1
|
Pang Z, Cady NM, Cen L, Schmidt TM, He X, Li J. Physiologically relevant coculture model for oral microbial-host interactions. Int J Oral Sci 2025; 17:42. [PMID: 40425581 PMCID: PMC12117109 DOI: 10.1038/s41368-025-00365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/19/2025] [Indexed: 05/29/2025] Open
Abstract
Understanding microbial-host interactions in the oral cavity is essential for elucidating oral disease pathogenesis and its systemic implications. In vitro bacteria-host cell coculture models have enabled fundamental studies to characterize bacterial infection and host responses in a reductionist yet reproducible manner. However, existing in vitro coculture models fail to establish conditions that are suitable for the growth of both mammalian cells and anaerobes, thereby hindering a comprehensive understanding of their interactions. Here, we present an asymmetric gas coculture system that simulates the oral microenvironment by maintaining distinct normoxic and anaerobic conditions for gingival epithelial cells and anaerobic bacteria, respectively. Using a key oral pathobiont, Fusobacterium nucleatum, as the primary test bed, we demonstrate that the system preserves bacterial viability and supports the integrity of telomerase-immortalized gingival keratinocytes. Compared to conventional models, this system enhanced bacterial invasion, elevated intracellular bacterial loads, and elicited more robust host pro-inflammatory responses, including increased secretion of CXCL10, IL-6, and IL-8. In addition, the model enabled precise evaluation of antibiotic efficacy against intracellular pathogens. Finally, we validate the ability of the asymmetric system to support the proliferation of a more oxygen-sensitive oral pathobiont, Porphyromonas gingivalis. These results underscore the utility of this coculture platform for studying oral microbial pathogenesis and screening therapeutics, offering a physiologically relevant approach to advance oral and systemic health research.
Collapse
Affiliation(s)
- Zeyang Pang
- Department of Biomedical Engineering, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nicole M Cady
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Somerville, MA, USA
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Somerville, MA, USA
| | - Jiahe Li
- Department of Biomedical Engineering, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Sun D, Zhou X, Su Y, Gao B, Liu P, Lv J. Immunoregulatory mechanisms and cross-kingdom bacteriostatic effects of microRNAs in crustacean. Int J Biol Macromol 2025; 311:144079. [PMID: 40348231 DOI: 10.1016/j.ijbiomac.2025.144079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/19/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
MicroRNAs (miRNAs) are crucial regulators of gene expression, which contribute to immune response regulation in various organisms, including crustaceans. To investigate the immunoregulatory roles of miRNAs in Portunus trituberculatus, a comparative miRNAomic analysis of Vibrio parahaemolyticus infection was carried out. Through comparative miRNAomic analysis, we identified 17 differentially expressed miRNAs (DE-miRNAs), of which 12 were upregulated. Subsequently, miRNA-mRNA regulatory network analysis revealed that the DE-miRNAs were enriched in immune-related signaling pathways. Within the miRNA-mRNA regulatory network, miRNA novel0045 was identified as a crucial regulator of the tumor necrosis factor (TNF) pathway via targeting the TNF receptor-associated factor 6 gene. This result was corroborated by our RNA interference assay, confirming the significance of miRNA novel0045 in resistance to V. parahaemolyticus infection. Moreover, miRNA novel0294 was noted to possess cross-kingdom regulatory potential, translocating into bacterial cells and directly inhibiting V. parahaemolyticus proliferation. We validated this finding through fluorescence labeling and confocal microscopy, confirming effective internalization and presence of miRNA within bacterial. These results expand the current understanding of miRNA-mediated immune responses in crustaceans, highlighting the roles of miRNAs in host immune defense and cross-kingdom regulatory function in bacterial infection suppression, and have potential implications in the development of RNA-based antimicrobial strategies.
