1
|
Wang W, Xu J, Wang N. Functional Characterization of Transcriptional Regulator Rem in ' Candidatus Liberibacter asiaticus'. PHYTOPATHOLOGY 2025; 115:454-468. [PMID: 39891894 DOI: 10.1094/phyto-10-24-0339-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Citrus Huanglongbing, caused by 'Candidatus Liberibacter asiaticus' (CLas), is the most devastating citrus disease worldwide. The CLas genome is much smaller than those of its relatives, such as Sinorhizobium meliloti, due to its reductive evolution. Because CLas has not been cultured in artificial media, despite some progress in co-cultivating, and because genetic manipulation of CLas remains impossible, the understanding of CLas biology is very limited. Usually, 10% of total genes in bacteria are regulatory genes, but only 2% of CLas genes encode transcriptional factors. Here, 20 transcriptional regulators were predicted, including nine genes (lsrB, ldtR, rem, visR, visN, ctrA, mucR, pelD, and atoC) directly or indirectly involved in regulating motility, and five genes (rpoH, prbP, phrR, rirA, and lsrB) involved in oxidative stress response. We demonstrated that rem, lsrB, and visNR of CLas can complement the corresponding mutants of S. meliloti in their reduced motility. We further investigated traits controlled by Rem in S. meliloti and CLas using RNA sequencing analyses of rem mutant versus complementation strains with remSmc or remLas. Transcriptomic analysis showed that RemLas significantly regulates the expression of genes in S. meliloti, which was used to infer its regulation of CLas genes by identification of homologous genes. We found that Rem is involved in regulating motility, chemotaxis, transporters, and oxidative phosphorylation in S. meliloti and regulating flagellar and transporter genes in CLas. Among the 39 putative RemLas-regulated genes in CLas, 16 contain the Rem-binding motif, including 10 genes involved in flagellar assembly. Taken together, this study offers valuable insights regarding CLas regulatory genes, with many of them involved in regulating motility and oxidative stress response. The regulation of flagellar genes by Rem in CLas unravels critical information regarding motility in CLas infection of hosts.
Collapse
Affiliation(s)
- Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
2
|
Guo W, Ma X, Yu H, Song T, Li Z, Qiu H, Cao X, Zhao L. Nanoplastics pre-exposure to microbial consortium influencing their ability to degrade pollutants: "Stagnation effect" and "Self-recovery". WATER RESEARCH 2025; 282:123642. [PMID: 40245803 DOI: 10.1016/j.watres.2025.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Nanoplastics (NPs) coexist with microorganisms in global water environmental systems, showing spatial-temporal differentiation. Therefore, studying the behavior of microorganisms previously exposed to NPs is particularly important. With 2,4-dichlorophenol (DCP)-degrading microflora as model microorganisms, this study found that higher dose (10, 100 mg/L) of polystyrene NPs pre-exposure inhibited bacterial DCP degradation prolonging the stagnation period, while lower dose (1 mg/L) of NPs on the contrary stimulated their degradation ability. The degradation delay coefficients (μ) showed a significant positive correlation with the duration of pre-exposure. Specifically, the μ values observed after 1 day, 3 days, and 9 days of pre-exposure to 10 mg/L NPs were 2.5, 2.9, and 3.8, respectively, while those for 100 mg/L NPs were 3.2, 4.0, and 5.1. In contrast, the control group without NPs exhibited a μ value of only 1.9. Pre-exposure caused NPs to enter bacterial cells, leading to oxidative damage, membrane impairment, and potential DNA damage. This carry-over toxicity suppressed the consortium's degradation efficiency of DCP. During the stagnation period, microorganisms were striving to redeem themselves, recovering their abilities of biofilm formation, chemotaxis and motility by upregulating the expression of wspA, mcp, and pilJ gene families, thus reinforcing inter-population regulatory cooperation, thereby restarting the DCP degradation. With the duration of pre-exposure to PS NPs increased, the recovery time required for bacterial communities also lengthened. It is crucial to pay attention to the biological responses to subsequent pollutants triggered by pre-exposure.
