1
|
Chettri D, Verma AK, Selvaraj M, Verma AK. Recent Advancements for Enhanced Biocatalyst and Biotransformation. Mol Biotechnol 2025:10.1007/s12033-025-01422-8. [PMID: 40205287 DOI: 10.1007/s12033-025-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025]
Abstract
Enzymes are essential biological macromolecules with various biological and industrial applications. As modern applications of enzymes as biocatalysts are increasingly explored, the demand for enzymes with improved catalytic properties is also increasing exponentially. Since most commercially available enzymes have a problem with long-term stability and activity under various industrial conditions, the exploration of different environments using omics technology and biotransformation of these proteins to improve stability is being recognized. Direct evolution, structure-based rational design, or de novo synthesis methods are used for enzyme engineering and developing novel enzymes with unique catalytic activity and high stability. The review provides an overview of the different classes of industrially important enzymes, their sources, and the various enzyme engineering methods used to increase their efficiency. The importance of enzyme engineering concerning the development of other techniques in the field of molecular biology is also examined.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Ashwani Kumar Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61416, Abha, Saudi Arabia
- Centre of Bee Research and its Products (CRBP), and Unit of Bee Research and Honey Production, King Khalid University, P.O. Box 9004, 61416, Abha, Saudi Arabia
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
2
|
Li Q, Peng ZQ, Liu WL, Luo ZH, Li S, Li WJ, Dong L. Virgifigura deserti gen. nov., sp. nov., isolated from the Gurbantunggut Desert soil. Int J Syst Evol Microbiol 2025; 75. [PMID: 40293928 DOI: 10.1099/ijsem.0.006771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterial strain, SYSU D60014T, was isolated from a sandy soil sample collected from the Gurbantunggut Desert in Xinjiang, PR China. Colonies of SYSU D60014T were pink-coloured, crystalline, irregular edge with a rough surface. Phylogenetic analyses based on both the 16S rRNA gene and whole-genome sequences assigned strain SYSU D60014T belonged to the family Rhodospirillaceae, formed a distinct lineage and showed 92.5-91.0% similarity to closely related strains. Digital DNA-DNA hybridization, average nucleotide identity and average amino acid identity values between strain SYSU D60014T and members of its related species were 17.2-19.6%, 70.8-74.4% and 48.9-64.5%, respectively. The complete genome of strain SYSU D60014T was 5,100,926 bp with a DNA G+C content of 65.1%. Cells were oxidase-positive and catalase-negative. The strain could grow at 28-40 °C (optimum, 37 °C), pH 5.0-8.0 (optimum, pH 7.0), and in the presence of up to 3% NaCl (optimum, 1-1.5%, w/v) on R2A. The predominant menaquinone was Q-10. The main polar lipids were phosphatidylethanolamine, phosphatidylmethyl ethanolamine, diphosphatidylglycerol, unidentified aminophospholipid, unidentified aminolipid, unidentified phospholipid, four unidentified polar lipids and two unidentified phosphoglycolipids. Major cellular fatty acids were C19 : 0 cyclo ω8c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. Based on the results obtained through genotypic and phenotypic analyses, we propose that strain SYSU D60014T represents a novel species and genus within the family Rhodospirillaceae, for which we propose the name Virgifigura deserti gen. nov., sp. nov. (type strain SYSU D60014T=NBRC 112951T=CPCC 101030T).
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- School of Life Sciences, Conservation and Utilization Laboratory of Mountain Characteristic Resources in Guangdong Province, Jiaying University, Meizhou, PR China
| | - Zi-Qi Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wen-Ling Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Shuai Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
3
|
Yanagawa K, Okabeppu M, Kikuchi S, Shiraishi F, Nakajima Y, Kano A. Vertical distribution of methanotrophic archaea in an iron-rich groundwater discharge zone. PLoS One 2025; 20:e0319069. [PMID: 39992937 PMCID: PMC11849818 DOI: 10.1371/journal.pone.0319069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) is a crucial process for methane removal in terrestrial environments. However, the occurrence of Fe-AOM in natural environments is rare, and the mechanisms behind the direct coupling of methane oxidation and iron reduction remain poorly understood. In this study, we investigated the environmental factors influencing the distribution of methanotrophic archaea in an iron-rich zone of a freshwater pond in Hiroshima Prefecture, Japan. High concentration of dissolved ferrous iron supplied by groundwater discharge led to considerable ferrihydrite precipitation. Pore water methane increased with sediment depth, while nitrate and sulfate concentrations were near detection limits throughout the sediment column. The coexistence of ferric iron and methane suggests the ongoing process of Fe-AOM. Tracer-based experiments using 14C showed potential Fe-AOM rates up to 110 pmol mL-1 day-1. Throughout the sediment core, except at the surface, PCR-based molecular ecological analyses of the 16S rRNA gene and functional genes for anaerobic oxidation of methane revealed abundant sequences belonging to the family "Candidatus Methanoperedenaceae". These geochemical and microbiological findings suggest that Fe-AOM plays a key role in biogeochemical cycles of iron and methane, positioning this environment as a modern analogue of early Earth conditions.
Collapse
Affiliation(s)
- Katsunori Yanagawa
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Misaki Okabeppu
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Sakiko Kikuchi
- Kochi Institute for Core Sample Research, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
| | - Fumito Shiraishi
- Earth and Planetary Systems Science Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yumiko Nakajima
- Central Institute of Radioisotope Science and Safety Management, Kyushu University, Fukuoka, Japan
| | - Akihiro Kano
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Karaseva AI, Elcheninov AG, Prokofeva MI, Klyukina AA, Kochetkova TV. Microbial diversity of hot springs of the Kuril Islands. BMC Microbiol 2024; 24:547. [PMID: 39732654 DOI: 10.1186/s12866-024-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
The Kuril Islands are located in the Far-East of Russia and enriched with shallow and terrestrial hot springs. Prokaryotic diversity of Kuril geothermal environments has been studied fragmentarily and mainly by culture-dependent methods. We performed the first large-scale investigation of microbial communities, inhabited more than 30 terrestrial hot springs of Kunashir and Iturup Islands, analyzed by 16S rRNA gene fragment amplicon sequencing, together with chemical analysis of thermal waters and sediments. The Circumneutral Bacterial group containing springs with pH 5.7-8.5 and temperature 40-79 °C possessed the highest biodiversity and consisted almost entirely of Bacteria. Cyanobacteriota (the Leptolyngbyaceae and Oculatellaceae families) and phototrophic Chloroflexota dominated in the microbial mats in hot springs with temperatures up to 60 °C. The higher temperature ones were dominated by Aquificota (Sulfurihydrogenibium and Hydrogenobacter species). The Acidic Bacterial group (pH 2.2-3.6, 41-64 °C) inhabited by the genera Acidithiobacillus, Hydrogenobaculum and Thiomonas. Archaea of Acidianus, Metallosphaera, Thermoplasma and Caldisphaera spp. as well as uncultivated lineages ('Ca. Marsarchaeales', 'Ca. Caldiarchaeum', BSLdp215) were abundant in the Acidic Archaeal group (pH 1.5-2.9, 50-94 °C). The microbial composition of the Kuril hot springs strongly correlated with pH and moderately correlated with water chemistry, while degree of correlation between the communities' compositions with temperature and location was low.
Collapse
Affiliation(s)
- Alina I Karaseva
- Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia.
