1
|
Mies US, Zheng H, Platt K, Radek R, Paczia N, Treitli SC, Brune A. Comparative genomics of Elusimicrobiaceae (phylum Elusimicrobiota) and description of the isolates Elusimicrobium simillimum sp. nov., Elusimicrobium posterum sp. nov., and Parelusimicrobium proximum gen. nov. sp. nov. Syst Appl Microbiol 2025; 48:126606. [PMID: 40273542 DOI: 10.1016/j.syapm.2025.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
The tree of life comprises many deep-branching lineages with no or only very few cultured representatives. One such lineage is the phylum Elusimicrobiota, which contains only two described species and whose biology has been only poorly explored. We isolated three new species from this phylum from the intestinal tracts of cockroaches. Like their closest relative, Elusimicrobium minutum, the only member of the family Elusimicrobiaceae described to date, they are small, pleomorphic gram-negative rods characterized by a distinct cell cycle, and like all ultramicrobacteria, they pass through a 0.22-μm filter membrane. Physiological characterization of all isolates revealed that they are obligately anaerobic fermenters that lack catalase and cytochrome c oxidase activities but can remove oxygen from their environment in a non-respiratory manner. Their substrate range is limited to a few hexoses, such as d-glucose, d-galactose, and N-acetyl-d-glucosamine, which are fermented to lactate, acetate, ethanol, and hydrogen as major products. Comparative genome analysis, which included more than 100 MAGs of uncultured lineages of Elusimicrobiaceae, revealed the underlying metabolic pathways and outlined a new phylogenomic framework of the family. Based on phylogenomic, physiological, and morphological evidence, we describe the new isolates as Parelusimicrobium proximum gen. nov., sp. nov., Elusimicrobium posterum sp. nov., and Elusimicrobium simillimum sp. nov. under the rules of ICNP. Based on high-quality genomes of all uncultured representatives, we propose a comprehensive taxonomy of all lineages in the family under the rules of SeqCode, including the new genera Avelusimicrobium, Proelusimicrobium, and the candidate genus "Pseudelusimicrobium".
Collapse
Affiliation(s)
- Undine S Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany.
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Sebastian C Treitli
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| |
Collapse
|
2
|
Trujillo HA, Komeili A. Revealing the diversity of bacterial and archaeal organelles via comparative genomics. Mol Biol Cell 2025; 36:pe4. [PMID: 40333210 DOI: 10.1091/mbc.e20-08-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Like eukaryotes, bacteria and archaea rely on intracellular organelles to manage biological activities. Despite their prevalence, the understanding of the diversity of these organelles and the molecular mechanisms governing their function remain limited. In this review, we examine the potential of genomics and metagenomics to augment classical approaches for the study and discovery of microbial organelles. First, we highlight how the intimate interplay between model system studies and metagenomics have been critical in illuminating the function, diversity, and ancient evolutionary origins of the lipid-bounded magnetosome organelles of magnetotactic bacteria. We next discuss the central role of open genome databases and mechanistic studies in identification and characterization of protein-bounded encapsulin organelles with novel roles in sulfur metabolism and other cellular processes. Finally, we focus on the mostly uncultured Asgard archaea superphylum, whose metagenomes are challenging our views on organelle evolution and eukaryogenesis.