Collapse
Affiliation(s)
- Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiying Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiansong Song
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhicheng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; Jiangsu Xitai Ecological Environment Technology Research Institute Co., LTD, Wuxi 214111, China.
| |
Collapse
|
3
|
Passeri I, Cangioli L, Fondi M, Mengoni A, Fagorzi C. The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti. Genome Biol Evol 2025; 17:evae245. [PMID: 39780610 PMCID: PMC11711589 DOI: 10.1093/gbe/evae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.
Collapse
Affiliation(s)
- Iacopo Passeri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Zhang B, Zhang Y, Liu J, Reverter D, Wang Q, Choi SH, Liu B, Shao S. ChIP-seq and structural analyses delineating the regulatory mechanism of master regulator EsrB in Edwardsiella piscicida. Appl Environ Microbiol 2024; 90:e0180524. [PMID: 39545739 PMCID: PMC11653779 DOI: 10.1128/aem.01805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
As a response regulator of the EsrA-EsrB two-component system, EsrB is conserved in Hafniaceae and plays a crucial role in virulence and pathogenicity. EsrB possesses DNA binding abilities, enabling it to regulate the transcription of virulence genes to confront different stresses and achieve systematic infections. Here, ChIP-seq analysis of EsrB in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments) revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7'' pseudopalindromic DNA motif and interact with metabolic-related promoters with a high AT DNA motif. The crystal structure of the C-terminal of EsrB (EsrBC) was solved at 2.20-Å resolution. Specifically, Lys181 enabled the DNA-binding affinity of EsrB and promoted the in vitro and in vivo pathogenicity of Edwardsiella piscicida. Moreover, EsrB directly regulated the expression of genes associated with basal metabolism, including iron and tricarboxylic acid (TCA) cycles. Furthermore, EsrB enhanced iron transport capability and the enzyme activity of succinate dehydrogenase and pyruvate dehydrogenase in DMEM. Collectively, our structural and ChIP-seq analysis provides valuable insights into the DNA binding mechanism of EsrB which will facilitate our understanding of EsrB coordinating virulence and basal metabolism gene expression. IMPORTANCE As a crucial virulence regulator, EsrB possesses a LuxR-like superfamily domain at the C-terminal, which is conserved within the canonical NarL family regulators. Due to its critically important role in virulence and pathogenicity in fish hosts, the DNA binding ability has been believed to allow EsrB to regulate genes associated with the invasion process of host cells and basal metabolism in response to environmental stimuli. The lack of EsrB's crystal structure has been a major obstacle in understanding the molecular mechanisms of EsrB-DNA interaction which choreographs EsrB-mediated pathogenic behavior. Here, we conducted ChIP-seq and solved the crystal structure of the C-terminal of EsrB (EsrBC) at 2.20-Å resolution, which revealed that EsrB preferred to bind to virulence-associated promoters with a distinct 7'-4-7' pseudopalindromic DNA motif and interacted with metabolic-related promoters with a high AT DNA motif in Dulbecco's Modified Eagle's Medium (DMEM) (mimicking in vivo environments). Our results facilitate a detailed understanding of EsrB's regulatory role in Edwardsiella piscicida pathogenesis and expand our knowledge of virulence regulators in the family Hafniaceae.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
- Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
5
|
Chaves-Sanjuan A, D’Abrosca G, Russo V, van Erp B, Del Cont-Bernard A, Capelli R, Pirone L, Slapakova M, Sgambati D, Fattorusso R, Isernia C, Russo L, Barton I, Roop R, Pedone E, Bolognesi M, Dame R, Pedone P, Nardini M, Malgieri G, Baglivo I. Circular oligomeric particles formed by Ros/MucR family members mediate DNA organization in α-proteobacteria. Nucleic Acids Res 2024; 52:13945-13963. [PMID: 39588759 PMCID: PMC11662661 DOI: 10.1093/nar/gkae1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
The transcriptional regulator MucR from Brucella species controls the expression of many genes, including those involved in virulence, by binding AT-rich DNA regions. MucR and its homologs belong to the Ros/MucR family, whose members occur in α-proteobacteria. MucR is a recent addition to the family of histone-like nucleoid structuring (H-NS) proteins. Indeed, despite the lack of sequence homology, MucR bears many functional similarities with H-NS and H-NS-like proteins, structuring the bacterial genome and acting as global regulators of transcription. Here we present an integrated cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance, modeling and biochemical study shedding light on the functional architecture of MucR from Brucella abortus and its homolog Ml5 from Mesorhizobium loti. We show that MucR and Ml5 fold in a circular quaternary assembly, which allows it to bridge and condense DNA by binding AT-rich sequences. Our results show that Ros/MucR family members are a novel type of H-NS-like proteins and, based on previous studies, provide a model connecting nucleoid structure and transcription regulation in α-proteobacteria.
