1
|
Oyarte Galvez L, Bisot C, Bourrianne P, Cargill R, Klein M, van Son M, van Krugten J, Caldas V, Clerc T, Lin KK, Kahane F, van Staalduine S, Stewart JD, Terry V, Turcu B, van Otterdijk S, Babu A, Kamp M, Seynen M, Steenbeek B, Zomerdijk J, Tutucci E, Sheldrake M, Godin C, Kokkoris V, Stone HA, Kiers ET, Shimizu TS. A travelling-wave strategy for plant-fungal trade. Nature 2025; 639:172-180. [PMID: 40011773 PMCID: PMC11882455 DOI: 10.1038/s41586-025-08614-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/08/2025] [Indexed: 02/28/2025]
Abstract
For nearly 450 million years, mycorrhizal fungi have constructed networks to collect and trade nutrient resources with plant roots1,2. Owing to their dependence on host-derived carbon, these fungi face conflicting trade-offs in building networks that balance construction costs against geographical coverage and long-distance resource transport to and from roots3. How they navigate these design challenges is unclear4. Here, to monitor the construction of living trade networks, we built a custom-designed robot for high-throughput time-lapse imaging that could track over 500,000 fungal nodes simultaneously. We then measured around 100,000 cytoplasmic flow trajectories inside the networks. We found that mycorrhizal fungi build networks as self-regulating travelling waves-pulses of growing tips pull an expanding wave of nutrient-absorbing mycelium, the density of which is self-regulated by fusion. This design offers a solution to conflicting trade demands because relatively small carbon investments fuel fungal range expansions beyond nutrient-depletion zones, fostering exploration for plant partners and nutrients. Over time, networks maintained highly constant transport efficiencies back to roots, while simultaneously adding loops that shorten paths to potential new trade partners. Fungi further enhance transport flux by both widening hyphal tubes and driving faster flows along 'trunk routes' of the network5. Our findings provide evidence that symbiotic fungi control network-level structure and flows to meet trade demands, and illuminate the design principles of a symbiotic supply-chain network shaped by millions of years of natural selection.
Collapse
Affiliation(s)
- Loreto Oyarte Galvez
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- AMOLF Institute, Amsterdam, The Netherlands
| | - Corentin Bisot
- AMOLF Institute, Amsterdam, The Netherlands
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Philippe Bourrianne
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Rachael Cargill
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- AMOLF Institute, Amsterdam, The Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- AMOLF Institute, Amsterdam, The Netherlands
| | - Marije van Son
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Victor Caldas
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- AMOLF Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Justin D Stewart
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- Society for the Protection of Underground Networks, SPUN, Dover, DE, USA
| | - Victoria Terry
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Bianca Turcu
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Sander van Otterdijk
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Marko Kamp
- AMOLF Institute, Amsterdam, The Netherlands
| | | | | | | | - Evelina Tutucci
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Merlin Sheldrake
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
- Society for the Protection of Underground Networks, SPUN, Dover, DE, USA
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
| | - Vasilis Kokkoris
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands.
- Society for the Protection of Underground Networks, SPUN, Dover, DE, USA.
| | | |
Collapse
|
2
|
Rangel DEN. How Metarhizium robertsii's mycelial consciousness gets its conidia Zen-ready for stress. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:1-33. [PMID: 39389703 DOI: 10.1016/bs.aambs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This memoir takes a whimsical ride through my professional adventures, spotlighting my fungal stress research on the insect-pathogenic fungus Metarhizium robertsii, which transformed many of my wildest dreams into reality. Imagine the magic of fungi meeting science and me, a happy researcher, arriving at Utah State University ready to dive deep into studies with the legendary insect pathologist, my advisor Donald W. Roberts, and my co-advisor Anne J. Anderson. From my very first "Aha!" moment in the lab, I plunged into a vortex of discovery, turning out research like a mycelium on a mission. Who knew 18 h/day, seven days a week, could be so exhilarating? I was fueled by an insatiable curiosity, boundless creativity, and a perhaps slightly alarming level of motivation. Years later, I managed to bring my grandest vision to life: the International Symposium on Fungal Stress-ISFUS. This groundbreaking event has attracted 162 esteemed speakers from 29 countries to Brazil, proving that fungi can be both fun and globally fascinating. ISFUS is celebrating its fifth edition in 2024, a decade after its 2014 debut.
