Kexin Ren
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Regin Rønn
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Biology, University of Copenhagen, Copenhagen DK2100, Denmark
| | - Zijie Xu
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Xue
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Christopher Rensing
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Institute of Environmental Microbiology, College of Resources and the Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
4
|
Wang C, Sun D, Junaid M, Xie S, Xu G, Li X, Tang H, Zou J, Zhou A. Effects of tidal action on the stability of microbiota, antibiotic resistance genes, and microplastics in the Pearl River Estuary, Guangzhou, China. CHEMOSPHERE 2023; 327:138485. [PMID: 36966930 DOI: 10.1016/j.chemosphere.2023.138485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, the 16S rRNA gene amplicon sequencing technique was used to explore the microbial diversity and differences in the water environment of the Pearl River Estuary in Nansha District with various land use types such as the aquaculture area, industrial area, tourist area, agricultural plantation, and residential area. At the same time, the quantity, type, abundance, and distribution of two types of emerging environmental pollutants, antibiotic resistance genes (ARGs) and microplastics (MPs), are explored in the water samples from different functional areas. The results show that the dominant phyla in the five functional regions are Proteobacteria, Actinobacteria and Bacteroidetes, and the dominant genera are Hydrogenophaga, Synechococcus, Limnohabitans and Polynucleobacter. A total of 248 ARG subtypes were detected in the five regions, belonging to nine classes of ARGs (Aminoglycoside, Beta_Lactamase, Chlor, MGEs, MLSB, Multidrug, Sul, Tet, Van). Blue and white were the dominant MP colors in the five regions; 0.5-2 mm was the dominant MP size, and cellulose, rayon, and polyester comprised the highest proportion of the plastic polymers. This study provides the basis for understanding the environmental microbial distribution in estuaries and the prevention of environmental health risks from ARGs and microplastics.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 16 510070, China.
| | - Xiang Li
- Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| | - Huijuan Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PEI C1A5T1, Canada.
| |
Collapse
|
5
|
Zhang W, Jiang C, Chen L, Bhagwat G, Thava P, Yang Y. Spatial turnover of core and occasional bacterial taxa in the plastisphere from a plateau river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156179. [PMID: 35618135 DOI: 10.1016/j.scitotenv.2022.156179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Plastic surfaces in the environment are a comparatively new niche for microbial colonization, also known as the "plastisphere". However, our understanding of the core and occasional bacterial taxa in the plastisphere is limited. Here, environmental plastic, water, and sediment samples were collected from 10 sites in a plateau river (Lhasa River, China) in September of 2019. The composition and spatial turnover of core and occasional bacterial taxa in the plastisphere were revealed via 16S rRNA gene sequencing and compared with water and sediment. The results indicated that deterministic processes dominated the habitat specialization that shaped the formation of core and occasional taxa in the plastisphere, water, and sediment of the Lhasa River because the decline in zeta diversity in the plastisphere, water, and sediment was more fitted to a power-law form rather than an exponential form. Proteobacteria (65.9%), Bacteroidetes (16.0%), and Cyanobacteria (11.7%) dominated the plastic core taxa. Core taxa rather than occasional taxa in the plastisphere had a lower (21.7%) proportion of OTUs and a higher (81.7%) proportion of average relative abundance than water and sediment, which were dominant in plastic bacterial communities. The spatial turnover of core and occasional bacterial taxa in the plastisphere was governed by abiotic as well as biotic factors. Specifically, the spatial turnover of core taxa in the plastisphere with high connectivity but low functional redundancy was easily affected by geographical distance, altitude, and heavy metals. Furthermore, strong drug resistance was found in the spatially persistent core taxa in the plastisphere. This study provides empirical support for the spatial turnover (species variation) and potential ecological mechanisms of bacterial communities in the plastisphere from river ecosystems.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000, China; College of Science, Tibet University, Lhasa 850000, China
| | - Geetika Bhagwat
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Palanisami Thava
- Environmental Plastic and Innovation Cluster, Global Innovation Centre for Advanced Nanomaterials, The University of Newcastle, 2308, NSW, Australia
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000, China; College of Science, Tibet University, Lhasa 850000, China.