Collapse
Affiliation(s)
- Hector A Trujillo
- Plant and Microbiology, University of California Berkeley, Berkeley, CA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, CA
| |
Collapse
|
3
|
Moradi J, Berggreen E, Bunæs DF, Bolstad AI, Bertelsen RJ. Microbiome composition and metabolic pathways in shallow and deep periodontal pockets. Sci Rep 2025; 15:12926. [PMID: 40234709 PMCID: PMC12000285 DOI: 10.1038/s41598-025-97531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/04/2025] [Indexed: 04/17/2025] Open
Abstract
In periodontal diseases, a dysbiotic subgingival microbiome interacts complexly with the host immune response and is strongly considered a risk factor for various systemic conditions. The high prevalence of both periodontal and systemic diseases in older adults highlights the importance of characterizing the subgingival microbiome in this age group. This study specifically characterizes the composition of the subgingival microbiome and investigates the interactions between microbial niches in shallow and deep periodontal pockets in individuals in their early 70s. We collected 1928 samples from 1287 participants, all born between 1950 and 1951. Participants had either shallow (≤ 4 mm) periodontal pockets or both shallow and deep (≥ 5 mm) periodontal pockets. Distinct microbial patterns were observed in shallow and deep periodontal pockets within the same oral cavity. Deep pockets exhibited a significantly higher abundance of species from genera such as Prevotella, Centipeda, Treponema, and Fusobacterium, while shallow pockets were enriched with species from Actinomyces, Pauljensenia, Streptococcus, and Gemella. The top significant species associated with deep pockets included Fretibacterium fastidiosum, Tannerella forsythia, and Treponema denticola, whereas shallow pockets were predominantly associated with Actinomyces species and Rothia dentocariosa. Additionally, shallow pockets in individuals with both pocket types showed a positive association with Tannerella forsythia, Porphyromonas gingivalis, and Fusobacterium nucleatum compared to shallow pockets in individuals with only shallow pockets. Metabolic pathways showed significant variation with pocket depth, with pathways such as lipopolysaccharide metabolism, lipid metabolism, and polyamine biosynthesis being positively associated with deep pockets. Overall, this study provides comprehensive microbiome analyses of periodontal pockets in aging adults, contributing to a better understanding of periodontal health and its potential impact on reducing systemic health risks in aging populations.
Collapse
Affiliation(s)
- Jale Moradi
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
| | - Ellen Berggreen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Dagmar F Bunæs
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Oral Health Center of Expertise in Western Norway, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Shimoshige H, Yanagisawa K, Miyazaki M, Takaki Y, Shimamura S, Nomaki H, Fukui M, Shirakawa H, Kobayashi H, Taoka A, Maekawa T. Isolation and cultivation of a novel freshwater magnetotactic coccus FCR-1 containing unchained magnetosomes. Commun Biol 2025; 8:505. [PMID: 40148482 PMCID: PMC11950176 DOI: 10.1038/s42003-025-07981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Magnetotactic bacteria are ubiquitous aquatic prokaryotes that have the ability to biomineralize magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles called magnetosomes. Magnetotactic cocci belonging to the class "Ca. Magnetococcia" are most frequently identified in freshwater habitats, but remain uncultivated. Here, we report for the first time axenic cultivation of freshwater magnetotactic coccus FCR-1 isolated from Chichijima, Japan. Strain FCR-1 grows microaerophilically in a semi-solid gellan gum medium. We find that strain FCR-1 biomineralizes Fe3O4 nanoparticles, which are not chained, into a cell. Based on phylogenomic analysis, compared with strains of the class "Ca. Magnetococcia", strain FCR-1 represents a novel genus of candidate family "Ca. Magnetaquicoccaceae" within the class "Ca. Magnetococcia" and we tentatively name this novel genus "Ca. Magnetaquiglobus chichijimensis". Our isolate provides a promising tool for elucidating the functions of unchained magnetosomes, the global distribution of magnetotactic bacteria and the origin of magnetotaxis.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Keiichi Yanagisawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Mizuki Fukui
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroki Shirakawa
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| |
Collapse
|
5
|
Russell VV, Iavarone AT, Ozyamak E, Grant C, Komeili A. A network of coiled-coil and actin-like proteins controls the cellular organization of magnetosome organelles in deep-branching magnetotactic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639979. [PMID: 40060654 PMCID: PMC11888303 DOI: 10.1101/2025.02.24.639979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Magnetotactic Bacteria (MTB) are a diverse group of microorganisms that use magnetosomes, organelles composed of magnetite or greigite, to navigate along geomagnetic fields. While MTB span several phyla and exhibit diverse phenotypes, magnetosome formation has been mechanistically studied in only two species of Alphaproteobacteria. Here, we use Desulfovibrio magneticus RS-1 to uncover the mechanisms behind tooth-shaped magnetosome assembly in deep-branching MTB. Our findings reveal that RS-1 magnetic particles initially form randomly within the cell before localizing to the positive cell curvature. Genetic and proteomic analyses indicate that early biomineralization involves membrane-associated proteins found in all MTB, while later stages depend on coiled-coil (Mad20, 23, 25, and 26) and actin-like (MamK and Mad28) proteins, most of which are unique to deep-branching MTB. These findings suggest that while biomineralization originates from a common ancestor, magnetosome chain formation has diverged evolutionarily among different MTB lineages.