Collapse
|
3
|
Fukasawa Y, Akai D, Takehi T, Osada Y. Electrical integrity and week-long oscillation in fungal mycelia. Sci Rep 2024; 14:15601. [PMID: 38971913 PMCID: PMC11227530 DOI: 10.1038/s41598-024-66223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024] Open
Abstract
The electrical potential of the mycelia of a cord-forming wood decay fungus, Pholiota brunnescens, was monitored for over 100 days on a plain agar plate during the colonization onto a wood bait. Causality analyses of the electrical potential at different locations of the mycelium revealed a clear and stable causal relationship with the directional flow of the electrical potential from the hyphae at the bait location to other parts of the mycelium. However, this causality disappeared after 60 days of incubation, coinciding with the onset of slow electrical oscillation at the bait location, which occurred over one week per oscillation cycle. We speculated that the hyphae that initially colonized the bait may act as a temporary activity center, which generates electrical signals to other parts of the mycelium, thereby facilitating the colonization of the entire mycelial body to the bait. The week-long electrical oscillation represents the longest oscillation period ever recorded in fungi and warrants further investigation to elucidate its function and stability in response to environmental stimuli.
Collapse
Affiliation(s)
- Yu Fukasawa
- Laboratory of Forest Ecology, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan.
| | - Daisuke Akai
- National Institute of Technology, Nagaoka College, 888 Nishi-Katakaimachi, Nagaoka, Niigata, 940-0817, Japan
- Faculty of Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Takayuki Takehi
- National Institute of Technology, Nagaoka College, 888 Nishi-Katakaimachi, Nagaoka, Niigata, 940-0817, Japan
| | - Yutaka Osada
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
4
|
Fukasawa Y, Ishii K. Foraging strategies of fungal mycelial networks: responses to quantity and distance of new resources. Front Cell Dev Biol 2023; 11:1244673. [PMID: 37691819 PMCID: PMC10483288 DOI: 10.3389/fcell.2023.1244673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Fungal mycelial networks are essential for translocating and storing water, nutrients, and carbon in forest ecosystems. In particular, wood decay fungi form mycelial networks that connect various woody debris on the forest floor. Understanding their foraging strategies is crucial for complehending the role of mycelium in carbon and nutrient cycling in forests. Previous studies have shown that mycelial networks initiate migration from the original woody resource (inoculum) to a new woody resource (bait) if the latter is sufficiently large but not if it is small. However, the impact of energetic costs during foraging, such as the distance to the bait, has not been considered. In the present study, we conducted full-factorial experiments with two factors, bait size (4 and 8 cm3) and distance from the inoculum (1 and 15 cm). An inoculum wood block, colonized by the wood decay fungus Phanerochaete velutina, was placed in one corner of a bioassay dish (24 cm × 24 cm) filled with unsterilized soil. Once the mycelium grew onto the soil to a distance >15 cm from the inoculum, a sterilized new bait wood block (of either size) was placed on the soil at one of the two distances to be colonized by the mycelia from the inoculum. After 50 days of incubation, the baits were harvested, and their dried weight was measured to calculate the absolute weight loss during incubation. The inoculum wood blocks were retrieved and placed on a new soil dish to determine whether the mycelium would grow out onto the soil again. If no growth occurred within 8 days of additional incubation, we concluded that the mycelium had migrated from the inoculum to the bait. The results showed that mycelia in inocula coupled with baits positioned 1 cm away migrated to the baits more frequently than those with baits positioned 15 cm away. A structural equation model revealed that bait weight loss (energy gain) and hyphal coverage on the soil (foraging cost) significantly influenced mycelial migration decisions. These findings suggest that fungal mycelia may employ their own foraging strategies based on energetic benefits.