Collapse
Affiliation(s)
- Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xianfa Zhou
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yichen Su
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
3
|
Cosi V, Jung J, Popella L, Ponath F, Ghosh C, Barquist L, Vogel J. An antisense oligomer conjugate with unpredicted bactericidal activity against Fusobacterium nucleatum. mBio 2025:e0052425. [PMID: 40298409 DOI: 10.1128/mbio.00524-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Fusobacteria are commensal members of the oral microbiome that can spread from their primary niche and colonize distal sites in the human body. Their enrichment in colorectal and breast cancer tissue has been associated with tumor growth, metastasis, and chemotherapeutic resistance. The use of non-selective antibiotics to remove fusobacteria impairs tumor progression, but prolonged application causes side effects, such as gastrointestinal problems and dysbiosis. Species-specific antisense antibiotics based on peptide nucleic acid (PNA) have shown efficacy in many gram-negative species, suggesting that antisense PNAs may also enable a tailored depletion of fusobacteria. Here, we have investigated the antibacterial potential of cell-penetrating peptide (CPP)-PNA conjugates targeting the mRNA of putative essential genes in Fusobacterium nucleatum. Unexpectedly, we observed no growth inhibition with any of the target-specific PNAs but identified a non-targeting control CPP-PNA [FUS79, (RXR)4XB-GACATAATTGT] as a potent growth inhibitor of F. nucleatum. Our data suggest that the CPP and specific sequence features of FUS79 are responsible for its activity, rather than an antisense effect. Interestingly, FUS79 also inhibits the growth of five additional fusobacterial strains but not of F. nucleatum subsp. vincentii (FNV). RNA-seq analysis indicates that FUS79 induces a membrane stress response in a vulnerable F. nucleatum strain but not in FNV. Collectively, our attempt at developing antisense antibiotics for fusobacteria discovers a potent growth inhibitor, whose bactericidal effect appears independent of target-specific mRNA inhibition.IMPORTANCEEnrichment of F. nucleatum at cancer sites is associated with increased tumor growth and metastasis. Antibiotic treatment to remove the bacteria was shown to change the course of cancer progression. Here, we explore first steps to establish peptide nucleic acids (PNAs) as specific antisense antibiotics, thereby laying the foundation for further development of antisense technology in fusobacteria. Although the CPP-PNA FUS79 was initially designed as a control, we observed that the compound was bactericidal for specific fusobacterial strains. Our results suggest that FUS79 might be able to selectively deplete fusobacterial strains from bacterial communities, offering a new perspective on fusobacterial removal at the tumor site.
Collapse
Affiliation(s)
- Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jakob Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Linda Popella
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg RNA Biology Group, Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| |
Collapse
|
4
|
Ravet A, Zervudacki J, Singla-Rastogi M, Charvin M, Thiebeauld O, Perez-Quintero AL, Courgeon L, Candat A, Lebeau L, Fortunato AE, Mendu V, Navarro L. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium. Nat Commun 2025; 16:3533. [PMID: 40229238 PMCID: PMC11997071 DOI: 10.1038/s41467-025-57908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Extracellular plant small RNAs (sRNAs) and/or double-stranded RNA (dsRNA) precursors act as triggers of RNAi in interacting filamentous pathogens. However, whether any of these extracellular RNA species direct gene silencing in plant-interacting bacteria remains unknown. Here, we show that Arabidopsis transgenic plants expressing sRNAs directed against virulence factors of a Pseudomonas syringae strain, reduce its pathogenesis. This Antibacterial Gene Silencing (AGS) phenomenon is directed by Dicer-Like (DCL)-dependent antibacterial sRNAs, but not cognate dsRNA precursors. Three populations of active extracellular sRNAs were recovered in the apoplast of these transgenic plants. The first one is mainly non-vesicular and associated with proteins, whereas the second one is located inside Extracellular Vesicles (EVs). Intriguingly, the third population is unbound to proteins and in a dsRNA form, unraveling functional extracellular free sRNAs (efsRNAs). Both Arabidopsis transgene- and genome-derived efsRNAs were retrieved inside bacterial cells. Finally, we show that salicylic acid (SA) promotes AGS, and that a substantial set of endogenous efsRNAs exhibits predicted bacterial targets that are down-regulated by SA biogenesis and/or signaling during infection. This study thus unveils an unexpected AGS phenomenon, which may have wider implications in the understanding of how plants regulate microbial transcriptome, microbial community composition and genome evolution of associated bacteria.