Collapse
Affiliation(s)
- Virginia V Russell
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California Berkeley, Berkeley, California, USA
| | - Ertan Ozyamak
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Bio-Rad Laboratories, Hercules, California, USA
| | - Carly Grant
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Entrepreneurship Program, UCSF Rosenman Institute, San Francisco, California, USA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
6
|
Ginatt AA, Berihu M, Castel E, Medina S, Carmi G, Faigenboim-Doron A, Sharon I, Tal O, Droby S, Somera T, Mazzola M, Eizenberg H, Freilich S. A metabolic modeling-based framework for predicting trophic dependencies in native rhizobiomes of crop plants. eLife 2024; 13:RP94558. [PMID: 39417540 PMCID: PMC11486489 DOI: 10.7554/elife.94558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The exchange of metabolites (i.e., metabolic interactions) between bacteria in the rhizosphere determines various plant-associated functions. Systematically understanding the metabolic interactions in the rhizosphere, as well as in other types of microbial communities, would open the door to the optimization of specific predefined functions of interest, and therefore to the harnessing of the functionality of various types of microbiomes. However, mechanistic knowledge regarding the gathering and interpretation of these interactions is limited. Here, we present a framework utilizing genomics and constraint-based modeling approaches, aiming to interpret the hierarchical trophic interactions in the soil environment. 243 genome scale metabolic models of bacteria associated with a specific disease-suppressive vs disease-conducive apple rhizospheres were drafted based on genome-resolved metagenomes, comprising an in silico native microbial community. Iteratively simulating microbial community members' growth in a metabolomics-based apple root-like environment produced novel data on potential trophic successions, used to form a network of communal trophic dependencies. Network-based analyses have characterized interactions associated with beneficial vs non-beneficial microbiome functioning, pinpointing specific compounds and microbial species as potential disease supporting and suppressing agents. This framework provides a means for capturing trophic interactions and formulating a range of testable hypotheses regarding the metabolic capabilities of microbial communities within their natural environment. Essentially, it can be applied to different environments and biological landscapes, elucidating the conditions for the targeted manipulation of various microbiomes, and the execution of countless predefined functions.
Collapse
Affiliation(s)
- Alon Avraham Ginatt
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovotIsrael
| | - Maria Berihu
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Einam Castel
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Shlomit Medina
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Gon Carmi
- Bioinformatics Unit, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat YishayIsrael
| | - Adi Faigenboim-Doron
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani CenterBeit DaganIsrael
| | - Itai Sharon
- Migal-Galilee Research InstituteKiryat ShmonaIsrael
- Faculty of Sciences and Technology, Tel-Hai Academic CollegeQiryat ShemonaIsrael
| | - Ofir Tal
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological ResearchMigdalIsrael
| | - Samir Droby
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), The Volcani CenterRishon LeZionIsrael
| | - Tracey Somera
- United States Department of Agriculture-Agricultural Research Service Tree Fruits Research LabWenatcheeUnited States
| | - Mark Mazzola
- Department of Plant Pathology, Stellenbosch UniversityStellenboschSouth Africa
| | - Hanan Eizenberg
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| | - Shiri Freilich
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization (Volcani Institute)Ramat IshayIsrael
| |
Collapse
|
7
|
Mistry K, Markande AR, Patel JK, Parekh K. Screening, Isolation and Characterization of Aerobic Magnetotactic Bacteria From Western Ghats Forest Soil. Indian J Microbiol 2024; 64:1257-1265. [PMID: 39282193 PMCID: PMC11399505 DOI: 10.1007/s12088-024-01316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/15/2024] [Indexed: 09/18/2024] Open
Abstract
Magnetotactic bacteria (MTB) are a unique ecophysiological group of iron-metabolizing bacteria that have immense potential biotechnological applications. These bacteria have predominantly been isolated from oxygen-limited conditions of aquatic niches and rarely from the soils. The Western Ghats biodiversity hotspot has been well-studied for its fauna and flora diversity. The present study includes optimization of enrichment medium for cultivation of MTB, to suit aerobic mesophiles from forest soil. The major components included were Ferric quinate and Resazurin. The enrichment and isolates were characterized for their magnetic properties using magnetotaxis on agar plates, Vibrating Sampler Magnetometer (VSM), and X-ray diffraction (XRD) analysis. The isolates, namely Bacillus sp. S1 (MN212953), Sphingoaurantiacus sp. S2_03 (MN212954), Burkholderia sp. S2_08 (MN212955) and Microvirga sp. S2_09 (MN212956) were isolated and characterized to have a magnetosome size of 2.5-8 nm. Our study is the first report on the enrichment and isolation of MTB from Western Ghats forest soil. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01316-4.