Collapse
Affiliation(s)
- Yu Fukasawa
- Laboratory of Forest Ecology, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | | |
Collapse
|
5
|
Chen J, Zhao Q, Li F, Zhao X, Wang Y, Zhang L, Liu J, Yan L, Yu L. Nutrient availability and acid erosion determine the early colonization of limestone by lithobiontic microorganisms. Front Microbiol 2023; 14:1194871. [PMID: 37362915 PMCID: PMC10289080 DOI: 10.3389/fmicb.2023.1194871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Microorganisms, including the pioneer microorganisms that play a role in the early colonization of rock, are extremely important biological factors in rock deterioration. The interaction of microorganisms with limestone leads to biodeterioration, accelerates soil formation, and plays an important role in the restoration of degraded ecosystems that cannot be ignored. However, the process of microbial colonization of sterile limestone in the early stages of ecological succession is unclear, as are the factors that affect the colonization. Acid erosion (both organic and inorganic), nutrient availability, and water availability are thought to be key factors affecting the colonization of lithobiontic microorganisms. Methods In this study, organic acid (Oa), inorganic acid (Ia), inorganic acid + nutrient solution (Ia + Nut), nutrient solution (Nut), and rain shade (RS) treatments were applied to sterilized limestone, and the interaction between microorganisms and limestone was investigated using high-throughput sequencing techniques to assess the microorganisms on the limestone after 60 days of natural placement. Results The results were as follows: (1) The abundance of fungi was higher than that of bacteria in the early colonization of limestone, and the dominant bacterial phyla were Proteobacteria, Bacteroidota, and Actinobacteriota, while the dominant fungal phyla were Ascomycota, Basidiomycota, and Chytridiomycota. (2) Acid erosion and nutrient availability shaped different microbial communities in different ways, with bacteria being more sensitive to the environmental stresses than fungi, and the higher the acidity (Ia and Oa)/nutrient concentration, the greater the differences in microbial communities compared to the control (based on principal coordinate analysis). (3) Fungal communities were highly resistant to environmental stress and competitive, while bacterial communities were highly resilient to environmental stress and stable. Discussion In conclusion, our results indicate that limestone exhibits high bioreceptivity and can be rapidly colonized by microorganisms within 60 days in its natural environment, and both nutrient availability and acid erosion of limestone are important determinants of early microbial colonization.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Qing Zhao
- School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Fangbing Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Xiangwei Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yang Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Limin Zhang
- Institute of Guizhou Mountain Resources, Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Jinan Liu
- Garden Greening Center of Logistics Management Office, Guizhou University, Guiyang, Guizhou, China
| | - Lingbin Yan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Lifei Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences and Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Itani A, Masuo S, Yamamoto R, Serizawa T, Fukasawa Y, Takaya N, Toyota M, Betsuyaku S, Takeshita N. Local calcium signal transmission in mycelial network exhibits decentralized stress responses. PNAS NEXUS 2023; 2:pgad012. [PMID: 36896124 PMCID: PMC9991499 DOI: 10.1093/pnasnexus/pgad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Many fungi live as mycelia, which are networks of hyphae. Mycelial networks are suited for the widespread distribution of nutrients and water. The logistical capabilities are critical for the extension of fungal survival areas, nutrient cycling in ecosystems, mycorrhizal symbioses, and virulence. In addition, signal transduction in mycelial networks is predicted to be vital for mycelial function and robustness. A lot of cell biological studies have elucidated protein and membrane trafficking and signal transduction in fungal hyphae; however, there are no reports visualizing signal transduction in mycelia. This paper, by using the fluorescent Ca2+ biosensor, visualized for the first time how calcium signaling is conducted inside the mycelial network in response to localized stimuli in the model fungus Aspergillus nidulans. The wavy propagation of the calcium signal inside the mycelium or the signal blinking in the hyphae varies depending on the type of stress and proximity to the stress. The signals, however, only extended around 1,500 μm, suggesting that the mycelium has a localized response. The mycelium showed growth delay only in the stressed areas. Local stress caused arrest and resumption of mycelial growth through reorganization of the actin cytoskeleton and membrane trafficking. To elucidate the downstream of calcium signaling, calmodulin, and calmodulin-dependent protein kinases, the principal intracellular Ca2+ receptors were immunoprecipitated and their downstream targets were identified by mass spectrometry analyses. Our data provide evidence that the mycelial network, which lacks a brain or nervous system, exhibits decentralized response through locally activated calcium signaling in response to local stress.