- Moscow Center for Advanced Studies, Kulakova Str., 20, Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia
| | - Maria I Prokofeva
- Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia
| | - Tatiana V Kochetkova
- Winogradsky Institute of Microbiology Federal Research Center Fundamentals of Biotechnology Russian Academy of Sciences, 60 let Oktyabrya Prospect, 7 Build.2, Moscow, Russia
| |
Collapse
|
5
|
Barbosa ACC, Venceslau SS, Ferreira D, Neukirchen S, Sousa FL, Melo MN, Pereira IAC. Characterization of DsrD and its interaction with the DsrAB dissimilatory sulfite reductase. Protein Sci 2024; 33:e5222. [PMID: 39548845 PMCID: PMC11568415 DOI: 10.1002/pro.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Microbial dissimilatory sulfate reduction is a key process in the global sulfur and carbon cycles in anoxic ecosystems. In this anaerobic respiration, sulfate is phosphorylated and reduced to sulfite, which is further reduced to a DsrC-trisulfide by the dissimilatory sulfite reductase DsrAB. DsrD is a small protein that acts as an allosteric activator of DsrAB, increasing the efficiency of sulfite reduction. Here, we report a detailed study of DsrD and its interaction with DsrAB. Sequence similarity analyses show that there are three groups of DsrD in organisms with a reductive-type DsrAB. The protein regions involved in the DsrD-DsrAB interaction and activity-promoting effect were investigated through in vitro and in silico studies, including mutations of conserved DsrD residues. The results reveal that the conserved β-loop of DsrD is involved in the interaction, contributing to a better understanding of its mechanism of action.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Sinje Neukirchen
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary EcologyUniversity of ViennaWienAustria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary EcologyUniversity of ViennaWienAustria
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
6
|
Li Y, Wang B, Wang Y, He W, Wu X, Zhang X, Teng X, Liu L, Yang H. Effect of stand age on rhizosphere microbial community assembly of dominant shrubs during sandy desert vegetation restoration. FRONTIERS IN PLANT SCIENCE 2024; 15:1473503. [PMID: 39574437 PMCID: PMC11578715 DOI: 10.3389/fpls.2024.1473503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The rhizosphere microbial community helps govern biogeochemical cycling and facilitates complex plant-soil feedback. Understanding the evolutionary dynamics of microbial community structure and functional genes during vegetation succession is crucial for quantifying and understanding ecosystem processes and functions in restored sandy deserts. In this study, the rhizosphere microbial community structure of 11-66-year-old dominant shrubs in a desert revegetation area was examined using shotgun metagenomic sequencing. The interactions between the microbial community structure, functional gene abundances, soil properties, and plant characteristics of different stand ages were comprehensively investigated. The abundance of unique species first increased before subsequently decreasing with stand age, with shared species accounting for only 47.33%-59.42% of the total operational taxonomic units (OTUs). Copiotrophs such as Actinobacteria and Proteobacteria were found to dominate the rhizosphere soil microbial community, with their relative abundance accounting for 75.28%-81.41% of the total OTUs. There was a gradual shift in dominant microbial functional genes being involved in cellular processes towards those involved in environmental information processing and metabolism as stand age increased. Additionally, temporal partitioning was observed in both the microbial co-occurrence network complexity and topological parameters within the rhizosphere soil. Redundancy analysis revealed that dissolved organic carbon was the primary determinant influencing shifts in microbial community structure. Understanding the evolution of microbial community structure and function contributes to identifying potential mechanisms associating the soil microbiome with dominant sand-fixing shrubs as well as understanding the rhizosphere microbiome assembly process. These results shed light on the role of the rhizosphere microbiome in biogeochemical cycling and other ecosystem functions following revegetation of temperate sandy deserts.
Collapse
Affiliation(s)
- Yunfei Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingyao Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yanli Wang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Wenqiang He
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Wu
- Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xue Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xiaorong Teng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Lichao Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Haotian Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
7
|
Zhang J, Xu Z, Chu W, Ma L, He H, Jin W, Fang C. Optimizing the placement of medical wastewater outlets in sewer systems to reduce chemical consumption at wastewater treatment plants. WATER RESEARCH 2024; 264:122205. [PMID: 39116612 DOI: 10.1016/j.watres.2024.122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The severely low influent chemical oxygen demand (COD) concentration at wastewater treatment plants (WWTPs) has become a critical issue. A key factor is the excessive biodegradation of organic matter by microbial communities within sewer systems. Intense disinfection commonly adopted for medical wastewater leads to abundant residual chlorine entering sewers, likely causing significant changes in microbial communities and sewage quality in sewers, yet our understanding is limited. Through long-term sewer simulation batch tests, this study revealed the response mechanism of microbial communities to residual chlorine and its impact on organic matter concentration in sewage. Under residual chlorine stress, microbial community structure rapidly changed, and more complex microbial interactions were observed. Besides, pathways related to stress response such as two-component system were significantly enriched; pathways related to energy metabolism (such as carbon fixation in prokaryotes and citrate cycle) in microbial communities were inhibited, and carbon metabolism shifted from the Embden-Meyerhof pathway to the pentose phosphate pathway to enhance cellular reducing power, reduce oxidative stress, and consequently decrease organic matter degradation. Therefore, compared to sewers with normal disinfection, concentrations of COD and dissolved organic carbon in sewage under chlorine stress increased by 12.6 % and 7.4 %, respectively. Besides, the decay and transformation of residual chlorine in sewers were explored. These findings suggest a new approach to medical wastewater discharge management: placing the medical wastewater outlet at the upstream in sewer systems, which ensures that residual chlorine consumption reaches maximum during long-distance transportation, mitigating its harmful effects on WWTPs, and increases the influent organic matter concentration, thereby reducing the need for additional carbon sources.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Liu A, Wang J, Zhou A, Yang F, Pan X, She Z, Yue Z. Interaction between acid-tolerant alga Graesiella sp. MA1 and schwertmannite under long-term acidic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174017. [PMID: 38897455 DOI: 10.1016/j.scitotenv.2024.174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Schwertmannite (Sch), a typical Fe(III)-oxyhydroxysulphate mineral, is the precipitation reservoir of toxic elements in acid mine drainage (AMD). Acid-tolerant microbes in AMD can participate in the microbe-mediated transformation of Sch, while Sch affects the physiological characteristics of these acid-tolerant microbes. Based on our discovery of algae and Sch enrichment in a contaminated acid mine pit lake, we predicted the interaction between algae and Sch when incubated together. The acid-tolerant alga Graesiella sp. MA1 was isolated from the pit-lake surface water of an acidic mine and incubated with different contents of Sch. Sch was detected as the main product at the end of 81 d; however, there was a weak transformation. The presence of dissolved Fe(II) could be largely attributed to the photoreduction dissolution of Sch, which was promoted by Graesiella sp. MA1. The adaptation and growth phases of Graesiella sp. MA1 differed under Sch stress. The photosynthetic and metabolic activities increased and decreased at the adaptation and growth phases, respectively. The MDA contents and antioxidant activity of SOD, APX, and GSH in algal cells gradually enhanced as the Sch treatment content increased, indicating a defense strategy of Graesiella sp. MA1. Metabolomic analysis revealed that Sch affected the expression of significant differential metabolites in Graesiella sp. MA1. Organic carboxylic acid substances were essentially up-regulated in response to Sch stress. They were abundant in the medium-Sch system with the highest Fe(III) reduction, capable of complexing Fe(III), and underwent photochemical reactions via photo-induced charge transfer. The significant up-regulation of reducing sugars revealed the high energy requirement of Graesiella sp. MA1 under Sch stress. And first enriched KEGG pathway demonstrated the importance of sugar metabolism in Graesiella sp. MA1. Data acquired in this study provide novel insights into extreme acid stress adaptation of acid-tolerant algae and Sch, contributing to furthering understanding of AMD environments.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
9
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
10
|
Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Appl Environ Microbiol 2024; 90:e0014324. [PMID: 38814057 PMCID: PMC11218620 DOI: 10.1128/aem.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel S. Grégoire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey G. Bain
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Park SY, Zhang Y, Kwon JS, Kwon MJ. Multi-approach assessment of groundwater biogeochemistry: Implications for the site characterization of prospective spent nuclear fuel repository sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171918. [PMID: 38522553 DOI: 10.1016/j.scitotenv.2024.171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.
