1
|
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC. Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624573. [PMID: 39605547 PMCID: PMC11601503 DOI: 10.1101/2024.11.21.624573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes "pineapple" galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.
Collapse
Affiliation(s)
- A M Glendening
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - Cole Stephens
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, 20147
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Tesko Chaganti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
- Canton High School, Canton, MI, USA 48187
| | - Nicole Pauloski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Tim A Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
2
|
Renoz F, Parisot N, Baa-Puyoulet P, Gerlin L, Fakhour S, Charles H, Hance T, Calevro F. PacBio Hi-Fi genome assembly of Sipha maydis, a model for the study of multipartite mutualism in insects. Sci Data 2024; 11:450. [PMID: 38704391 PMCID: PMC11069519 DOI: 10.1038/s41597-024-03297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Dependence on multiple nutritional endosymbionts has evolved repeatedly in insects feeding on unbalanced diets. However, reference genomes for species hosting multi-symbiotic nutritional systems are lacking, even though they are essential for deciphering the processes governing cooperative life between insects and anatomically integrated symbionts. The cereal aphid Sipha maydis is a promising model for addressing these issues, as it has evolved a nutritional dependence on two bacterial endosymbionts that complement each other. In this study, we used PacBio High fidelity (HiFi) long-read sequencing to generate a highly contiguous genome assembly of S. maydis with a length of 410 Mb, 3,570 contigs with a contig N50 length of 187 kb, and BUSCO completeness of 95.5%. We identified 117 Mb of repetitive sequences, accounting for 29% of the genome assembly, and predicted 24,453 protein-coding genes, of which 2,541 were predicted enzymes included in an integrated metabolic network with the two aphid-associated endosymbionts. These resources provide valuable genetic and metabolic information for understanding the evolution and functioning of multi-symbiotic systems in insects.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium.
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France.
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan.
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France.
| | | | - Léo Gerlin
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, F-69621, France
| | - Samir Fakhour
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
- Department of Plant Protection, National Institute for Agricultural Research (INRA), Béni-Mellal, 23000, Morocco
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, Villeurbanne, F-69621, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR203, Villeurbanne, F-69621, France.
| |
Collapse
|
3
|
Valadez-Cano C, Olivares-Hernández R, Espino-Vázquez AN, Partida-Martínez LP. Genome-Scale Model of Rhizopus microsporus: Metabolic integration of a fungal holobiont with its bacterial and viral endosymbionts. Environ Microbiol 2024; 26:e16551. [PMID: 38072824 DOI: 10.1111/1462-2920.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Rhizopus microsporus often lives in association with bacterial and viral symbionts that alter its biology. This fungal model represents an example of the complex interactions established among diverse organisms in functional holobionts. We constructed a Genome-Scale Model (GSM) of the fungal-bacterial-viral holobiont (iHol). We employed a constraint-based method to calculate the metabolic fluxes to decipher the metabolic interactions of the symbionts with their host. Our computational analyses of iHol simulate the holobiont's growth and the production of the toxin rhizoxin. Analyses of the calculated fluxes between R. microsporus in symbiotic (iHol) versus asymbiotic conditions suggest that changes in the lipid and nucleotide metabolism of the host are necessary for the functionality of the holobiont. Glycerol plays a pivotal role in the fungal-bacterial metabolic interaction, as its production does not compromise fungal growth, and Mycetohabitans bacteria can efficiently consume it. Narnavirus RmNV-20S and RmNV-23S affected the nucleotide metabolism without impacting the fungal-bacterial symbiosis. Our analyses highlighted the metabolic stability of Mycetohabitans throughout its co-evolution with the fungal host. We also predicted changes in reactions of the bacterial metabolism required for the active production of rhizoxin. This iHol is the first GSM of a fungal holobiont.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, Mexico
| | - Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| |
Collapse
|
4
|
Michalik A, Bauer E, Szklarzewicz T, Kaltenpoth M. Nutrient supplementation by genome-eroded Burkholderia symbionts of scale insects. THE ISME JOURNAL 2023; 17:2221-2231. [PMID: 37833524 PMCID: PMC10689751 DOI: 10.1038/s41396-023-01528-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Eugen Bauer
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
5
|
Abstract
Many insects contain endosymbiotic bacteria within their bodies. In multiple endosymbiotic systems comprising two or more symbionts, each of the symbionts is generally localized in a different host cell or tissue. Bemisia tabaci (Sweet potato whitefly) possesses a unique endosymbiotic system where co-obligate symbionts are localized in the same bacteriocytes. Using fluorescence in situ hybridization, we found that endosymbionts in B. tabaci MEAM1 occupy distinct subcellular habitats, or niches, within a single bacteriocyte. Hamiltonella was located adjacent to the nucleus of the bacteriocyte, while Portiera was present in the cytoplasm surrounding Hamiltonella. Immunohistochemical analysis revealed that the endoplasmic reticulum separates the two symbionts. Habitat segregation was maintained for longer durations in female bacteriocytes. The same segregation was observed in three genetically distinct B. tabaci groups (MEAM1, MED Q1, and Asia II 6) and Trialeurodes vaporariorum, which shared a common ancestor with Bemisia over 80 million years ago, even though the coexisting symbionts and the size of bacteriocytes were different. These results suggest that the habitat segregation system existed in the common ancestor and was conserved in both lineages, despite different bacterial partners coexisting with Portiera. Our findings provide insights into the evolution and maintenance of complex endosymbiotic systems and highlight the importance of organelles for the construction of separate niches for endosymbionts. IMPORTANCE Co-obligate endosymbionts in B. tabaci are exceptionally localized within the same bacteriocyte (a specialized cell for endosymbiosis), but the underlying mechanism for their coexistence remains largely unknown. This study provides evidence for niche segregation at the subcellular level between the two symbionts. We showed that the endoplasmic reticulum is a physical barrier separating the two species. Despite differences in co-obligate partners, this subcellular niche segregation was conserved across various whitefly species. The physical proximity of symbionts may enable the efficient biosynthesis of essential nutrients via shared metabolic pathways. The expression "Good fences make good neighbors" appears to be true for insect endosymbiotic systems.
Collapse
|
6
|
Yorimoto S, Hattori M, Kondo M, Shigenobu S. Complex host/symbiont integration of a multi-partner symbiotic system in the eusocial aphid Ceratovacuna japonica. iScience 2022; 25:105478. [PMID: 36404929 PMCID: PMC9672956 DOI: 10.1016/j.isci.2022.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/11/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Some hemipteran insects rely on multiple endosymbionts for essential nutrients. However, the evolution of multi-partner symbiotic systems is not well-established. Here, we report a co-obligate symbiosis in the eusocial aphid, Ceratovacuna japonica. 16S rRNA amplicon sequencing unveiled co-infection with a novel Arsenophonus sp. symbiont and Buchnera aphidicola, a common obligate endosymbiont in aphids. Both symbionts were housed within distinct bacteriocytes and were maternally transmitted. The Buchnera and Arsenophonus symbionts had streamlined genomes of 432,286 bp and 853,149 bp, respectively, and exhibited metabolic complementarity in riboflavin and peptidoglycan synthesis pathways. These anatomical and genomic properties were similar to those of independently evolved multi-partner symbiotic systems, such as Buchnera-Serratia in Lachninae and Periphyllus aphids, representing remarkable parallelism. Furthermore, symbiont populations and bacteriome morphology differed between reproductive and soldier castes. Our study provides the first example of co-obligate symbiosis in Hormaphidinae and gives insight into the evolutionary genetics of this complex system.