Collapse
Affiliation(s)
- Kruti Mistry
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
- Present Address: Department of Microbiology, School of Basic & Applied Sciences, B- Block, Innovation Campus, Dayananda Sagar University, Kudlu Gate, Hosur Road, Bengaluru, 560068 India
| | - Janki K Patel
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Gujarat 388421 India
| | - Kinnari Parekh
- Dr. K.C. Patel R&D Center, Charotar University of Science & Technology (CHARUSAT), Changa, Gujarat 388421 India
| |
Collapse
|
8
|
Zhang R, Liu P, Wang Y, Roberts AP, Bai J, Liu Y, Zhu K, Du Z, Chen G, Pan Y, Li J. Phylogenetics and biomineralization of a novel magnetotactic Gammaproteobacterium from a freshwater lake in Beijing, China. FEMS Microbiol Ecol 2023; 99:fiad150. [PMID: 37974050 DOI: 10.1093/femsec/fiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
Magnetotactic bacteria (MTB) have the remarkable capability of producing intracellularly membrane-enveloped magnetic nanocrystals (i.e. magnetosomes) and swimming along geomagnetic field lines. Despite more than 50 years of research, bacterial diversity and magnetosome biomineralization within MTB are relatively less known in the Gammaproteobacteria class than other groups. This is incompatible with the status of Gammaproteobacteria as the most diverse class of gram-negative bacteria with a number of ecologically important bacteria. Here, we identify a novel MTB strain YYHR-1 affiliated with the Gammaproteobacteria class of the Pseudomonadota phylum from a freshwater lake. In YYHR-1, most magnetosome crystals are organized into a long chain aligned along the cell long axis; unusually, a few small superparamagnetic crystals are located at the side of the chain, off the main chain axis. Micromagnetic simulations indicate that magnetostatic interactions among adjacent crystals within a chain reduce the Gibbs energy to enhance chain stability. Genomic analysis suggests that duplication of magnetosome gene clusters may result in off-chain magnetosomes formation. By integrating available genomic data from Gammaproteobacteria, the phylogenetic position of MTB in this class is reassigned here. Our new findings expand knowledge about MTB diversity and magnetosome biomineralization, and deepen understanding of the phylogenetics of the Gammaproteobacteria.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqin Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai 264209, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Shen J, Paterson GA, Wang Y, Kirschvink JL, Pan Y, Lin W. Renaissance for magnetotactic bacteria in astrobiology. THE ISME JOURNAL 2023; 17:1526-1534. [PMID: 37592065 PMCID: PMC10504353 DOI: 10.1038/s41396-023-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Capable of forming magnetofossils similar to some magnetite nanocrystals observed in the Martian meteorite ALH84001, magnetotactic bacteria (MTB) once occupied a special position in the field of astrobiology during the 1990s and 2000s. This flourish of interest in putative Martian magnetofossils faded from all but the experts studying magnetosome formation, based on claims that abiotic processes could produce magnetosome-like magnetite crystals. Recently, the rapid growth in our knowledge of the extreme environments in which MTB thrive and their phylogenic heritage, leads us to advocate for a renaissance of MTB in astrobiology. In recent decades, magnetotactic members have been discovered alive in natural extreme environments with wide ranges of salinity (up to 90 g L-1), pH (1-10), and temperature (0-70 °C). Additionally, some MTB populations are found to be able to survive irradiated, desiccated, metal-rich, hypomagnetic, or microgravity conditions, and are capable of utilizing simple inorganic compounds such as sulfate and nitrate. Moreover, MTB likely emerged quite early