1
|
Sánchez-Gallego J, Curtis NP, Paerl HW, Paerl RW. New perspectives on picocyanobacteria and understudied cyanobacterial diversity in the Albemarle Pamlico sound system, North Carolina, USA. Front Microbiol 2025; 16:1539050. [PMID: 40415923 PMCID: PMC12099654 DOI: 10.3389/fmicb.2025.1539050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/25/2025] [Indexed: 05/27/2025] Open
Abstract
Cyanobacteria are important primary producers, sources of secondary metabolites, and sentinels of environmental change in aquatic ecosystems - including large estuaries. Here, we newly investigated cyanobacterial diversity within the Albemarle Pamlico Sound System (APES) using (16S rRNA) gene amplicon sequencing analyses. Substantial cyanobacterial diversity including lineages lacking current isolates were recovered (46 genera, 17 potentially cyanotoxic), with oligohaline waters of the Albemarle Sound and its tributaries being notable regional hotspot for diversity. Salinity and temperature were influential drivers of cyanobacterial community composition. Picocyanobacteria (cells <3 µm in diameter) were abundant in amplicon sequence libraries (72% of cyanobacterial sequences) - especially populations within Synechococcus SubClade 5.2. Picocyanobacteria along with picoeukaryotes were large contributors to total phytoplankton biomass comprising ~47% of chlorophyll a. Further, the picocyanobacterial genera Synechococcus, Cyanobium, and Synechocystis (55.4%, 14.8%, and 12.9% of cyanobacterial sequences, respectively) formed a core community spanning from freshwater regions (eastern AST, D949) to polyhaline environments (NRE100 downstream stations to PS5), suggesting resilience to significant salinity fluctuations and associated environmental changes. Amplicon sequence variant (ASV) and environmental data indicate the presence of several putative ecotypes, as well as distinct abundance patterns among closely related populations, highlighting substantial fitness variability among subspecies. Notably, potentially cyanotoxic genera, Synechocystis, Planktothrix, Plectonema, and Dolichospermum were the four more abundant detected in polyhaline APES regions, far beyond conspicuous freshwater sources. These findings reveal previously unrecognized potential sources of cyanotoxics in estuarine food webs and habitats, underscoring the ecological significance of cyanobacterial community dynamics across salinity gradients.
Collapse
Affiliation(s)
- Joel Sánchez-Gallego
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
- Coiba Scientific Station, City of Knowledge, Clayton, Panama
| | - Nathaniel P. Curtis
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| | - Hans W. Paerl
- Department of Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | - Ryan W. Paerl
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Li H, Jiang M, Li P, Xu Z, Jiang P, Chen L, Gin KYH, He Y. Picocyanobacterial-bacterial interactions sustain cyanobacterial blooms in nutrient-limited aquatic environments. ENVIRONMENTAL RESEARCH 2024; 260:119508. [PMID: 38945511 DOI: 10.1016/j.envres.2024.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacterial blooms (CBs) and concomitant water quality issues in oligotrophic/mesotrophic waters have been recently reported, challenging the conventional understanding that CBs are primarily caused by eutrophication. To elucidate the underlying mechanism of CBs in nutrition-deficient waters, the changes in Chlorophyll a (Chl-a), cyanobacterial-bacterial community composition, and certain microbial function in Qingcaosha Reservoir, the global largest tidal estuary storage reservoir, were analyzed systematically and comprehensively after its pilot run (2011-2019) in this study. Although the water quality was improved and stabilized, more frequent occurrences of bloom level of Chl-a (>20 μg L-1) in warm seasons were observed during recent years. The meteorological changes (CO2, sunshine duration, radiation, precipitation, evaporation, and relative humidity), water quality variations (pH, total organic carbon content, dissolved oxygen, and turbidity), accumulated sediments as an endogenous source, as well as unique estuarine conditions collectively facilitated picocyanobacterial-bacterial coexistence and community functional changes in this reservoir. A stable and tight co-occurrence pattern was established between dominant cyanobacteria (Synechococcus, Cyanobium, Planktothrix, Chroococcidiopsis, and Prochlorothrix) and certain heterotrophic bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes), which contributed to the remineralization of organic matter for cyanobacteria utilization. The relative abundance of chemoorganoheterotrophs and bacteria related to nitrogen transformation (Paracoccus, Rhodoplanes, Nitrosomonas, and Zoogloea) increased, promoting the emergence of CBs in nutrient-limited conditions through enhanced nutrient recycling. In environments with limited nutrients, the interaction between photosynthetic autotrophic microorganisms and heterotrophic bacteria appears to be non-competitive. Instead, they adopt complementary roles within their ecological niche over long-term succession, mutually benefiting from this association. This long-term study confirmed that enhanced nutrient cycling, facilitated by cyanobacterial-bacterial symbiosis following long-term succession, could promote CBs in oligotrophic aquatic environments devoid of external nutrient inputs. This study advances understanding of the mechanisms that trigger and sustain CBs under nutritional constraints, contributing to developing more effective mitigation strategies, ensuring water safety, and maintaining ecological balance.
Collapse
Affiliation(s)
- Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mengqi Jiang
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zheng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng Jiang
- Department of Industrial Engineering and Management, Sichuan University, Chengdu, 610064, PR China
| | - Lei Chen
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, 200082, PR China
| | - Karina Yew-Hoong Gin
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore, 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
3
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
4
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
6
|
Genome Sequence of the Estuarine
Synechococcus
sp. Strain NB0720_010. Microbiol Resour Announc 2022; 11:e0015122. [PMID: 35862922 PMCID: PMC9387257 DOI: 10.1128/mra.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Marine Synechococcus spp. are unicellular cyanobacteria widely distributed in the world’s oceans. We report the complete genome sequence of Synechococcus sp. strain NB0720_010, isolated from Narragansett Bay, Rhode Island. NB0702_10 has several large (>3,000-amino acid) protein-coding genes that may be important in its interactions with other cells, including grazers in estuarine habitats.