Collapse
Affiliation(s)
- Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Ni B, Xiao Y, Wei R, Liu W, Zhu L, Liu Y, Ruan Z, Li J, Wang S, Zhao J, Huang W. Qufeng tongluo decoction decreased proteinuria in diabetic mice by protecting podocytes via promoting autophagy. J Tradit Complement Med 2024; 14:312-320. [PMID: 38707926 PMCID: PMC11068988 DOI: 10.1016/j.jtcme.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 05/07/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is one of diabetic complications, which has become the leading cause of end-stage kidney disease. In addition to angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker(ACEI/ARB) and sodium-glucose cotransporter-2 inhibitor (SGLT2i), traditional Chinese medicine (TCM) is an effective alternative treatment for DKD. In this study, the effect of Qufeng Tongluo (QFTL) decoction in decreasing proteinuria has been observed and its mechanism has been explored based on autophagy regulation in podocyte. Methods In vivo study, db/db mice were used as diabetes model and db/m mice as blank control. Db/db mice were treated with QFTL decoction, rapamycin, QFTL + 3-Methyladenine (3-MA), trehalose, chloroquine (CQ) and QFTL + CQ. Mice urinary albumin/creatinine (UACR), nephrin and autophagy related proteins (LC3 and p62) in kidney tissue were detected after intervention of 9 weeks. Transcriptomics was operated with the kidney tissue from model group and QFTL group. In vitro study, mouse podocyte clone-5 (MPC-5) cells were stimulated with hyperglycemic media (30 mmol/L glucose) or cultured with normal media. High-glucose-stimulated MPC-5 cells were treated with QFTL freeze-drying powder, rapamycin, CQ, trehalose, QFTL+3-MA and QFTL + CQ. Cytoskeletal actin, nephrin, ATG-5, ATG-7, Beclin-1, cathepsin L and cathepsin B were assessed. mRFP-GFP-LC3 was established by stubRFP-sensGFP-LC3 lentivirus transfection. Results QFTL decoction decreased the UACR and increased the nephrin level in kidney tissue and high-glucose-stimulated podocytes. Autophagy inhibitors, including 3-MA and chloroquine blocked the effects of QFTL decoction. Further study showed that QFTL decoction increased the LC3 expression and relieved p62 accumulation in podocytes of db/db mice. In high-glucose-stimulated MPC-5 cells, QFTL decoction rescued the inhibited LC3 and promoted the expression of ATG-5, ATG-7, and Beclin-1, while had no effect on the activity of cathepsin L and cathepsin B. Results of transcriptomics also showed that 51 autophagy related genes were regulated by QFTL decoction, including the genes of ATG10, SCOC, ATG4C, AMPK catalytic subunit, PI3K catalytic subunit, ATG3 and DRAM2. Conclusion QFTL decoction decreased proteinuria and protected podocytes in db/db mice by regulating autophagy.
Collapse
Affiliation(s)
- Boran Ni
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Endocrinology, Guang’ Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruojun Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Liwei Zhu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichao Ruan
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiamu Li
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shidong Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinxi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weijun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
14
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
15
|
Rincón-Tomás B, Lanzén A, Sánchez P, Estupiñán M, Sanz-Sáez I, Bilbao ME, Rojo D, Mendibil I, Pérez-Cruz C, Ferri M, Capo E, Abad-Recio IL, Amouroux D, Bertilsson S, Sánchez O, Acinas SG, Alonso-Sáez L. Revisiting the mercury cycle in marine sediments: A potential multifaceted role for Desulfobacterota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133120. [PMID: 38101011 DOI: 10.1016/j.jhazmat.2023.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments.
Collapse
Affiliation(s)
- Blanca Rincón-Tomás
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; Grupo Inv. Geología Aplicada a Recursos Marinos y Ambientes Extremos, Instituto Geológico y Minero de España (IGME-CSIC), 28003 Madrid, Spain.
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Pablo Sánchez
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Mónica Estupiñán
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Isabel Sanz-Sáez
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - M Elisabete Bilbao
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Diana Rojo
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Iñaki Mendibil
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Carla Pérez-Cruz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Marta Ferri
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Eric Capo
- Dep. Ecology and Environmental Science, Umeå University, 907 36 Umeå, Sweden
| | - Ion L Abad-Recio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux (IPREM), Pau, France
| | - Stefan Bertilsson
- Dep. Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Olga Sánchez
- Dep. Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08192 Bellaterra, Spain
| | - Silvia G Acinas
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain.
| |
Collapse
|
16
|
Liu B, Zheng Y, Wang X, Qi L, Zhou J, An Z, Wu L, Chen F, Lin Z, Yin G, Dong H, Li X, Liang X, Han P, Liu M, Hou L. Active dark carbon fixation evidenced by 14C isotope assimilation and metagenomic data across the estuarine-coastal continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169833. [PMID: 38190922 DOI: 10.1016/j.scitotenv.2023.169833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Estuaries, as important land-ocean transitional zones across the Earth's surface, are hotspots of microbially driven dark carbon fixation (DCF), yet understanding of DCF process remains limited across the estuarine-coastal continuum. This study explored DCF activities and associated chemoautotrophs along the estuarine and coastal environmental gradients, using radiocarbon labelling and molecular techniques. Significantly higher DCF rates were observed at middle- and high-salinity regions (0.65-2.31 and 0.66-2.82 mmol C m-2 d-1, respectively), compared to low-salinity zone (0.07-0.19 mmol C m-2 d-1). Metagenomic analysis revealed relatively stable DCF pathways along the estuarine-coastal continuum, primarily dominated by Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway. Nevertheless, chemoautotrophic communities driving DCF exhibited significant spatial variations. It is worth noting that although CBB cycle played an important role in DCF in estuarine sediments, WL pathway might play a more significant role, which has not been previously recognized. Overall, this study highlights that DCF activities coincide with the genetic potential of chemoautotrophy and the availability of reductive substrates across the estuarine-coastal continuum, and provides an important scientific basis for accurate quantitative assessment of global estuarine carbon sink.
Collapse
Affiliation(s)
- Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Xinyu Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
17
|
Merino N, Wasserman NL, Coutelot F, Kaplan DI, Powell BA, Jiao Y, Kersting AB, Zavarin M. Microbial community dynamics and cycling of plutonium and iron in a seasonally stratified and radiologically contaminated pond. Sci Rep 2023; 13:19697. [PMID: 37952079 PMCID: PMC10640648 DOI: 10.1038/s41598-023-45182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plutonium (Pu) cycling and mobility in the environment can be impacted by the iron cycle and microbial community dynamics. We investigated the spatial and temporal changes of the microbiome in an iron (Fe)-rich, plutonium-contaminated, monomictic reservoir (Pond B, Savannah River Site, South Carolina, USA). The microbial community composition varied with depth during seasonal thermal stratification and was strongly correlated with redox. During stratification, Fe(II) oxidizers (e.g., Ferrovum, Rhodoferax, Chlorobium) were most abundant in the hypoxic/anoxic zones, while Fe(III) reducers (e.g., Geothrix, Geobacter) dominated the deep, anoxic zone. Sulfate reducers and methanogens were present in the anoxic layer, likely contributing to iron and plutonium cycling. Multinomial regression of predicted functions/pathways identified metabolisms highly associated with stratification (within the top 5%), including iron reduction, methanogenesis, C1 compound utilization, fermentation, and aromatic compound degradation. Two sediment cores collected at the Inlet and Outlet of the pond were dominated by putative fermenters and organic matter (OM) degraders. Overall, microbiome analyses revealed the potential for three microbial impacts on the plutonium and iron biogeochemical cycles: (1) plutonium bioaccumulation throughout the water column, (2) Pu-Fe-OM-aggregate formation by Fe(II) oxidizers under microaerophilic/aerobic conditions, and (3) Pu-Fe-OM-aggregate or sediment reductive dissolution and organic matter degradation in the deep, anoxic waters.
Collapse
Affiliation(s)
- Nancy Merino
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
| | - Naomi L Wasserman
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Fanny Coutelot
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson University, Anderson, SC, 29625, USA
| | - Daniel I Kaplan
- Savannah River Ecology Lab, University of Georgia, Aiken, SC, 29802, USA
| | - Brian A Powell
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson University, Anderson, SC, 29625, USA
- Savannah River National Laboratory, Aiken, SC, 29625, USA
| | - Yongqin Jiao
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
| |
Collapse
|
18
|
Aerts JW, Sarbu SM, Brad T, Ehrenfreund P, Westerhoff HV. Microbial Ecosystems in Movile Cave: An Environment of Extreme Life. Life (Basel) 2023; 13:2120. [PMID: 38004260 PMCID: PMC10672346 DOI: 10.3390/life13112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Movile Cave, situated in Romania close to the Black Sea, constitutes a distinct and challenging environment for life. Its partially submerged ecosystem depends on chemolithotrophic processes for its energetics, which are fed by a continuous hypogenic inflow of mesothermal waters rich in reduced chemicals such as hydrogen sulfide and methane. We sampled a variety of cave sublocations over the course of three years. Furthermore, in a microcosm experiment, minerals were incubated in the cave waters for one year. Both endemic cave samples and extracts from the minerals were subjected to 16S rRNA amplicon sequencing. The sequence data show specific community profiles in the different subenvironments, indicating that specialized prokaryotic communities inhabit the different zones in the cave. Already after one year, the different incubated minerals had been colonized by specific microbial communities, indicating that microbes in Movile Cave can adapt in a relatively short timescale to environmental opportunities in terms of energy and nutrients. Life can thrive, diversify and adapt in remote and isolated subterranean environments such as Movile Cave.