| |
Collapse
|
6
|
Wan W, Gadd GM, Gu JD, He D, Liu W, Yuan W, Ye L, Yang Y. Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community. WATER RESEARCH 2021; 202:117449. [PMID: 34332188 DOI: 10.1016/j.watres.2021.117449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Disentangling ecological mechanisms behind dredging is meaningful to implement environmental policy for improving water quality. However, environmental adaptation and community assembly processes of bacterioplankton in response to dredging disturbance are poorly understood. Based on Illumine MiSeq sequencing and multiple statistical analyses, we estimated interactions, functions, environmental breadths, phylogenetic signals, phylogenetic clustering, and ecological assembly processes of bacterioplankton community before and after dredging. We found distinct change in community composition, comparable decreases in diversity, functional redundancy and conflicting interaction, relatively low phylogenetic clustering, and relatively weak environmental adaptation after dredging. The bacterioplankton community assembly was affected by both stochastic and deterministic processes before dredging, but dominated by stochasticity after dredging. Sediment total phosphorus was a decisive factor in balancing determinism and stochasticity for bacterioplankton community assembly before and after dredging. Consequently, taxonomic and phylogenetic α-diversities of bacterioplankton exhibited higher contributions to the water trophic level represented by chlorophyl α before dredging than afterwards. Our results emphasized bacterioplankton in response to environmental changes caused by dredging, with nutrient loss and ecological drift playing important roles. These findings extend knowledge of contribution of bacterioplankton diversity to water trophic level and decipher mechanisms of bacterioplankton diversity maintenance in response to dredging, which is useful for guiding mitigation of cyanobacterial blooms.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK; State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing 102249, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Luping Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Izabel-Shen D, Höger AL, Jürgens K. Abundance-Occupancy Relationships Along Taxonomic Ranks Reveal a Consistency of Niche Differentiation in Marine Bacterioplankton With Distinct Lifestyles. Front Microbiol 2021; 12:690712. [PMID: 34262550 PMCID: PMC8273345 DOI: 10.3389/fmicb.2021.690712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/25/2021] [Indexed: 01/23/2023] Open
Abstract
Abundance-occupancy relationships (AORs) are an important determinant of biotic community dynamics and habitat suitability. However, little is known about their role in complex bacterial communities, either within a phylogenetic framework or as a function of niche breadth. Based on data obtained in a field study in the St. Lawrence Estuary, we used 16S rRNA gene sequencing to examine the vertical patterns, strength, and character of AORs for particle-attached and free-living bacterial assemblages. Free-living communities were phylogenetically more diverse than particle-attached communities. The dominant taxa were consistent in terms of their presence/absence but population abundances differed in surface water vs. the cold intermediate layer. Significant, positive AORs characterized all of the surveyed communities across all taxonomic ranks of bacteria, thus demonstrating an ecologically conserved trend for both free-living and particle-attached bacteria. The strength of the AORs was low at the species level but higher at and above the genus level. These results demonstrate that an assessment of the distributions and population densities of finely resolved taxa does not necessarily improve determinations of apparent niche differences in marine bacterioplankton communities at regional scales compared with the information inferred from a broad taxonomic classification.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Anna-Lena Höger
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
- Department of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Klaus Jürgens
- Department of Biological Oceanography Leibniz Institute for Baltic Sea Research, Rostock, Germany
| |
Collapse
|
8
|
Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data. Nat Commun 2021; 12:2945. [PMID: 34011982 PMCID: PMC8134473 DOI: 10.1038/s41467-021-23307-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Estimates of evolutionary diversification rates - speciation and extinction - have been used extensively to explain global biodiversity patterns. Many studies have analyzed diversification rates derived from just two pieces of information: a clade's age and its extant species richness. This "age-richness rate" (ARR) estimator provides a convenient shortcut for comparative studies, but makes strong assumptions about the dynamics of species richness through time. Here we demonstrate that use of the ARR estimator in comparative studies is problematic on both theoretical and empirical grounds. We prove mathematically that ARR estimates are non-identifiable: there is no information in the data for a single clade that can distinguish a process with positive net diversification from one where net diversification is zero. Using paleontological time series, we demonstrate that the ARR estimator has no predictive ability for real datasets. These pathologies arise because the ARR inference procedure yields "point estimates" that have been computed under a saturated statistical model with zero degrees of freedom. Although ARR estimates remain useful in some contexts, they should be avoided for comparative studies of diversification and species richness.
Collapse
|
9
|
Wan W, Grossart HP, He D, Yuan W, Yang Y. Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China). WATER RESEARCH 2021; 190:116751. [PMID: 33348071 DOI: 10.1016/j.watres.2020.116751] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Deciphering responses of rare versus abundant bacterioplankton to environmental change, crucial for understanding and mitigating of cyanobacterial blooms, is an important but poorly investigated subject. Using MiSeq sequencing, we investigated the taxonomic and phylogenetic diversity of rare and abundant bacterioplankton in eutrophic Lake Nanhu before and after dredging. We estimated environmental breadths and phylogenetic signals of ecological preferences of rare and abundant bacterioplankton, and investigated community function and bacterioplankton assembly processes. Both taxonomic and phylogenic distances of rare and abundant bacterioplankton communities were significantly positively correlated with the dissimilarity of environmental factors. Threshold indicator taxa analysis and Blomberg's K statistic indicated that rare taxa held broader environmental thresholds and stronger phylogenetic signals for ecological traits than abundant taxa. Environmental adaptations of both rare and abundant taxa exhibited distinct changes after dredging. Higher functional redundancy occurred in the abundant compared to the rare bacterioplankton, with functions of rare bacterioplankton decreasing and for the abundant ones increasing after dredging. The null model revealed that dispersal limitation belonging to stochastic processes determined the abundant bacterioplankton community assembly, whereas variable selection belonging to deterministic processes drove the rare one. Rare bacterioplankton was more environmentally constrained than the abundant one. Dissolved oxygen was the decisive factor in determining the balance between stochasticity and determinism in both rare and abundant bacterioplankton. Our study extends our knowledge of environmental adaptation of rare versus abundant bacterioplankton to massive disturbing measures, i.e. dredging, and allows to estimate dredging performance for mitigating cyanobacterial blooms from a molecular ecology viewpoint.