Collapse
Affiliation(s)
- Antinéa Ravet
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Jérôme Zervudacki
- ImmunRise Technologies (IRT), 75005, Paris, France
- ENgreen Technologies, 33100, Bordeaux, France
| | - Meenu Singla-Rastogi
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Magali Charvin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Alvaro L Perez-Quintero
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lucas Courgeon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Liam Lebeau
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | | | - Venugopal Mendu
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Lionel Navarro
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
5
|
Zhang B, Pan Y, Li Z, Hu K. tRNA-derived small RNAs: their role in the mechanisms, biomarkers, and therapeutic strategies of colorectal cancer. J Transl Med 2025; 23:51. [PMID: 39806419 PMCID: PMC11727791 DOI: 10.1186/s12967-025-06109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light. Emerging research has revealed dysregulation of tsRNAs in CRC, implicating their role in CRC initiation and progression, and highlighting their potential in early diagnosis, prognosis, and therapeutic strategies. Although the clinical application of tsRNAs is still in its early stages, recent findings highlight a close relationship between the biogenesis and function of tsRNAs, tRNA chemical modifications, and the tumor immune microenvironment (TIME). Additionally, similar to other small RNAs, tsRNAs can be effectively delivered via nanoparticles (NPs). Consequently, future research should focus on elucidating the clinical significance of tsRNAs concerning base modifications, TIME regulation, cancer immunotherapy, and NPs delivery systems to facilitate their clinical translation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yanru Pan
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
6
|
Borniego ML, Singla-Rastogi M, Baldrich P, Sampangi-Ramaiah MH, Zand Karimi H, McGregor M, Meyers BC, Innes RW. Diverse plant RNAs coat Arabidopsis leaves and are distinct from apoplastic RNAs. Proc Natl Acad Sci U S A 2025; 122:e2409090121. [PMID: 39752527 PMCID: PMC11725841 DOI: 10.1073/pnas.2409090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/15/2025] Open
Abstract
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces. To assess whether Arabidopsis plants possess a mechanism for secreting RNA onto leaf surfaces, we developed a protocol for isolating leaf surface RNA separately from intercellular (apoplastic) RNA. This protocol yielded abundant leaf surface RNA that displayed an RNA banding pattern distinct from apoplastic RNA, suggesting that it may be secreted directly onto the leaf surface rather than exuded through stomata or hydathodes. Notably, this RNA was not associated with either extracellular vesicles or protein complexes; however, RNA species longer than 100 nucleotides could be pelleted by ultracentrifugation. Furthermore, pelleting was inhibited by the divalent cation chelator EGTA, suggesting that these RNAs may form condensates on the leaf surface. These leaf surface RNAs are derived almost exclusively from Arabidopsis, but come from diverse genomic sources, including rRNA, tRNA, mRNA, intergenic RNA, microRNAs, and small interfering RNAs, with tRNAs especially enriched. We speculate that endogenous leaf surface RNA plays an important role in the assembly of distinct microbial communities on leaf surfaces.