Collapse
Affiliation(s)
- Joost W. Aerts
- Molecular Cell Biology, A-LIFE, 01-E-57, Faculty of Science, VU University Amsterdam, Van der Boechorstraat 3, 1081 BT Amsterdam, The Netherlands
| | - Serban M. Sarbu
- “Emil Racoviţă” Institute of Speleology, Str. Frumoasă 31, 010986 Bucharest, Romania
- Department of Biological Sciences, California State University, Chico, CA 95929, USA
| | - Traian Brad
- “Emil Racoviţă” Institute of Speleology, Clinicilor 5-7, 400006 Cluj-Napoca, Romania;
| | - Pascale Ehrenfreund
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2333 RA Leiden, The Netherlands
- Space Policy Institute, George Washington University, Washington, DC 20052, USA
| | - Hans V. Westerhoff
- Molecular Cell Biology, A-LIFE, 01-E-57, Faculty of Science, VU University Amsterdam, Van der Boechorstraat 3, 1081 BT Amsterdam, The Netherlands
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Stellenbosch Institute for Advanced Study, Stellenbosch 7600, South Africa
| |
Collapse
|
19
|
Wang R, Zhu J, Li B, Liu Y, Fang Q, Bai G, Tang Y, He F, Zhou Q, Wu Z, Zhang Y. Effects of attapulgite on the growth status of submerged macrophytes Vallisneria spiralis and sediment microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118496. [PMID: 37384996 DOI: 10.1016/j.jenvman.2023.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.
Collapse
Affiliation(s)
- Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiying Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beining Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingjun Fang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Neukirchen S, Pereira IAC, Sousa FL. Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction. THE ISME JOURNAL 2023; 17:1680-1692. [PMID: 37468676 PMCID: PMC10504309 DOI: 10.1038/s41396-023-01477-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Microbial dissimilatory sulfur metabolism utilizing dissimilatory sulfite reductases (Dsr) influenced the biochemical sulfur cycle during Earth's history and the Dsr pathway is thought to be an ancient metabolic process. Here we performed comparative genomics, phylogenetic, and synteny analyses of several Dsr proteins involved in or associated with the Dsr pathway across over 195,000 prokaryotic metagenomes. The results point to an archaeal origin of the minimal DsrABCMK(N) protein set, having as primordial function sulfite reduction. The acquisition of additional Dsr proteins (DsrJOPT) increased the Dsr pathway complexity. Archaeoglobus would originally possess the archaeal-type Dsr pathway and the archaeal DsrAB proteins were replaced with the bacterial reductive-type version, possibly at the same time as the acquisition of the QmoABC and DsrD proteins. Further inventions of two Qmo complex types, which are more spread than previously thought, allowed microorganisms to use sulfate as electron acceptor. The ability to use the Dsr pathway for sulfur oxidation evolved at least twice, with Chlorobi and Proteobacteria being extant descendants of these two independent adaptations.
Collapse
Affiliation(s)
- Sinje Neukirchen
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipa L Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
21
|
Diao M, Dyksma S, Koeksoy E, Ngugi DK, Anantharaman K, Loy A, Pester M. Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction. FEMS Microbiol Rev 2023; 47:fuad058. [PMID: 37796897 PMCID: PMC10591310 DOI: 10.1093/femsre/fuad058] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Sulfate/sulfite-reducing microorganisms (SRM) are ubiquitous in nature, driving the global sulfur cycle. A hallmark of SRM is the dissimilatory sulfite reductase encoded by the genes dsrAB. Based on analysis of 950 mainly metagenome-derived dsrAB-carrying genomes, we redefine the global diversity of microorganisms with the potential for dissimilatory sulfate/sulfite reduction and uncover genetic repertoires that challenge earlier generalizations regarding their mode of energy metabolism. We show: (i) 19 out of 23 bacterial and 2 out of 4 archaeal phyla harbor uncharacterized SRM, (ii) four phyla including the Desulfobacterota harbor microorganisms with the genetic potential to switch between sulfate/sulfite reduction and sulfur oxidation, and (iii) the combination as well as presence/absence of different dsrAB-types, dsrL-types and dsrD provides guidance on the inferred direction of dissimilatory sulfur metabolism. We further provide an updated dsrAB database including > 60% taxonomically resolved, uncultured family-level lineages and recommendations on existing dsrAB-targeted primers for environmental surveys. Our work summarizes insights into the inferred ecophysiology of newly discovered SRM, puts SRM diversity into context of the major recent changes in bacterial and archaeal taxonomy, and provides an up-to-date framework to study SRM in a global context.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Stefan Dyksma
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Elif Koeksoy
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna A-1030, Austria
| | - Michael Pester
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig D-38124, Germany
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig D-38106, Germany
| |
Collapse
|
22
|
Wang M, Wang X, Zhou S, Chen Z, Chen M, Feng S, Li J, Shu W, Cao B. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. WATER RESEARCH 2023; 243:120343. [PMID: 37482007 DOI: 10.1016/j.watres.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sining Zhou
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zifeng Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengyun Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiwei Feng
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
23
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
24
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Li L, Meng D, Yin H, Zhang T, Liu Y. Genome-resolved metagenomics provides insights into the ecological roles of the keystone taxa in heavy-metal-contaminated soils. Front Microbiol 2023; 14:1203164. [PMID: 37547692 PMCID: PMC10402746 DOI: 10.3389/fmicb.2023.1203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Microorganisms that exhibit resistance to environmental stressors, particularly heavy metals, have the potential to be used in bioremediation strategies. This study aimed to explore and identify microorganisms that are resistant to heavy metals in soil environments as potential candidates for bioremediation. Metagenomic analysis was conducted using microbiome metagenomes obtained from the rhizosphere of soil contaminated with heavy metals and mineral-affected soil. The analysis resulted in the recovery of a total of 175 metagenome-assembled genomes (MAGs), 73 of which were potentially representing novel taxonomic levels beyond the genus level. The constructed ecological network revealed the presence of keystone taxa, including Rhizobiaceae, Xanthobacteraceae, Burkholderiaceae, and Actinomycetia. Among the recovered MAGs, 50 were associated with these keystone taxa. Notably, these MAGs displayed an abundance of genes conferring resistance to heavy metals and other abiotic stresses, particularly those affiliated with the keystone taxa. These genes were found to combat excessive accumulation of zinc/manganese, arsenate/arsenite, chromate, nickel/cobalt, copper, and tellurite. Furthermore, the keystone taxa were found to utilize both organic and inorganic energy sources, such as sulfur, arsenic, and carbon dioxide. Additionally, these keystone taxa exhibited the ability to promote vegetation development in re-vegetated mining areas through phosphorus solubilization and metabolite secretion. In summary, our study highlights the metabolic adaptability and ecological significance of microbial keystone taxa in mineral-affected soils. The MAGs associated with keystone taxa exhibited a markedly higher number of genes related to abiotic stress resistance and plant growth promotion compared to non-keystone taxa MAGs.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
- Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha, China
| |
Collapse
|
26
|
Hu P, Qian Y, Liu J, Gao L, Li Y, Xu Y, Wu J, Hong Y, Ford T, Radian A, Yang Y, Gu JD. Delineation of the complex microbial nitrogen-transformation network in an anammox-driven full-scale wastewater treatment plant. WATER RESEARCH 2023; 235:119799. [PMID: 36965294 DOI: 10.1016/j.watres.2023.119799] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Jinye Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China
| | - Lin Gao
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China
| | - Yuxin Li
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, the People's Republic of China
| | - Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Adi Radian
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, the People's Republic of China.