Collapse
Affiliation(s)
- Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mitsuru Hattori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Maki Kondo
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Men Y, Yang ZW, Luo JY, Chen PP, Moreira FFF, Liu ZH, Yin JD, Xie BJ, Wang YH, Xie Q. Symbiotic Microorganisms and Their Different Association Types in Aquatic and Semiaquatic Bugs. Microbiol Spectr 2022; 10:e0279422. [PMID: 36409137 PMCID: PMC9769989 DOI: 10.1128/spectrum.02794-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
True bugs (Hemiptera, suborder Heteroptera) constitute the largest suborder of nonholometabolous insects and occupy a wide range of habitats various from terrestrial to semiaquatic to aquatic niches. The transition and occupation of these diverse habitats impose various challenges to true bugs, including access to oxygen for the aquatic species and plant defense for the terrestrial phytophagans. Although numerous studies have demonstrated that microorganisms can provide multiple benefits to terrestrial host insects, a systematic study with comprehensive higher taxa sampling that represents aquatic and semiaquatic habitats is still lacking. To explore the role of symbiotic microorganisms in true bug adaptations, 204 samples belonging to all seven infraorders of Heteroptera were investigated, representing approximately 85% of its superfamilies and almost all known habitats. The symbiotic microbial communities of these insects were analyzed based on the full-length amplicons of the bacterial 16S rRNA gene and fungal ITS region. Bacterial communities varied among hosts inhabiting terrestrial, semiaquatic, and aquatic habitats, while fungal communities were more related to the geographical distribution of the hosts. Interestingly, co-occurrence networks showed that species inhabiting similar habitats shared symbiotic microorganism association types. Moreover, functional prediction analyses showed that the symbiotic bacterial community of aquatic species displayed richer amino acid and lipid metabolism pathways, while plant-feeding true bugs benefited more from the symbiont-provided xenobiotics biodegradation pathway. These results deepened the recognition that symbiotic microorganisms were likely to help heteropterans occupy diverse ecological habitats and provided a reference framework for further studies on how microorganisms affect host insects living in various habitats. IMPORTANCE Symbiotic bacteria and fungi generally colonize insects and provide various benefits for hosts. Although numerous studies have investigated symbionts in terrestrial plant-feeding insects, explorations of symbiotic bacterial and fungal communities in aquatic and semiaquatic insects are rare. In this study, the symbiotic microorganisms of 204 aquatic, semiaquatic, and terrestrial true bugs were explored. This comprehensive taxon sampling covers ~85% of the superfamilies of true bugs and most insect habitats. Analyses of the diversity of symbionts demonstrated that the symbiotic microbial diversities of true bugs were mainly affected by host habitats. Co-occurrence networks showed that true bugs inhabiting similar habitats shared symbiotic microbial association types. These correlations between symbionts and hosts together with the functions of bacterial communities indicated that symbiotic microbial communities may help true bugs adapt to (semi)aquatic habitats.
Collapse
Affiliation(s)
- Yu Men
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zi-wen Yang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiu-yang Luo
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping-ping Chen
- Netherlands Centre of Biodiversity Naturalis, Leiden, Netherlands
| | | | - Zhi-hui Liu
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-dong Yin
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bao-jun Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-hui Wang
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang Xie
- School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Dudzic JP, Curtis CI, Gowen BE, Perlman SJ. A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc Biol Sci 2022; 289:20221518. [PMID: 36168763 PMCID: PMC9515626 DOI: 10.1098/rspb.2022.1518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wolbachia symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of Wolbachia in an insect-parasitic tylenchid nematode, Howardula sp., in a nematode clade that has not previously been known to harbour Wolbachia. While this nematode is 100% infected with Wolbachia, we did not detect it in related species. We sequenced the Howardula symbiont (wHow) genome and found that it is highly reduced, comprising only 550 kilobase pairs of DNA, approximately 35% smaller than the smallest Wolbachia nematode symbiont genomes. The wHow genome is a subset of all other Wolbachia genomes and has not acquired any new genetic information. While it has lost many genes, including genes involved in cell wall synthesis and cell division, it has retained the entire haem biosynthesis pathway, suggesting that haem supplementation is critical. wHow provides key insights into our understanding of what are the lower limits of Wolbachia cells, as well as the role of Wolbachia symbionts in the biology and convergent evolution of diverse parasitic nematodes.