in Earth's history, coinciding with a period when the Martian surface was covered with liquid water as well as a strong magnetic field. MTB are commonly discovered in suboxic or oxic-anoxic interfaces in aquatic environments or sediments similar to ancient crater lakes on Mars, such as Gale crater and Jezero crater. Taken together, MTB can be exemplary model microorganisms in astrobiology research, and putative ancient Martian life, if it ever occurred, could plausibly have included magnetotactic microorganisms. Furthermore, we summarize multiple typical biosignatures that can be applied for the detection of ancient MTB on Earth and extraterrestrial MTB-like life. We suggest transporting MTB to space stations and simulation chambers to further investigate their tolerance potential and distinctive biosignatures to aid in understanding the evolutionary history of MTB and the potential of magnetofossils as an extraterrestrial biomarker.
Collapse
Affiliation(s)
- Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
| | - Greig A Paterson
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZE, UK
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joseph L Kirschvink
- Division of Geological & Planetary Sciences, Calfiornia Institute of Technology, Pasadena, CA, 91125, USA
- Marine Core Research Institute, Kochi University, Kochi, 780-8520, Japan
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, 100029, Beijing, China.
| |
Collapse
|
10
|
Zhao Y, Zhang W, Pan H, Chen J, Cui K, Wu LF, Lin W, Xiao T, Zhang W, Liu J. Insight into the metabolic potential and ecological function of a novel Magnetotactic Nitrospirota in coral reef habitat. Front Microbiol 2023; 14:1182330. [PMID: 37342564 PMCID: PMC10278575 DOI: 10.3389/fmicb.2023.1182330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) within the Nitrospirota phylum play important roles in biogeochemical cycles due to their outstanding ability to biomineralize large amounts of magnetite magnetosomes and intracellular sulfur globules. For several decades, Nitrospirota MTB were believed to only live in freshwater or low-salinity environments. While this group have recently been found in marine sediments, their physiological features and ecological roles have remained unclear. In this study, we combine electron microscopy with genomics to characterize a novel population of Nitrospirota MTB in a coral reef area of the South China Sea. Both phylogenetic and genomic analyses revealed it as representative of a novel genus, named as Candidatus Magnetocorallium paracelense XS-1. The cells of XS-1 are small and vibrioid-shaped, and have bundled chains of bullet-shaped magnetite magnetosomes, sulfur globules, and cytoplasmic vacuole-like structures. Genomic analysis revealed that XS-1 has the potential to respire sulfate and nitrate, and utilize the Wood-Ljungdahl pathway for carbon fixation. XS-1 has versatile metabolic traits that make it different from freshwater Nitrospirota MTB, including Pta-ackA pathway, anaerobic sulfite reduction, and thiosulfate disproportionation. XS-1 also encodes both the cbb3-type and the aa3-type cytochrome c oxidases, which may function as respiratory energy-transducing enzymes under high oxygen conditions and anaerobic or microaerophilic conditions, respectively. XS-1 has multiple copies of circadian related genes in response to variability in coral reef habitat. Our results implied that XS-1 has a remarkable plasticity to adapt the environment and can play a beneficial role in coral reef ecosystems.
Collapse
Affiliation(s)
- Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | | | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Aix Marseille University, CNRS, LCB, IM2B, IMM, Marseille, France
| | - Wei Lin
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jia Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|