| | - Ji-Dong Gu
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, the People's Republic of China.
| |
Collapse
|
27
|
Pierangeli GMF, da Silva KMR, Coelho LHG, Benassi RF, Domingues MR, Gregoracci GB. Effects of metal contamination with physicochemical properties on the sediment microbial communities in a tropical eutrophic-hypereutrophic urban reservoir in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54961-54978. [PMID: 36881227 DOI: 10.1007/s11356-023-26114-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We investigated the effects of metals and physicochemical variables on the microbes and their metabolisms in the sediments of Guarapiranga reservoir, a tropical eutrophic-hypereutrophic freshwater reservoir located in a highly urbanized and industrialized area in Brazil. The metals cadmium, copper, and chromium showed minor contribution to changes in the structure, composition, and richness of sediment microbial communities and functions. However, the effects of metals on the microbiota are increased when taken together with physicochemical properties, including the sediment carbon and sulfur, the bottom water electrical conductivity, and the depth of the water column. Clearly, diverse anthropic activities, such as sewage discharge, copper sulfate application to control algal growth, water transfer, urbanization, and industrialization, contribute to increase these parameters and the metals spatially in the reservoir. Microbes found especially in metal-contaminated sites encompassed Bathyarchaeia, MBG-D and DHVEG-1, Halosiccatus, Candidatus Methanoperedens, Anaeromyxobacter, Sva0485, Thermodesulfovibrionia, Acidobacteria, and SJA-15, possibly showing metal resistance or acting in metal bioremediation. Knallgas bacteria, nitrate ammonification, sulfate respiration, and methanotrophy were inferred to occur in metal-contaminated sites and may also contribute to metal removal. This knowledge about the sediment microbiota and metabolisms in a freshwater reservoir impacted by anthropic activities allows new insights about their potential for metal bioremediation in these environments.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Institute of Marine Sciences, Federal University of São Paulo, Rua Dr. Carvalho de Mendonça, 144, Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Karine Mirelle Rodrigues da Silva
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av dos Estados, 5001, Santo André, SP, 09210-580, Brazil
| | - Gustavo Bueno Gregoracci
- Institute of Marine Sciences, Federal University of São Paulo, Rua Dr. Carvalho de Mendonça, 144, Vila Belmiro, Santos, SP, 11070-100, Brazil
| |
Collapse
|
28
|
Barton LL, Duarte AG, Staicu LC. Genomic insight into iron acquisition by sulfate-reducing bacteria in microaerophilic environments. Biometals 2023; 36:339-350. [PMID: 35767096 DOI: 10.1007/s10534-022-00410-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Historically, sulfate-reducing bacteria (SRB) have been considered to be strict anaerobes, but reports in the past couple of decades indicate that SRB tolerate exposure to O2 and can even grow in aerophilic environments. With the transition from anaerobic to microaerophilic conditions, the uptake of Fe(III) from the environment by SRB would become important. In evaluating the metabolic capability for the uptake of iron, the genomes of 26 SRB, representing eight families, were examined. All SRB reviewed carry genes (feoA and feoB) for the ferrous uptake system to transport Fe(II) across the plasma membrane into the cytoplasm. In addition, all of the SRB genomes examined have putative genes for a canonical ABC transporter that may transport ferric siderophore or ferric chelated species from the environment. Gram-negative SRB have additional machinery to import ferric siderophores and ferric chelated species since they have the TonB system that can work alongside any of the outer membrane porins annotated in the genome. Included in this review is the discussion that SRB may use the putative siderophore uptake system to import metals other than iron.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, 87131, USA
| | - Americo G Duarte
- Instituto de Tecnologia Química E Biológica António Xavier/Universidade NOVA de Lisboa, Av. República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
29
|
Li D, Ren Z, Zhou Y, Jiang L, Zheng M, Liu G. Comammox Nitrospira and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Appl Environ Microbiol 2023; 89:e0004723. [PMID: 36912626 PMCID: PMC10056971 DOI: 10.1128/aem.00047-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exploring nitrifiers in extreme environments is vital to expanding our understanding of nitrogen cycle and microbial diversity. This study presents that complete ammonia oxidation (comammox) Nitrospira, together with acidophilic ammonia-oxidizing archaea (AOA), dominate in the nitrifying guild in sediments of an acid mine lake (AML). The lake water was characterized by acidic pH below 5 with a high ammonium concentration of 175 mg-N/liter, which is rare on the earth. Nitrification was active in sediments with a maximum nitrate production potential of 70.5 μg-N/(g-dry weight [dw] day) for mixed sediments. Quantitative PCR assays determined that in AML sediments, comammox Nitrospira and AOA amoA genes had relative abundances of 52% and 41%, respectively, among the total amoA genes. Further assays with 16S rRNA and amoA gene amplicon sequencing and metagenomics confirmed their dominance and revealed that the comammox Nitrospira found in sediments belonged to comammox Nitrospira clade A.2. Metagenomic binning retrieved a metagenome-assembled genome (MAG) of the comammox Nitrospira from sediments (completeness = 96.76%), and phylogenomic analysis suggested that it was a novel comammox Nitrospira. Comparative genomic investigation revealed that this comammox Nitrospira contained diverse metal resistance genes and an acidophile-affiliated F-type ATPase. Moreover, it had a more diverse genomic characteristic on nitrogen metabolism than the AOA in sediments and canonical AOB did. The results suggest that comammox Nitrospira is a versatile nitrifier that can adapt to acidic environments even with high ammonium concentrations. IMPORTANCE Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox) Nitrospira was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter. In combination with average nucleotide identity analysis, phylogenomic analysis suggested it is a novel strain of comammox Nitrospira. Moreover, the adaption of comammox Nitrospira to the acidic lake had been comprehensively investigated based on genome-centric metagenomic approaches. The outcomes of this study significantly expand our understanding of the diversity and adaptability of ammonia oxidizers in the acidic environments.
Collapse
Affiliation(s)
- Deyong Li
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhichang Ren
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangqi Zhou
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Lugao Jiang
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Guoqiang Liu
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
30
|
Zhan Y, Chen N, Feng C, Wang H, Wang Y. Does inorganic carbon species alter chromium reduction mechanism in sulfur-based autotrophic biosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160858. [PMID: 36526198 DOI: 10.1016/j.scitotenv.2022.160858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Sulfur-based autotrophic bioremediation is recognized as an environmentally-friendly and effective method for the treatment of Cr(VI) in groundwater. However, inorganic carbon (IC), especially IC-rich solid kitchen waste, has rarely been reported as an important factor in the autotrophic process. In China, kitchen waste containing IC is generated in large quantities, and in combination with Cr(VI) autotrophic treatment technology in groundwater can achieve a win-win situation. Herein, the efficiency of Cr(VI)-bioreduction coupling solid inorganic carbon (SIC) (e.g. marble, egg shell, oyster shell, and NSAD synthetic material) and liquid inorganic carbon (LIC) was compared for the first time. After 18 d incubation, there were significant differences in Cr(VI) reduction efficiency and microbial community between SIC-bioreactors and LIC-bioreactors. Higher electron transfer activity, greater bioavailability of organics, and multiple Cr(VI) reductases were detected in SIC-biosystems, which effectively promoted Cr(VI) energy metabolism and enzyme-mediated biological reduction. High-throughput 16S rRNA gene sequencing reveled multiple cooperative mechanism in different substrate biosystems. This study not only advances the understanding of SIC coupled with Cr(VI) autotrophic bioreduction, but also provides new insights for the treatment of solid kitchen waste and groundwater bioremediation.
Collapse
Affiliation(s)
- Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yiheng Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
31
|
Diverse Methylmercury (MeHg) Producers and Degraders Inhabit Acid Mine Drainage Sediments, but Few Taxa Correlate with MeHg Accumulation. mSystems 2023; 8:e0073622. [PMID: 36507660 PMCID: PMC9948709 DOI: 10.1128/msystems.00736-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.