Collapse
Affiliation(s)
- Ayaka Itani
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Shunsuke Masuo
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Riho Yamamoto
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Tomoko Serizawa
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Yu Fukasawa
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan
| | - Naoki Takaya
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| |
Collapse
|
7
|
Liu Y, Li D, Gao H, Li Y, Chen W, Jiao S, Wei G. Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154302. [PMID: 35276159 DOI: 10.1016/j.scitotenv.2022.154302] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The diversity of soil eukaryotes and micro-foodwebs are only partially understood. Moreover, how they affect secondary metabolites in plant roots under distinct soil environment is not well elucidated. By combining multiple statistical analyses and network constructions, variations in soil eukaryotic diversity, community assembly processes and potential associations of holistic microbiotas were investigated in the bulk and rhizosphere soils of cultivated and wild licorice, and their regulatory patterns for root secondary metabolites were elucidated. The protistan communities displayed lower alpha diversity, more varied beta diversity patterns, and higher stochastic processes, as compared with fungal communities. Soil fungi individually played a more essential role than soil protists in the regulation of root secondary metabolites. Furthermore, rhizosphere soil was associated with more complicated networks than bulk soil; and wild licorice was associated with more complicated networks than cultivated licorice. Specific responsive modules resulting from networks were essential for the regulation of root secondary metabolites and were mostly affected by edaphic properties. Moreover, these modules directly or indirectly regulated the root secondary metabolites to varying degrees in the presence of soil protists. This indicated that the secondary metabolites were affected by associations between protistan, fungal and bacterial groups, and not merely by individual types of microorganisms in agricultural ecosystems. This study provides insight into the responses of root secondary metabolites to different groups of soil eukaryotic diversity and micro-foodwebs. The results have implications for comprehensively understanding the characteristics of the separate and combined roles of microbiotas for environmental management of licorice plantation ecosystem.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Da Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hang Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
8
|
Adamatzky A, Gandia A. Living mycelium composites discern weights via patterns of electrical activity. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Diversity and Phylogeny of Novel Cord-Forming Fungi from Borneo. Microorganisms 2022; 10:microorganisms10020239. [PMID: 35208694 PMCID: PMC8874581 DOI: 10.3390/microorganisms10020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cord-forming (CF) fungi are found worldwide; however, tropical CF fungi are poorly documented. They play an essential role in forest ecosystems by interconnecting nutrient resources and aiding in the decomposition of plant matter and woody litter. CF fungi samples were collected from two forest conservation sites in the Sabah region of Malaysian Borneo. Sequencing and phylogenetic analysis of the ribosomal rRNA gene array 18S to 28S region from cords collected placed all of the collected specimens in Agaricomycetes (Basidiomycetes), specifically within the orders Trechisporales, Phallales, Hymenochaetales, Polyporales, and Agaricales. Comparison of the cord-derived sequences against GenBank and UNITE sequence databases, as well as phylogenetic analyses, revealed they were all novel sequences types. Many of these novel lineages were found to be closely related to other basidiomycetes commonly found in tropical forests, suggesting a large undiscovered tropical fungal diversity in Borneo that has been detected independently of sampling fruiting bodies. We show how these sequence types relate to the morphologies of the cords from which they were sampled. We also highlight how rapid, small-scale sampling can be a useful tool as an easy and relatively unbiased way of collecting data on cord-forming fungi in difficult-to-access, complex forest environments, independently of locating and sampling sporophores.
Collapse
|
10
|
Aguilar-Trigueros CA, Boddy L, Rillig MC, Fricker MD. Network traits predict ecological strategies in fungi. ISME COMMUNICATIONS 2022; 2:2. [PMID: 37938271 PMCID: PMC9723744 DOI: 10.1038/s43705-021-00085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 05/11/2023]
Abstract
Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative 'phalanx' and 'guerilla' descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.
Collapse
Affiliation(s)
- C A Aguilar-Trigueros
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - L Boddy
- School of Biosciences, Sir Martin Evans Building, Cardiff University, CF10 3AX, Cardiff, UK
| | - M C Rillig
- Freie Universität Berlin, Institut für Biologie, Altensteinstraße 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - M D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB, Oxford, UK
| |
Collapse
|
11
|
Adamatzky A, Ayres P, Beasley AE, Chiolerio A, Dehshibi MM, Gandia A, Albergati E, Mayne R, Nikolaidou A, Roberts N, Tegelaar M, Tsompanas MA, Phillips N, Wösten HAB. Fungal electronics. Biosystems 2021; 212:104588. [PMID: 34979157 DOI: 10.1016/j.biosystems.2021.104588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as stand alone sensing and computing devices.