Collapse
Affiliation(s)
- Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Veronica Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Bert van Erp
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | | | - Riccardo Capelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martina Slapakova
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Domenico Sgambati
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Roy Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Paolo V Pedone
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
6
|
Zhang P, Zhang B, Ji Y, Jiao J, Zhang Z, Tian C. Cofitness network connectivity determines a fuzzy essential zone in open bacterial pangenome. MLIFE 2024; 3:277-290. [PMID: 38948139 PMCID: PMC11211677 DOI: 10.1002/mlf2.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
Most in silico evolutionary studies commonly assumed that core genes are essential for cellular function, while accessory genes are dispensable, particularly in nutrient-rich environments. However, this assumption is seldom tested genetically within the pangenome context. In this study, we conducted a robust pangenomic Tn-seq analysis of fitness genes in a nutrient-rich medium for Sinorhizobium strains with a canonical open pangenome. To evaluate the robustness of fitness category assignment, Tn-seq data for three independent mutant libraries per strain were analyzed by three methods, which indicates that the Hidden Markov Model (HMM)-based method is most robust to variations between mutant libraries and not sensitive to data size, outperforming the Bayesian and Monte Carlo simulation-based methods. Consequently, the HMM method was used to classify the fitness category. Fitness genes, categorized as essential (ES), advantage (GA), and disadvantage (GD) genes for growth, are enriched in core genes, while nonessential genes (NE) are over-represented in accessory genes. Accessory ES/GA genes showed a lower fitness effect than core ES/GA genes. Connectivity degrees in the cofitness network decrease in the order of ES, GD, and GA/NE. In addition to accessory genes, 1599 out of 3284 core genes display differential essentiality across test strains. Within the pangenome core, both shared quasi-essential (ES and GA) and strain-dependent fitness genes are enriched in similar functional categories. Our analysis demonstrates a considerable fuzzy essential zone determined by cofitness connectivity degrees in Sinorhizobium pangenome and highlights the power of the cofitness network in understanding the genetic basis of ever-increasing prokaryotic pangenome data.
Collapse
Affiliation(s)
- Pan Zhang
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Biliang Zhang
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yuan‐Yuan Ji
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| | - Jian Jiao
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| | - Ziding Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Chang‐Fu Tian
- State Key Laboratory of Plant Environmental Resilience, and College of Biological SciencesChina Agricultural UniversityBeijingChina
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research CenterChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Liu Y, Zhou M, Bu Y, Qin L, Zhang Y, Shao S, Wang Q. Lysine acetylation regulates the AT-rich DNA possession ability of H-NS. Nucleic Acids Res 2024; 52:1645-1660. [PMID: 38059366 PMCID: PMC10899749 DOI: 10.1093/nar/gkad1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
H-NS, the histone-like nucleoid-structuring protein in bacteria, regulates the stability of the bacterial genome by inhibiting the transcription of horizontally transferred genes, such as the type III and type VI secretion systems (T3/T6SS). While eukaryotic histone posttranslational modifications (PTMs) have been extensively studied, little is known about prokaryotic H-NS PTMs. Here, we report that the acetylation of H-NS attenuates its ability to silence horizontally transferred genes in response to amino acid nutrition and immune metabolites. Moreover, LC-MS/MS profiling showed that the acetyllysine sites of H-NS and K120 are indispensable for its DNA-binding ability. Acetylation of K120 leads to a low binding affinity for DNA and enhances T3/T6SS expression. Furthermore, acetylation of K120 impairs the AT-rich DNA recognition ability of H-NS. In addition, lysine acetylation in H-NS modulates in vivo bacterial virulence. These findings reveal the mechanism underlying H-NS PTMs and propose a novel mechanism by which bacteria counteract the xenogeneic silencing of H-NS.