Collapse
|
32
|
Liao J, Dou Y, Yang X, An S. Soil microbial community and their functional genes during grassland restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116488. [PMID: 36419280 DOI: 10.1016/j.jenvman.2022.116488] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Soil microbial functional genes are linked with carbon (C) as well as nitrogen (N) cycling processes, and their relative abundances are strongly affected by ecosystem managements. Yet, soil microbial community compositions and their C, N cycling genes' abundance in temperate grasslands remain poorly studied. Here, the Illumina MiSeq sequencing (16 S rRNA gene and internal transcribed spacer [ITS]) and meta-genomic GeoChip sequencing technologies were used to explore the alterations of microbial compositions and functional genes in the topsoil (0-10 cm) following grassland restoration. Grassland restoration increased the relative abundances of the copiotrophs (such as Actinobacteria, Proteobacteria, Bacteroidetes), but reduced the oligotrophs (including Acidobacteria, Chloroflexi, Planctomycetes), suggesting that microorganisms shifted from oligotrophic to copiotrophic groups during grassland restoration. The changes in microbial eco-strategies were also supported by the meta-genomic GeoChip sequencing data. In the early restoration years, the microbial functional genes were dominant with recalcitrant C degradation (pgu, glx, lig, mnp), C fixation (accA, aclB, acsA, rbcL), N fixation (nifH), and nitrification (amoA, hao) related genes. In the later restoration years, the microbial functional genes were dominant with labile C degradation (amyA, amyX, apu, sga, abfA), and denitrification (nosZ, nirS, narG, napA) related genes. The changes in microbial functional genes were mainly related to soil biotic factors (microbial biomass C and N, as well as C- and N-acquiring enzymes). Finally, we made a framework illustrating the changes in microbial eco-strategies and soil C, N cycling processes. This is the first attempt to link microbial functional genes with microbial eco-strategies by incorporating soil microbial meta-genomic information during grassland restoration.
Collapse
Affiliation(s)
- Jiaojiao Liao
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yanxing Dou
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Xuan Yang
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shaoshan An
- College of Resource and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
33
|
Ayala-Muñoz D, Macalady JL, Sánchez-España J, Falagán C, Couradeau E, Burgos WD. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake. THE ISME JOURNAL 2022; 16:2666-2679. [PMID: 36123522 PMCID: PMC9666448 DOI: 10.1038/s41396-022-01320-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building University Park, University Park, PA, 16802, USA
| | - Javier Sánchez-España
- Centro Nacional Instituto Geológico Minero de España (IGME), CSIC, Calera 1, 28760 Tres Cantos, Madrid, Spain
| | - Carmen Falagán
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1st St., Portsmouth, PO1 2DY, UK
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 50 ASI University Park, University Park, PA, 16802, USA
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
35
|
Fonseca A, Espinoza C, Nielsen LP, Marshall IPG, Gallardo VA. Bacterial community of sediments under the Eastern Boundary Current System shows high microdiversity and a latitudinal spatial pattern. Front Microbiol 2022; 13:1016418. [PMID: 36246233 PMCID: PMC9561620 DOI: 10.3389/fmicb.2022.1016418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The sediments under the Oxygen Minimum Zone of the Eastern Boundary Current System (EBCS) along Central-South Peru and North-Central Chile, known as Humboldt Sulfuretum (HS), is an organic-matter-rich benthic habitat, where bacteria process a variety of sulfur compounds under low dissolved-oxygen concentrations, and high sulfide and nitrate levels. This study addressed the structure, diversity and spatial distribution patterns of the HS bacterial community along Northern and South-Central Chile using 16S rRNA gene amplicon sequencing. The results show that during the field study period, the community was dominated by sulfur-associated bacteria. Indeed, the most abundant phylum was Desulfobacterota, while Sva0081 sedimentary group, of the family Desulfosarcinaceae (the most abundant family), which includes sulfate-reducer and H2 scavenger bacteria, was the most abundant genus. Furthermore, a spatial pattern was unveiled along the study area to which the family Desulfobulbaceae contributed the most to the spatial variance, which encompasses 42 uncharacterized amplicon sequence variants (ASVs), three assigned to Ca. Electrothrix and two to Desulfobulbus. Moreover, a very high microdiversity was found, since only 3.7% of the ASVs were shared among localities, reflecting a highly diverse and mature community.
Collapse
Affiliation(s)
- Alexis Fonseca
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Alexis Fonseca,
| | - Carola Espinoza
- Department of Oceanography, University of Concepción, Concepción, Chile
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Victor A. Gallardo
- Department of Oceanography, University of Concepción, Concepción, Chile
- Victor A. Gallardo,
| |
Collapse
|
36
|
Li JT, Jia P, Wang XJ, Ou SN, Yang TT, Feng SW, Lu JL, Fang Z, Liu J, Liao B, Shu WS, Liang JL. Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland. NPJ Biofilms Microbiomes 2022; 8:71. [PMID: 36068230 PMCID: PMC9448743 DOI: 10.1038/s41522-022-00333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.
Collapse
Affiliation(s)
- Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Juan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shu-Ning Ou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Zhou Fang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
37
|
Pallen MJ, Rodriguez-R LM, Alikhan NF. Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database. Int J Syst Evol Microbiol 2022; 72. [PMID: 36125864 DOI: 10.1099/ijsem.0.005482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thousands of new bacterial and archaeal species and higher-level taxa are discovered each year through the analysis of genomes and metagenomes. The Genome Taxonomy Database (GTDB) provides hierarchical sequence-based descriptions and classifications for new and as-yet-unnamed taxa. However, bacterial nomenclature, as currently configured, cannot keep up with the need for new well-formed names. Instead, microbiologists have been forced to use hard-to-remember alphanumeric placeholder labels. Here, we exploit an approach to the generation of well-formed arbitrary Latinate names at a scale sufficient to name tens of thousands of unnamed taxa within GTDB. These newly created names represent an important resource for the microbiology community, facilitating communication between bioinformaticians, microbiologists and taxonomists, while populating the emerging landscape of microbial taxonomic and functional discovery with accessible and memorable linguistic labels.
Collapse
Affiliation(s)
- Mark J Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK.,School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - Luis M Rodriguez-R
- Department of Microbiology, University of Innsbruck, Innsbruck, Tyrol, Austria.,Digital Science Center, University of Innsbruck, Innsbruck, Tyrol, Austria
| | | |
Collapse
|
38
|
Fang Y, Liu J, Yang J, Wu G, Hua Z, Dong H, Hedlund BP, Baker BJ, Jiang H. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems 2022; 7:e0033522. [PMID: 35862818 PMCID: PMC9426519 DOI: 10.1128/msystems.00335-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
The compositional and physiological responses of autotrophic microbiotas to salinity in lakes remain unclear. In this study, the community composition and carbon fixation pathways of autotrophic microorganisms in lacustrine sediments with a salinity gradient (82.6 g/L to 0.54 g/L) were investigated by using metagenomic analysis. A total of 117 metagenome-assembled genomes (MAGs) with carbon fixation potentially belonging to 20 phyla were obtained. The abundance of these potential autotrophs increased significantly with decreasing salinity, and the variation of sediment autotrophic microbial communities was mainly affected by salinity, pH, and total organic carbon. Notably, along the decreasing salinity gradient, the dominant lineage shifted from Desulfobacterota to Proteobacteria. Meanwhile, the dominant carbon fixation pathway shifted from the Wood-Lungdahl pathway to the less-energy-efficient Calvin-Benson-Bassham cycle, with glycolysis shifting from the Embden-Meyerhof-Parnas pathway to the less-exergonic Entner-Doudoroff pathway. These results suggest that the physiological efficiency of autotrophic microorganisms decreased when the environmental salinity became lower. Metabolic inference of these MAGs revealed that carbon fixation may be coupled to the oxidation of reduced sulfur compounds and ferrous iron, dissimilatory nitrate reduction at low salinity, and dissimilatory sulfate reduction in hypersaline sediments. These results extend our understanding of metabolic versatility and niche diversity of autotrophic microorganisms in saline environments and shed light on the response of autotrophic microbiomes to salinity. These findings are of great significance for understanding the impact of desalination caused by climate warming on the carbon cycle of saline lake ecosystems. IMPORTANCE The Qinghai-Tibetan lakes are experiencing water increase and salinity decrease due to climate warming. However, little is known about how the salinity decrease will affect the composition of autotrophic microbial populations and their carbon fixation pathways. In this study, we used genome-resolved metagenomics to interpret the dynamic changes in the autotrophic microbial community and metabolic pathways along a salinity gradient. The results showed that desalination drove the shift of the dominant microbial lineage from Desulfobacterota to Proteobacteria, enriched autotrophs with lower physiological efficiency pathways, and enhanced coupling between the carbon cycle and other element cycles. These results can predict the future response of microbial communities to lake desalination and improve our understanding of the effect of climate warming on the carbon cycle in saline aquatic ecosystems.