Collapse
Affiliation(s)
| | - Phil Ayres
- The Centre for Information Technology and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK; Center for Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Via Morego 30, 10163 Genova, Italy
| | - Mohammad M Dehshibi
- Department of Computer Science, Multimedia and Telecommunications, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Antoni Gandia
- Institute for Plant Molecular and Cell Biology, CSIC-UPV, Valencia, Spain
| | - Elena Albergati
- Department of Design, Politecnico di Milano, Milan, Italy; MOGU S.r.l., Inarzo, Italy
| | - Richard Mayne
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | | | - Nic Roberts
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Martin Tegelaar
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| | | | - Neil Phillips
- Unconventional Computing Laboratory, UWE, Bristol, UK
| | - Han A B Wösten
- Microbiology, Department of Biology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Ramírez GA, Mara P, Sehein T, Wegener G, Chambers CR, Joye SB, Peterson RN, Philippe A, Burgaud G, Edgcomb VP, Teske AP. Environmental factors shaping bacterial, archaeal and fungal community structure in hydrothermal sediments of Guaymas Basin, Gulf of California. PLoS One 2021; 16:e0256321. [PMID: 34495995 PMCID: PMC8425543 DOI: 10.1371/journal.pone.0256321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023] Open
Abstract
The flanking regions of Guaymas Basin, a young marginal rift basin located in the Gulf of California, are covered with thick sediment layers that are hydrothermally altered due to magmatic intrusions. To explore environmental controls on microbial community structure in this complex environment, we analyzed site- and depth-related patterns of microbial community composition (bacteria, archaea, and fungi) in hydrothermally influenced sediments with different thermal conditions, geochemical regimes, and extent of microbial mats. We compared communities in hot hydrothermal sediments (75-100°C at ~40 cm depth) covered by orange-pigmented Beggiatoaceae mats in the Cathedral Hill area, temperate sediments (25-30°C at ~40 cm depth) covered by yellow sulfur precipitates and filamentous sulfur oxidizers at the Aceto Balsamico location, hot sediments (>115°C at ~40 cm depth) with orange-pigmented mats surrounded by yellow and white mats at the Marker 14 location, and background, non-hydrothermal sediments (3.8°C at ~45 cm depth) overlain with ambient seawater. Whereas bacterial and archaeal communities are clearly structured by site-specific in-situ thermal gradients and geochemical conditions, fungal communities are generally structured by sediment depth. Unexpectedly, chytrid sequence biosignatures are ubiquitous in surficial sediments whereas deeper sediments contain diverse yeasts and filamentous fungi. In correlation analyses across different sites and sediment depths, fungal phylotypes correlate to each other to a much greater degree than Bacteria and Archaea do to each other or to fungi, further substantiating that site-specific in-situ thermal gradients and geochemical conditions that control bacteria and archaea do not extend to fungi.
Collapse
Affiliation(s)
- Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
- * E-mail:
| | - Paraskevi Mara
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Taylor Sehein
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University Bremen, Germany
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Christopher R. Chambers
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Richard N. Peterson
- School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Aurélie Philippe
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Gaëtan Burgaud
- Univ. Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Virginia P. Edgcomb
- Geology and Geophysics Dept., Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Andreas P. Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, NC, United States of America
| |
Collapse
|
13
|
Fukasawa Y, Kaga K. Timing of Resource Addition Affects the Migration Behavior of Wood Decomposer Fungal Mycelia. J Fungi (Basel) 2021; 7:654. [PMID: 34436193 PMCID: PMC8402142 DOI: 10.3390/jof7080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Studies of fungal behavior are essential for a better understanding of fungal-driven ecological processes. Here, we evaluated the effects of timing of resource (bait) addition on the behavior of fungal mycelia when it remains in the inoculum and when it migrates from it towards a bait, using cord-forming basidiomycetes. Experiments allowed mycelium to grow from an inoculum wood across the surface of a soil microcosm, where it encountered a new wood bait 14 or 98 d after the start of growth. After the 42-d colonization of the bait, inoculum and bait were individually moved to a dish containing fresh soil to determine whether the mycelia were able to grow out. When the inoculum and bait of mycelia baited after 14 d were transferred to new soil, there was 100% regrowth from both inoculum and bait in Pholiota brunnescens and Phanerochaete velutina, indicating that no migration occurred. However, when mycelium was baited after 98 d, 3 and 4 out of 10 replicates of P. brunnescens and P. velutina, respectively, regrew only from bait and not from inoculum, indicating migration. These results suggest that prolonged periods without new resources alter the behavior of mycelium, probably due to the exhaustion of resources.