Collapse
Affiliation(s)
- Yabo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqing Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Qin
- New Product R&D, GenScript Biotech Corporation, Nanjing 211100, China
| | - Yuanxing Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| |
Collapse
|
8
|
Barton IS, Ren Z, Cribb CB, Pitzer JE, Baglivo I, Martin DW, Wang X, Roop RM. Brucella MucR acts as an H-NS-like protein to silence virulence genes and structure the nucleoid. mBio 2023; 14:e0220123. [PMID: 37847580 PMCID: PMC10746212 DOI: 10.1128/mbio.02201-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE Histone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression. Brucella and related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein in Brucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression in Brucella and related bacteria.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Connor B. Cribb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Joshua E. Pitzer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Daniel W. Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - R. Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
9
|
Slapakova M, Sgambati D, Pirone L, Russo V, D’Abrosca G, Valletta M, Russo R, Chambery A, Malgieri G, Pedone EM, Dame RT, Pedone PV, Baglivo I. MucR from Sinorhizobium meliloti: New Insights into Its DNA Targets and Its Ability to Oligomerize. Int J Mol Sci 2023; 24:14702. [PMID: 37834166 PMCID: PMC10572780 DOI: 10.3390/ijms241914702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.
Collapse
Affiliation(s)
- Martina Slapakova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Domenico Sgambati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino, 80134 Naples, Italy; (L.P.); (E.M.P.)
| | - Veronica Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto, 1, 71122 Foggia, Italy;
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Emilia Maria Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino, 80134 Naples, Italy; (L.P.); (E.M.P.)
| | - Remus Thei Dame
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands;
- Centre for Microbial Cell Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi, 43, 81100 Caserta, Italy; (M.S.); (D.S.); (V.R.); (M.V.); (R.R.); (A.C.); (G.M.); (P.V.P.)
| |
Collapse
|
10
|
Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs. THE ISME JOURNAL 2023; 17:417-431. [PMID: 36627434 PMCID: PMC9938287 DOI: 10.1038/s41396-023-01357-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Migration from rhizosphere to rhizoplane is a key selecting process in root microbiome assembly, but not fully understood. Rhizobiales members are overrepresented in the core root microbiome of terrestrial plants, and here we report a genome-wide transposon-sequencing of rhizoplane fitness genes of beneficial Sinorhizobium fredii on wild soybean, cultivated soybean, rice, and maize. There were few genes involved in broad-host-range rhizoplane colonization. The fadL mutant lacking a fatty acid transporter exhibited high colonization rates, while mutations in exoFQP (encoding membrane proteins directing exopolysaccharide polymerization and secretion), but not those in exo genes essential for exopolysaccharide biosynthesis, led to severely impaired colonization rates. This variation was not explainable by their rhizosphere and rhizoplane survivability, and associated biofilm and exopolysaccharide production, but consistent with their migration ability toward rhizoplane, and associated surface motility and the mixture of quorum-sensing AHLs (N-acylated-L-homoserine lactones). Genetics and physiology evidences suggested that FadL mediated long-chain AHL uptake while ExoF mediated the secretion of short-chain AHLs which negatively affected long-chain AHL biosynthesis. The fadL and exoF mutants had elevated and depleted extracellular long-chain AHLs, respectively. A synthetic mixture of long-chain AHLs mimicking that of the fadL mutant can improve rhizobial surface motility. When this AHL mixture was spotted into rhizosphere, the migration toward roots and rhizoplane colonization of S. fredii were enhanced in a diffusible way. This work adds novel parts managing extracellular AHLs, which modulate bacterial migration toward rhizoplane. The FadL-ExoFQP system is conserved in Alphaproteobacteria and may shape the "home life" of diverse keystone rhizobacteria.