Collapse
Affiliation(s)
- Yun Fang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, People’s Republic of China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
| | - Zhengshuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, People’s Republic of China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Brett J. Baker
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas, Texas, USA
- Department of Integrative Biology, University of Texas at Austin, USA
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People’s Republic of China
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, People’s Republic of China
| |
Collapse
|
39
|
Pierangeli GMF, Domingues MR, Choueri RB, Hanisch WS, Gregoracci GB, Benassi RF. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02047-z. [PMID: 35610383 DOI: 10.1007/s00248-022-02047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Rodrigo Brasil Choueri
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | | | - Gustavo Bueno Gregoracci
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| |
Collapse
|
40
|
Phylogenetic diversity in sulphate-reducing bacterial communities from oxidised and reduced bottom sediments of the Barents Sea. Antonie van Leeuwenhoek 2022; 115:801-820. [DOI: 10.1007/s10482-022-01733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
41
|
Advancement of Metatranscriptomics towards Productive Agriculture and Sustainable Environment: A Review. Int J Mol Sci 2022; 23:ijms23073737. [PMID: 35409097 PMCID: PMC8998989 DOI: 10.3390/ijms23073737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/19/2023] Open
Abstract
While chemical fertilisers and pesticides indeed enhance agricultural productivity, their excessive usage has been detrimental to environmental health. In addressing this matter, the use of environmental microbiomes has been greatly favoured as a ‘greener’ alternative to these inorganic chemicals’ application. Challenged by a significant proportion of unidentified microbiomes with unknown ecological functions, advanced high throughput metatranscriptomics is prudent to overcome the technological limitations in unfolding the previously undiscovered functional profiles of the beneficial microbiomes. Under this context, this review begins by summarising (1) the evolution of next-generation sequencing and metatranscriptomics in leveraging the microbiome transcriptome profiles through whole gene expression profiling. Next, the current environmental metatranscriptomics studies are reviewed, with the discussion centred on (2) the emerging application of the beneficial microbiomes in developing fertile soils and (3) the development of disease-suppressive soils as greener alternatives against biotic stress. As sustainable agriculture focuses not only on crop productivity but also long-term environmental sustainability, the second half of the review highlights the metatranscriptomics’ contribution in (4) revolutionising the pollution monitoring systems via specific bioindicators. Overall, growing knowledge on the complex microbiome functional profiles is imperative to unlock the unlimited potential of agricultural microbiome-based practices, which we believe hold the key to productive agriculture and sustainable environment.
Collapse
|
42
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
43
|
Liu L, Lv AP, Narsing Rao MP, Ming YZ, Salam N, Li MM, Liu ZT, Zhang XT, Zhang JY, Xian WD, Jiao JY, Li WJ. Diversity and Distribution of Anaerobic Ammonium Oxidation Bacteria in Hot Springs of Conghua, China. Front Microbiol 2022; 12:739234. [PMID: 35145488 PMCID: PMC8822059 DOI: 10.3389/fmicb.2021.739234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) is an important process of the nitrogen cycle, and the anammox bacteria have been studied in a wide variety of environments. However, the distribution, diversity, and abundance of anammox bacteria in hot springs remain enigmatic. In this study, the anammox process was firstly investigated in hot springs of Conghua, China. Anammox-like bacterial sequences that closely affiliated to “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Scalindua,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” were detected. Several operational taxonomic units (OTUs) from this study shared low sequence identities to the 16S rRNA gene of the known anammox bacteria, suggesting that they might be representing putative novel anammox bacteria. A quantitative PCR analysis of anammox-specific 16S rRNA gene confirmed that the abundance of anammox bacteria ranged from 1.60 × 104 to 1.20 × 107 copies L–1. Nitrate was a key environmental factor defining the geographical distribution of the anammox bacterial community in the hot spring ecosystem. Dissolved inorganic carbon had a significant influence on anammox bacterial biodiversity. Our findings for the first time revealed that the diverse anammox bacteria, including putative novel anammox bacterial candidates, were present in Conghua hot spring, which extended the existence of anammox bacteria to the hot springs in China and expands our knowledge of the biogeography of anammox bacteria. This work filled up the research lacuna of anammox bacteria in Chinese hot spring habitat and would guide for enrichment strategies of anammox bacteria of Conghua hot springs.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Tong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Jian-Yu Jiao,
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- *Correspondence: Wen-Jun Li,
| |
Collapse
|
44
|
The DsrD functional marker protein is an allosteric activator of the DsrAB dissimilatory sulfite reductase. Proc Natl Acad Sci U S A 2022; 119:2118880119. [PMID: 35064091 PMCID: PMC8794893 DOI: 10.1073/pnas.2118880119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Metagenomic data have recently transformed our view of the role played by sulfur metabolism in anoxic environments by showing that this trait is much more widespread than previously believed. A key enzyme in sulfur metabolism is the dissimilatory sulfite reductase DsrAB that is ubiquitous in organisms with a reductive, oxidative, or disproportionating activity. However, the function of some dsr genes, such as dsrD, has so far been unknown despite its use as a functional marker to genomically assign the type of sulfur energy metabolism, sometimes with unclear results. Here, we disclose the function of DsrD as an activator of DsrAB that significantly increases its activity, providing important insights into the mechanism of this enzyme in different types of sulfur metabolism. Dissimilatory sulfur metabolism was recently shown to be much more widespread among bacteria and archaea than previously believed. One of the key pathways involved is the dsr pathway that is responsible for sulfite reduction in sulfate-, sulfur-, thiosulfate-, and sulfite-reducing organisms, sulfur disproportionators and organosulfonate degraders, or for the production of sulfite in many photo- and chemotrophic sulfur-oxidizing prokaryotes. The key enzyme is DsrAB, the dissimilatory sulfite reductase, but a range of other Dsr proteins is involved, with different gene sets being present in organisms with a reductive or oxidative metabolism. The dsrD gene codes for a small protein of unknown function and has been widely used as a functional marker for reductive or disproportionating sulfur metabolism, although in some cases this has been disputed. Here, we present in vivo and in vitro studies showing that DsrD is a physiological partner of DsrAB and acts as an activator of its sulfite reduction activity. DsrD is expressed in respiratory but not in fermentative conditions and a ΔdsrD deletion strain could be obtained, indicating that its function is not essential. This strain grew less efficiently during sulfate and sulfite reduction. Organisms with the earliest forms of dsrAB lack the dsrD gene, revealing that its activating role arose later in evolution relative to dsrAB.