Collapse
Affiliation(s)
- Yu Fukasawa
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, Japan;
| | | |
Collapse
|
14
|
Aleklett K, Boddy L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol Evol 2021; 36:787-796. [PMID: 34172318 DOI: 10.1016/j.tree.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
As human beings, behaviours make up our everyday lives. What we do from the moment we wake up to the moment we go back to sleep at night can all be classified and studied through the concepts of behavioural ecology. The same applies to all vertebrates and, to some extent, invertebrates. Fungi are, in most people's eyes perhaps, the eukaryotic multicellular organisms with which we humans share the least commonalities. However, they still express behaviours, and we argue that we could obtain a better understanding of their lives - although they are very different from ours - through the lens of behavioural ecology. Moreover, insights from fungal behaviour may drive a better understanding of behavioural ecology in general.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, SE-234 22 Lomma, Sweden.
| | - Lynne Boddy
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
15
|
Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. THE ISME JOURNAL 2021; 15:1782-1793. [PMID: 33469165 PMCID: PMC8163874 DOI: 10.1038/s41396-020-00886-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
How do fungi navigate through the complex microscopic maze-like structures found in the soil? Fungal behaviour, especially at the hyphal scale, is largely unknown and challenging to study in natural habitats such as the opaque soil matrix. We monitored hyphal growth behaviour and strategies of seven Basidiomycete litter decomposing species in a micro-fabricated "Soil Chip" system that simulates principal aspects of the soil pore space and its micro-spatial heterogeneity. The hyphae were faced with micrometre constrictions, sharp turns and protruding obstacles, and the species examined were found to have profoundly different responses in terms of foraging range and persistence, spatial exploration and ability to pass obstacles. Hyphal behaviour was not predictable solely based on ecological assumptions, and our results obtained a level of trait information at the hyphal scale that cannot be fully explained using classical concepts of space exploration and exploitation such as the phalanx/guerrilla strategies. Instead, we propose a multivariate trait analysis, acknowledging the complex trade-offs and microscale strategies that fungal mycelia exhibit. Our results provide novel insights about hyphal behaviour, as well as an additional understanding of fungal habitat colonisation, their foraging strategies and niche partitioning in the soil environment.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Biology, Lund University, Lund, Sweden.
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden.
| | - Pelle Ohlsson
- Department of Biomedical Engineering, LTH, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, LTH, Lund University, Lund, Sweden
| | | |
Collapse
|
16
|
Money NP. Hyphal and mycelial consciousness: the concept of the fungal mind. Fungal Biol 2021; 125:257-259. [PMID: 33766303 DOI: 10.1016/j.funbio.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Like other cells, fungal hyphae show exquisite sensitivity to their environment. This reactiveness is demonstrated at many levels, from changes in the form of the hypha resulting from alterations in patterns of exocytosis, to membrane excitation, and mechanisms of wound repair. Growing hyphae detect ridges on surfaces and respond to restrictions in their physical space. These are expressions of cellular consciousness. Fungal mycelia show decision-making and alter their developmental patterns in response to interactions with other organisms. Mycelia may even be capable of spatial recognition and learning coupled with a facility for short-term memory. Now is a fruitful time to recognize the study of fungal ethology as a distinctive discipline within mycology.
Collapse
Affiliation(s)
- Nicholas P Money
- Western Program and Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
17
|
Fukasawa Y, Kaga K. Effects of wood resource size and decomposition on hyphal outgrowth of a cord-forming basidiomycete, Phanerochaete velutina. Sci Rep 2020; 10:21936. [PMID: 33318597 PMCID: PMC7736840 DOI: 10.1038/s41598-020-79058-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
To assess the relationship between resource use and hyphal growth in a cord-forming basidiomycete, Phanerochaete velutina, soil microcosm experiments were conducted using wood blocks of three different sizes in three different soil quantities, thereby simulating the different amounts of available nutrients. The highest percentage weight loss was observed in the smallest wood blocks after a 27-d incubation period in soil microcosms, although the percentage weight loss over the 2-month pure culture colonization prior to inoculation was not significantly different among various block sizes. The greatest hyphal outgrowth was also observed in the smallest wood blocks and was positively associated with wood decay. The slopes of the regression lines between hyphal coverage and percentage wood mass loss were identical among different wood sizes, but the slopes between hyphal coverage and absolute wood mass loss were steeper in the smaller wood blocks than that in largest one. These results suggest that the level of intensity of mycelial foraging for new resources in the soil depends on the percentage of the amount of wood resource utilized, and not on the absolute amount of carbon obtained from the wood.
Collapse
Affiliation(s)
- Yu Fukasawa
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan.
| | - Koji Kaga
- Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko, Osaki, Miyagi, 989-6711, Japan
| |
Collapse
|
18
|
|