Collapse
|
11
|
Intracellular common gardens reveal niche differentiation in transposable element community during bacterial adaptive evolution. THE ISME JOURNAL 2023; 17:297-308. [PMID: 36434281 PMCID: PMC9860058 DOI: 10.1038/s41396-022-01344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
The distribution and abundance of transposable elements across the tree of life have significantly shaped the evolution of cellular organisms, but the underlying mechanisms shaping these ecological patterns remain elusive. Here we establish a "common garden" approach to study causal ecological interactions between a xenogeneic conditional lethal sacB gene and the community of transposable insertion sequences (ISs) in a multipartite prokaryote genome. Xenogeneic sacB of low, medium, or high GC content was individually inserted into three replicons of a model bacterium Sinorhizobium fredii, and exhibited replicon- and GC-dependent variation in genetic stability. This variation was largely attributable to multidimensional niche differentiation for IS community members. The transposition efficiency of major active ISs depended on the nucleoid-associated xenogeneic silencer MucR. Experimentally eliminating insertion activity of specific ISs by deleting MucR strongly demonstrated a dominant role of niche differentiation among ISs. This intracellular common garden approach in the experimental evolution context allows not only for evaluating genetic stability of natural and synthetic xenogeneic genes of different sequence signatures in host cells but also for tracking and testing causal relationships in unifying ecological principles in genome ecology.
Collapse
|
12
|
Adaptive Evolution of Rhizobial Symbiosis beyond Horizontal Gene Transfer: From Genome Innovation to Regulation Reconstruction. Genes (Basel) 2023; 14:genes14020274. [PMID: 36833201 PMCID: PMC9957244 DOI: 10.3390/genes14020274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
There are ubiquitous variations in symbiotic performance of different rhizobial strains associated with the same legume host in agricultural practices. This is due to polymorphisms of symbiosis genes and/or largely unexplored variations in integration efficiency of symbiotic function. Here, we reviewed cumulative evidence on integration mechanisms of symbiosis genes. Experimental evolution, in concert with reverse genetic studies based on pangenomics, suggests that gain of the same circuit of key symbiosis genes through horizontal gene transfer is necessary but sometimes insufficient for bacteria to establish an effective symbiosis with legumes. An intact genomic background of the recipient may not support the proper expression or functioning of newly acquired key symbiosis genes. Further adaptive evolution, through genome innovation and reconstruction of regulation networks, may confer the recipient of nascent nodulation and nitrogen fixation ability. Other accessory genes, either co-transferred with key symbiosis genes or stochastically transferred, may provide the recipient with additional adaptability in ever-fluctuating host and soil niches. Successful integrations of these accessory genes with the rewired core network, regarding both symbiotic and edaphic fitness, can optimize symbiotic efficiency in various natural and agricultural ecosystems. This progress also sheds light on the development of elite rhizobial inoculants using synthetic biology procedures.
Collapse
|
13
|
The Ros/MucR Zinc-Finger Protein Family in Bacteria: Structure and Functions. Int J Mol Sci 2022; 23:ijms232415536. [PMID: 36555178 PMCID: PMC9779718 DOI: 10.3390/ijms232415536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Ros/MucR is a widespread family of bacterial zinc-finger-containing proteins that integrate multiple functions, such as symbiosis, virulence, transcription regulation, motility, production of surface components, and various other physiological processes in cells. This regulatory protein family is conserved in bacteria and is characterized by its zinc-finger motif, which has been proposed as the ancestral domain from which the eukaryotic C2H2 zinc-finger structure has evolved. The first prokaryotic zinc-finger domain found in the transcription regulator Ros was identified in Agrobacterium tumefaciens. In the past decades, a large body of evidence revealed Ros/MucR as pleiotropic transcriptional regulators that mainly act as repressors through oligomerization and binding to AT-rich target promoters. The N-terminal domain and the zinc-finger-bearing C-terminal region of these regulatory proteins are engaged in oligomerization and DNA binding, respectively. These properties of the Ros/MucR proteins are similar to those of xenogeneic silencers, such as H-NS, MvaT, and Lsr2, which are mainly found in other lineages. In fact, a novel functional model recently proposed for this protein family suggests that they act as H-NS-'like' gene silencers. The prokaryotic zinc-finger domain exhibits interesting structural and functional features that are different from that of its eukaryotic counterpart (a βββα topology), as it folds in a significantly larger zinc-binding globular domain (a βββαα topology). Phylogenetic analysis of Ros/MucR homologs suggests an ancestral origin of this type of protein in α-Proteobacteria. Furthermore, multiple duplications and lateral gene transfer events contributing to the diversity and phyletic distribution of these regulatory proteins were found in bacterial genomes.