Collapse
|
45
|
Pan J, Xu W, Zhou Z, Shao Z, Dong C, Liu L, Luo Z, Li M. Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge. MICROBIOME 2022; 10:8. [PMID: 35045876 PMCID: PMC8767757 DOI: 10.1186/s40168-021-01202-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/24/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life. They are widely distributed in deep oceans and typically form along mid-ocean ridges. To date, the hydrothermal systems in the Mid-Atlantic Ridge south of 14°S remain barely explored, limiting our understanding of the microbial community in this distinct ecosystem. The Deyin-1 is a newly discovered hydrothermal field in this area. By applying the metagenomic analysis, we aim at gaining much knowledge of the biodiversity and functional capability of microbial community inhabiting this field. RESULTS In the current study, 219 metagenomic assembled genomes (MAGs) were reconstructed, unveiling a diverse and variable community dominated by Bacteroidetes, Nitrospirae, Alpha-, Delta-, and Gammaproteobacteria in the active and inactive chimney samples as well as hydrothermal oxide samples. Most of these major taxa were potentially capable of using reduced sulfur and hydrogen as primary energy sources. Many members within the major taxa exhibited potentials of metabolic plasticity by possessing multiple energy metabolic pathways. Among these samples, different bacteria were found to be the major players of the same metabolic pathways, further supporting the variable and functionally redundant community in situ. In addition, a high proportion of MAGs harbored the genes of carbon fixation and extracellular carbohydrate-active enzymes, suggesting that both heterotrophic and autotrophic strategies could be essential for their survival. Notably, for the first time, the genus Candidatus Magnetobacterium was shown to potentially fix nitrogen, indicating its important role in the nitrogen cycle of inactive chimneys. Moreover, the metabolic plasticity of microbes, diverse and variable community composition, and functional redundancy of microbial communities may represent the adaptation strategies to the geochemically complex and fluctuating environmental conditions in deep-sea hydrothermal fields. CONCLUSIONS This represents the first assembled-genome-based investigation into the microbial community and metabolism of a hydrothermal field in the Mid-Atlantic Ridge south of 14°S. The findings revealed that a high proportion of microbes could benefit from simultaneous use of heterotrophic and autotrophic strategies in situ. It also presented novel members of potential diazotrophs and highlighted the metabolic plasticity and functional redundancy across deep-sea hydrothermal systems. Video abstract.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Zhichao Zhou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Chunming Dong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
- School of Marine Sciences, Nanjing University of Information Science & Technology, 210044 Nanjing, People’s Republic of China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| |
Collapse
|
46
|
Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. THE ISME JOURNAL 2022; 16:307-320. [PMID: 34331018 PMCID: PMC8692467 DOI: 10.1038/s41396-021-01057-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.
Collapse
|
47
|
Abstract
The research and education mine “Reiche Zeche” in Freiberg (Saxony, Germany) represents one of the most famous mining facilities reminiscent to the century-long history of silver production in the Ore Mountains. The mine was set up at the end of the fourteenth century and became part of the “Bergakademie Freiberg” in 1919. Galena, pyrite, sphalerite, arsenopyrite, and chalcopyrite are the most common minerals found in the mine. As acid mine drainage is generated from the dissolution of sulfidic ores, the microbial habitats within the adits and galleries are characterized by low pH and high concentrations of metal(loid)s. The community composition was investigated at locations characterized by biofilm formation and iron-rich bottom pools. Amplicon libraries were sequenced on a MiSeq instrument. The taxonomic survey yielded an unexpected diversity of 25 bacterial phyla including ten genera of iron-oxidizing taxa. The community composition in the snottites and biofilms only slightly differed from the communities found in acidic bottom pools regarding the diversity of iron oxidizers, the key players in most investigated habitats. Sequences of the Candidate Phyla Radiation as, e.g., Dojkabacteria and Eremiobacterota were found in almost all samples. Archaea of the classes Thermoplasmata and Nitrososphaeria were detected in some biofilm communities.
Collapse
|
48
|
Genomic Insights into the Ecological Role and Evolution of a Novel Thermoplasmata Order, " Candidatus Sysuiplasmatales". Appl Environ Microbiol 2021; 87:e0106521. [PMID: 34524897 DOI: 10.1128/aem.01065-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent omics studies have provided invaluable insights into the metabolic potential, adaptation, and evolution of novel archaeal lineages from a variety of extreme environments. We utilized a genome-resolved metagenomic approach to recover eight medium- to high-quality metagenome-assembled genomes (MAGs) that likely represent a new order ("Candidatus Sysuiplasmatales") in the class Thermoplasmata from mine tailings and acid mine drainage (AMD) sediments sampled from two copper mines in South China. 16S rRNA gene-based analyses revealed a narrow habitat range for these uncultured archaea limited to AMD and hot spring-related environments. Metabolic reconstruction indicated a facultatively anaerobic heterotrophic lifestyle. This may allow the archaea to adapt to oxygen fluctuations and is thus in marked contrast to the majority of lineages in the domain Archaea, which typically show obligately anaerobic metabolisms. Notably, "Ca. Sysuiplasmatales" could conserve energy through degradation of fatty acids, amino acid metabolism, and oxidation of reduced inorganic sulfur compounds (RISCs), suggesting that they may contribute to acid generation in the extreme mine environments. Unlike the closely related orders Methanomassiliicoccales and "Candidatus Gimiplasmatales," "Ca. Sysuiplasmatales" lacks the capacity to perform methanogenesis and carbon fixation. Ancestral state reconstruction indicated that "Ca. Sysuiplasmatales," the closely related orders Methanomassiliicoccales and "Ca. Gimiplasmatales," and the orders SG8-5 and RBG-16-68-12 originated from a facultatively anaerobic ancestor capable of carbon fixation via the bacterial-type H4F Wood-Ljungdahl pathway (WLP). Their metabolic divergence might be attributed to different evolutionary paths. IMPORTANCE A wide array of archaea populate Earth's extreme environments; therefore, they may play important roles in mediating biogeochemical processes such as iron and sulfur cycling. However, our knowledge of archaeal biology and evolution is still limited, since the majority of the archaeal diversity is uncultured. For instance, most order-level lineages except Thermoplasmatales, Aciduliprofundales, and Methanomassiliicoccales within Thermoplasmata do not have cultured representatives. Here, we report the discovery and genomic characterization of a novel order, "Ca. Sysuiplasmatales," within Thermoplasmata in extremely acidic mine environments. "Ca. Sysuiplasmatales" are inferred to be facultatively anaerobic heterotrophs and likely contribute to acid generation through the oxidation of RISCs. The physiological divergence between "Ca. Sysuiplasmatales" and closely related Thermoplasmata lineages may be attributed to different evolutionary paths. These results expand our knowledge of archaea in the extreme mine ecosystem.
Collapse
|
49
|
Ranchou-Peyruse M, Guignard M, Casteran F, Abadie M, Defois C, Peyret P, Dequidt D, Caumette G, Chiquet P, Cézac P, Ranchou-Peyruse A. Microbial Diversity Under the Influence of Natural Gas Storage in a Deep Aquifer. Front Microbiol 2021; 12:688929. [PMID: 34721313 PMCID: PMC8549729 DOI: 10.3389/fmicb.2021.688929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Marion Guignard
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Franck Casteran
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Maïder Abadie
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - David Dequidt
- STORENGY – Geosciences Department, Bois-Colombes, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Cézac
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Anthony Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| |
Collapse
|
50
|
Dong X, Zhang C, Li W, Weng S, Song W, Li J, Wang Y. Functional diversity of microbial communities in inactive seafloor sulfide deposits. FEMS Microbiol Ecol 2021; 97:6327547. [PMID: 34302348 DOI: 10.1093/femsec/fiab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
The seafloor sulfide structures of inactive vents are known to host abundant and diverse microorganisms potentially supported by mineralogy of sulfides. However, little is known about the diversity and distribution of microbial functions. Here, we used genome-resolved metagenomics to predict microbial metabolic functions and the contribution of horizontal gene transfer to the functionality of microorganisms inhabiting several hydrothermally inactive seafloor deposits among globally distributed deep-sea vent fields. Despite of geographically distant vent fields, similar microbial community patterns were observed with the dominance of Gammaproteobacteria, Bacteroidota and previously overlooked Candidatus Patescibacteria. Metabolically flexible Gammaproteobacteria are major potential primary producers utilizing mainly sulfur, iron and hydrogen as electron donors coupled with oxygen and nitrate respiration for chemolithoautotrophic growth. In addition to heterotrophic microorganisms like free-living Bacteroidota, Ca. Patescibacteria potentially perform fermentative recycling of organic carbon. Finally, we provided evidence that many functional genes that are central to energy metabolism have been laterally transferred among members within the community and largely within the same class. Taken together, these findings shed light on microbial ecology and evolution in inactive seafloor sulfide deposits after the cessation of hydrothermal activities.
Collapse
Affiliation(s)
- Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wenli Li
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Weizhi Song
- Centre for Marine Science & Innovation, University of New South Wales, 2052 Sydney, Australia
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Yong Wang
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| |
Collapse
|