Collapse
Affiliation(s)
- Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Hans-Peter Grossart
- Leibniz-Institude of Freshwater Ecology and Inland Fisheries (IGB), 16775, Neuglobsow, Germany; University of Potsdam, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Wan W, Zhang Y, Cheng G, Li X, Qin Y, He D. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. ENVIRONMENTAL RESEARCH 2020; 188:109799. [PMID: 32798942 DOI: 10.1016/j.envres.2020.109799] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacterial blooms are a worldwide environmental problem, which is partly attributed to their access to excessive nitrogen (N) and phosphorus (P). Preventing the blooms by reducing N and P from internal inputs is viewed as a challenge. To evaluate the effects of dredging on cyanobacterial abundances and bacterioplankton communities, water and sediment samples were collected from eutrophic Lake Nanhu (Wuhan, China) before dredging (2017) and after dredging (2018). After dredging, significant decreases were observed for sediment nutrients (e.g., C, N, and P sources); C-, N-, P-, and S-cycling-related enzyme activity; N- and P-cycling-related gene abundance; microbial abundance; and dramatic changes were observed in the composition of the sediment microbial community. The release rates of nutrient including nitrogen, phosphorus, and organic matter decreased after dredging, and sediment biogeochemistry was closely correlated to nutrient release rates. Additionally, our observations and analyses indicated that the abundance and diversity of the bacterioplankton community decreased significantly, the composition and interaction of the bacterioplankton community dramatically changed, and the bacterioplankton community function (e.g., N, P-cycling-related enzymes and proteins) down regulated after dredging. Water and sediment physicochemical factors explained 72.28% variation in bacterioplankton community composition, and these physicochemical factors were significantly correlated with diversity, composition, and function of bacterioplankton community. Our findings emphasized that cyanobacterial blooms in freshwater ecosystems were closely correlated with noncyanobacterial bacterioplankton that were largely conserved at the phylum level, with Proteobacteria, Actinobacteria, and Bacteroidetes as the main taxa. To our knowledge, this is the first report clarifying the mechanism of cyanobacterial blooms mitigation by dredging, via changing the association between the bacterioplankton community and sediment biogeochemistry. Our findings are of significance and indicate that dredging is effective for mitigating cyanobacterial blooms.
Collapse
Affiliation(s)
- Wenjie Wan
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yunan Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Guojun Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Xiaohua Li
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Yin Qin
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China.
| |
Collapse
|
11
|
Wan W, Tan J, Wang Y, Qin Y, He H, Wu H, Zuo W, He D. Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134418. [PMID: 31629269 DOI: 10.1016/j.scitotenv.2019.134418] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 05/16/2023]
Abstract
Soil pH is an important predictor of bacterial community composition and diversity. Examining the effects of pH on diversity, structure, interaction, and function of rhizosphere bacterial communities in acidic crop soils provide valuable information for knowing potential role of rhizosphere bacteria in crop yield. Here, we collected soils from artificial greenhouses and applied Illumina Miseq sequencing, quantitative PCR techniques, multiple ecological analysis methods, including topological analysis and functional profiling to analyze our data and validate our hypotheses. We found that the soil physicochemical properties, species diversity, and rhizosphere bacterial community composition were significantly affected by the degree of soil acidification (pH < 5.5 and pH > 5.5) but not vegetation type. Additionally, bacterial absolute abundance increased with higher pH. The 18 soil samples were clustered into two distinct groups of pH < 5.5 and pH > 5.5 at the OTU level, and soil pH had more of an effect on bacterial community composition compared to the other physicochemical variables. In addition, rhizosphere bacteria might presented relatively less competition for survival in pH < 5.5 soils, and bacterial community functions, including nutrient (i.e., carbon, nitrogen, phosphorus, and sulphur) cycling-related enzymes and proteins, were downregulated in more acidic soils (pH < 5.5) based on sequence analysis. To our knowledge, this report is the first to show that pH is a key factor affecting the diversity, structure, interaction, and function of rhizosphere bacterial communities in acidic crop soil in artificial greenhouses. Our findings emphasize that community function and structure of rhizosphere bacteria are closely correlated in more acidic soils, and the decreased crop yield may be correlated with attenuation of the function of the rhizosphere bacterial community.
Collapse
Affiliation(s)
- Wenjie Wan
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiadan Tan
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Yi Wang
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Yin Qin
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Huangmei He
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Huiqin Wu
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Wenlong Zuo
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan 430070, PR China.
| |
Collapse
|