Collapse
|
7
|
Barteneva NS, Meirkhanova A, Malashenkov D, Vorobjev IA. To Die or Not to Die-Regulated Cell Death and Survival in Cyanobacteria. Microorganisms 2022; 10:1657. [PMID: 36014075 PMCID: PMC9415839 DOI: 10.3390/microorganisms10081657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.
Collapse
Affiliation(s)
- Natasha S. Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 000010, Kazakhstan
| | | | | | | |
Collapse
|
8
|
Wang T, Li J, Jing H, Qin S. Picocyanobacterial Synechococcus in marine ecosystem: Insights from genetic diversity, global distribution, and potential function. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105622. [PMID: 35429822 DOI: 10.1016/j.marenvres.2022.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Marine Synechococcus, a main group of picocyanobacteria, has been ubiquitously observed across the global oceans. Synechococcus exhibits high phylogenetical and phenotypical diversity, and horizontal gene transfer makes its genetic evolution much more intricate. With the development of measurement technologies and analysis methods, the genomic information and niche partition of each Synechococcus lineage tend to be precisely described, but the global analysis is still lacking. Therefore, it is necessary to summarize existing studies and integrate published data to gain a comprehensive understanding of Synechococcus on genetic variation, niche division, and potential functions. In this review, the maximum likelihood trees are constructed based on existing sequence data, including both phylogenetic and pigmentary gene markers. The global distribution characteristics of abundance, lineages, and pigment types are concluded through pooled analysis of more than 700 samples obtained from approximately 50 scientific research cruises. The potential functions of Synechococcus are explored in element cycles and biological interactions. Future work on Synechococcus is suggested to focus on not only elucidating the nature of Synechococcus biodiversity but also demonstrating its interactions with the ecosystem by combining bioinformatics and macroscopic isotope-labeled environmental parameters.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264000, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
9
|
Wang T, Xia X, Chen J, Liu H, Jing H. Spatio-Temporal Variation of Synechococcus Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters. Front Microbiol 2022; 13:837037. [PMID: 35308375 PMCID: PMC8928118 DOI: 10.3389/fmicb.2022.837037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is a major contributor to global marine primary production. Here, its spatio-temporal variations in abundance and phylogenetic structure were studied at three stations of the South China Sea at both DNA and cDNA levels. Synechococcus cell abundance was lowest in March, but highest in October at two coastal stations. Its abundance was higher at the estuarine station, which reached a peak value of 1.36 × 105 cells/ml in April, owing to the nitrogen nutrients discharged from the Sanya River. Gene and gene transcript abundances of four Synechococcus lineages, clades II, III, VIII, and S5.3, were studied by quantitative PCR, which showed that clade II was the most abundant lineage at both DNA and cDNA levels. High-throughput sequencing revealed that, at the DNA level, Synechococcus assemblage was dominated by clade SY4 (a novel clade defined in this study), S5.2, and clade II in the coastal waters and was dominated by freshwater/S5.2 Synechococcus, reaching a value up to 88.61% in June, in estuarine waters. Changes in salinity and nutrient concentration caused by seasonal monsoonal forcing and river discharge were the key determinants of the spatio-temporal variation in Synechococcus assemblages at the DNA level. In comparison, high dissimilation among samples at the same stations and in the same seasons leads to the imperceptible spatio-temporal variation pattern of Synechococcus assemblages at the cDNA level. Furthermore, co-occurrence networks disclosed that Synechococcus community had closer and more complex internal interactions at the cDNA level. These discrepancies highlighted the necessity to study Synechococcus assemblages at both DNA and cDNA levels.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
10
|
Cooper GA, Liu M, Peña J, West SA. The evolution of mechanisms to produce phenotypic heterogeneity in microorganisms. Nat Commun 2022; 13:195. [PMID: 35078994 PMCID: PMC8789899 DOI: 10.1038/s41467-021-27902-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
In bacteria and other microorganisms, the cells within a population often show extreme phenotypic variation. Different species use different mechanisms to determine how distinct phenotypes are allocated between individuals, including coordinated, random, and genetic determination. However, it is not clear if this diversity in mechanisms is adaptive-arising because different mechanisms are favoured in different environments-or is merely the result of non-adaptive artifacts of evolution. We use theoretical models to analyse the relative advantages of the two dominant mechanisms to divide labour between reproductives and helpers in microorganisms. We show that coordinated specialisation is more likely to evolve over random specialisation in well-mixed groups when: (i) social groups are small; (ii) helping is more "essential"; and (iii) there is a low metabolic cost to coordination. We find analogous results when we allow for spatial structure with a more detailed model of cellular filaments. More generally, this work shows how diversity in the mechanisms to produce phenotypic heterogeneity could have arisen as adaptations to different environments.
Collapse
Affiliation(s)
- Guy Alexander Cooper
- St. John's College, Oxford, OX1 3JP, UK.
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK.
| | - Ming Liu
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Jorge Peña
- Institute for Advanced Study in Toulouse, University of Toulouse Capitole, 31080, Toulouse, Cedex 6, France
| | | |
Collapse
|