Collapse
|
14
|
Dragone M, Grazioso R, D’Abrosca G, Baglivo I, Iacovino R, Esposito S, Paladino A, Pedone PV, Russo L, Fattorusso R, Malgieri G, Isernia C. Copper (I) or (II) Replacement of the Structural Zinc Ion in the Prokaryotic Zinc Finger Ros Does Not Result in a Functional Domain. Int J Mol Sci 2022; 23:ijms231911010. [PMID: 36232306 PMCID: PMC9569694 DOI: 10.3390/ijms231911010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper’s interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
15
|
Shi WT, Zhang B, Li ML, Liu KH, Jiao J, Tian CF. The convergent xenogeneic silencer MucR predisposes α-proteobacteria to integrate AT-rich symbiosis genes. Nucleic Acids Res 2022; 50:8580-8598. [PMID: 36007892 PMCID: PMC9410896 DOI: 10.1093/nar/gkac664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial adaptation is largely shaped by horizontal gene transfer, xenogeneic silencing mediated by lineage-specific DNA bridgers (H-NS, Lsr2, MvaT and Rok), and various anti-silencing mechanisms. No xenogeneic silencing DNA bridger is known for α-proteobacteria, from which mitochondria evolved. By investigating α-proteobacterium Sinorhizobium fredii, a facultative legume microsymbiont, here we report the conserved zinc-finger bearing MucR as a novel xenogeneic silencing DNA bridger. Self-association mediated by its N-terminal domain (NTD) is required for DNA–MucR–DNA bridging complex formation, maximizing MucR stability, transcriptional silencing, and efficient symbiosis in legume nodules. Essential roles of NTD, CTD (C-terminal DNA-binding domain), or full-length MucR in symbiosis can be replaced by non-homologous NTD, CTD, or full-length protein of H-NS from γ-proteobacterium Escherichia coli, while NTD rather than CTD of Lsr2 from Gram-positive Mycobacterium tuberculosis can replace the corresponding domain of MucR in symbiosis. Chromatin immunoprecipitation sequencing reveals similar recruitment profiles of H-NS, MucR and various functional chimeric xenogeneic silencers across the multipartite genome of S. fredii, i.e. preferring AT-rich genomic islands and symbiosis plasmid with key symbiosis genes as shared targets. Collectively, the convergently evolved DNA bridger MucR predisposed α-proteobacteria to integrate AT-rich foreign DNA including symbiosis genes, horizontal transfer of which is strongly selected in nature.
Collapse
Affiliation(s)
- Wen-Tao Shi
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Biliang Zhang
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Meng-Lin Li
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Ke-Han Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| | - Chang-Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University , Beijing , China
- MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University , Beijing , China
| |
Collapse
|
16
|
Genome-based reclassification of the genus Meiothermus along with the proposal of a new genus Allomeiothermus gen. nov. Antonie van Leeuwenhoek 2022; 115:645-659. [PMID: 35348967 DOI: 10.1007/s10482-022-01723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Phylogenomic analyses were performed on the nine species of the genus Meiothermus and four species of the genus Calidithermus. Phylogenetic analysis, low values of genomic relatedness indices and functional diversity analysis indicated that Meiothermus silvanus should not be classified within the clades for Meiothermus and Calidithermus but instead be reclassified as a new genus, for which we propose the name Allomeiothermus gen. nov., with Allomeiothermus silvanus comb. nov. as type species. In addition, the species Meiothermus cateniformans Zhang et al. (Int J Syst Evol Microbial 60:840-844, 2010) should also be reclassified as a later heterotypic synonym of Meiothermus taiwanensis Chen et al. (Int J Syst Evol Microbiol 52:1647-1654, 2002) emend. Raposo et al. (2019). This reclassification is based on the high genomic relatedness indices (98.8% ANI; 90.2% dDDH; 99% AAI) that are above the threshold values necessary for defining a new species, as well as on the observation of overlapping functions on Principal Coordinate Analysis plot generated from Clusters of Orthologous Genes.
Collapse
|
17
|
Ma R, Liu Y, Gan J, Qiao H, Ma J, Zhang Y, Bu Y, Shao S, Zhang Y, Wang Q. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3777-3798. [PMID: 35325196 PMCID: PMC9023278 DOI: 10.1093/nar/gkac180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- To whom correspondence should be addressed. Tel: +86 21 64253306; Fax: +86 21 64253306;
| |
Collapse
|