Collapse
Affiliation(s)
- Jan P Dudzic
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Caitlin I Curtis
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
9
|
Moczek AP. When the end modifies its means: the origins of novelty and the evolution of innovation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The origin of novel complex traits constitutes a central yet largely unresolved challenge in evolutionary biology. Intriguingly, many of the most promising breakthroughs in understanding the genesis of evolutionary novelty in recent years have occurred not in evolutionary biology itself, but through the comparative study of development and, more recently, the interface of developmental biology and ecology. Here, I discuss how these insights are changing our understanding of what matters in the origin of novel, complex traits in ontogeny and evolution. Specifically, my essay has two major objectives. First, I discuss how the nature of developmental systems biases the production of phenotypic variation in the face of novel or stressful environments toward functional, integrated and, possibly, adaptive variants. This, in turn, allows the production of novel phenotypes to precede (rather than follow) changes in genotype and allows developmental processes that are the product of past evolution to shape evolutionary change that has yet to occur. Second, I explore how this nature of developmental systems has itself evolved over time, increasing the repertoire of ontogenies to pursue a wider range of objectives across an expanding range of conditions, thereby creating an increasingly extensive affordance landscape in development and developmental evolution. Developmental systems and their evolution can thus be viewed as dynamic processes that modify their own means across ontogeny and phylogeny. The study of these dynamics necessitates more than the strict reductionist approach that currently dominates the fields of developmental and evolutionary developmental biology.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University , Bloomington, IN , USA
| |
Collapse
|
10
|
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, Hance T. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids. Microorganisms 2022; 10:microorganisms10071360. [PMID: 35889078 PMCID: PMC9317480 DOI: 10.3390/microorganisms10071360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus. Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
- Correspondence:
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Samir Fakhour
- Department of Plant Protection, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco;
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Mélanie Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), 1200 Woluwe-Saint-Lambert, Belgium; (J.A.); (B.B.); (J.-L.G.)
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR203, F-69621 Villeurbanne, France; (N.P.); (M.R.L.); (F.C.)
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
11
|
Shigenobu S, Yorimoto S. Aphid hologenomics: current status and future challenges. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100882. [PMID: 35150917 DOI: 10.1016/j.cois.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Aphids are important model organisms in ecological, developmental, and evolutionary studies of, for example, symbiosis, insect-plant interactions, pest management, and developmental polyphenism. Here, we review the recent progress made in the genomics of aphids and their symbionts: hologenomics. The reference genome of Acyrthosiphon pisum has been greatly improved, and chromosome-level assembly is now available. The genomes of over 20 aphid species have been sequenced, and comparative genomic analyses have revealed pervasive gene duplication and dynamic chromosomal rearrangements. Over 120 symbiont genomes (both obligate and facultative) have been sequenced, and modern deep-sequencing technologies have identified novel symbionts. The advances in hologenomics have helped to elucidate the dynamic evolution of facultative and co-obligate symbionts with the ancient obligate symbiont Buchnera.
Collapse
Affiliation(s)
- Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shunta Yorimoto
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, Okazaki, 444-8585, Japan; Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
12
|
Liu W, Yu SH, Zhang HP, Fu ZY, An JQ, Zhang JY, Yang P. Two Cladosporium Fungi with Opposite Functions to the Chinese White Wax Scale Insect Have Different Genome Characters. J Fungi (Basel) 2022; 8:jof8030286. [PMID: 35330288 PMCID: PMC8949958 DOI: 10.3390/jof8030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Insects encounter infection of microorganisms, and they also harbor endosymbiosis to participate in nutrition providing and act as a defender against pathogens. We previously found the Chinese white wax scale insect, Ericerus pela, was infected and killed by Cladosporium sp. (pathogen). We also found it harbored Cladosporium sp. (endogensis). In this study, we cultured these two Cladosporium fungi and sequenced their genome. The results showed Cladosporium sp. (endogensis) has a larger genome size and more genes than Cladosporium sp. (pathogen). Pan-genome analysis showed Cladosporium sp. (endogensis)-specific genes enriched in pathways related to nutrition production, such as amino acid metabolism, carbohydrate metabolism, and energy metabolism. These pathways were absent in that of Cladosporium sp. (pathogen). Gene Ontology analysis showed Cladosporium sp. (pathogen)-specific genes enriched in the biosynthesis of asperfuranone, emericellamide, and fumagillin. These terms were not found in that of Cladosporium sp. (endogensis). Pathogen Host Interactions analysis found Cladosporium sp. (endogensis) had more genes related to loss of pathogenicity and reduced virulence than Cladosporium sp. (pathogen). Cytotoxicity assay indicated Cladosporium sp. (pathogen) had cytotoxicity, while Cladosporium sp. (endogensis) had no cytotoxicity. These characters reflect the adaptation of endosymbiosis to host-restricted lifestyle and the invader of the entomopathogen to the host.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jin-Yang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|