Collapse
Affiliation(s)
| | | | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
| | | | | | | | - Blake C. Meyers
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
- Division of Plant Science and Technology, University of Missouri, Columbia, MO65211
- Department of Plant Sciences, University of California–Davis, Davis, CA95616
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN47405
| |
Collapse
|
7
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
8
|
Liang Y, Ji D, Ying X, Ma R, Ji W. tsRNA modifications: An emerging layer of biological regulation in disease. J Adv Res 2024:S2090-1232(24)00401-6. [PMID: 39260796 DOI: 10.1016/j.jare.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Transfer RNA (tRNA)-derived small RNA (tsRNA) represents an important and increasingly valued type of small non-coding RNA (sncRNA). The investigation of tRNA and tsRNA modification crosswalks has not only provided novel insights into the information and functions of tsRNA, but has also expanded the diversity and complexity of the tsRNA biological regulation network. AIM OF REVIEW Comparing with other sncRNAs, tsRNA biogenesis show obvious correlation with RNA modifications from mature tRNA and harbor various tRNA modifications. In this review, we aim to present the current aspect of tsRNA modifications and that modified tsRNA shape different regulatory mechanisms in physiological and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW Strategies for studying tsRNA mechanisms include its specific generation and functional effects induced by sequence/RNA modification/secondary structure. tsRNAs could harbor more than one tRNA modifications such as 5-methylcytosine (m5C), N1-methyladenosine (m1A), pseudouridine (Ψ) and N7-methylguanosine (m7G). This review consolidates the current knowledge of tRNA modification regulating tsRNA biogenesis, outlines the functional roles of various modified tsRNA and highlights their specific contributions in various disease pathogenesis. Therefore, the improvement of tsRNA modification detection technology and the introduction of experimental methods of tsRNA modification are conducive to further broadening the understanding of tsRNA function at the level of RNA modification.
Collapse
Affiliation(s)
- Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Ding Ji
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China
| | - Xiaoling Ying
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510220, PR China
| | - Renqiang Ma
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510220, PR China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
9
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
10
|
Yakar N, Unlu O, Cen L, Hasturk H, Chen T, Shi W, He X, Kantarci A. Targeted elimination of Fusobacterium nucleatum alleviates periodontitis. J Oral Microbiol 2024; 16:2388900. [PMID: 39139835 PMCID: PMC11321114 DOI: 10.1080/20002297.2024.2388900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background Fusobacterium nucleatum, a pathobiont in periodontal disease, contributes to alveolar bone destruction. We assessed the efficacy of a new targeted antimicrobial, FP-100, in eradicating F. nucleatum from the oral microbial community in vitro and in vivo and evaluated its effectiveness in reducing bone loss in a mouse periodontitis model. Methods A multispecies bacterial community was cultured and treated with two concentrations of FP-100 over two days. Microbial profiles were examined at 24-h intervals using 16S rRNA sequencing. A ligature-induced periodontitis mouse model was employed to test FP-100 in vivo. Results FP-100 significantly reduced Fusobacterium spp. within the in vitro community (p < 0.05) without altering microbial diversity at a 2 μM concentration. In mice, cultivable F. nucleatum was undetectable in FP-100-treated ligatures but persistent in controls. Beta diversity plots showed distinct microbial structures between treated and control mice. Alveolar bone loss was significantly reduced in the FP-100 group (p = 0.018), with concurrent decreases in gingival IL-1β and TNF-α expression (p = 0.052 and 0.018, respectively). Conclusion FP-100 effectively eliminates F. nucleatum from oral microbiota and significantly reduces bone loss in a mouse periodontitis model, demonstrating its potential as a targeted therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Nil Yakar
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Ozge Unlu
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Hatice Hasturk
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Tsute Chen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Li L, Chandra V, McAllister F. Tumor-resident microbes: the new kids on the microenvironment block. Trends Cancer 2024; 10:347-355. [PMID: 38388213 PMCID: PMC11006566 DOI: 10.1016/j.trecan.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024]
Abstract
Tumor-resident microbes (TRM) are an integral component of the tumor microenvironment (TME). TRM can influence tumor growth, distant dissemination, and response to therapies by interfering with molecular pathways in tumor cells as well as with other components of the TME. Novel technologies are improving the identification and visualization of cell type-specific microbes in the TME. The mechanisms that mediate the role of TRM at the primary tumors and metastatic sites are being elucidated. This knowledge is providing novel perspectives for targeting microbes or using microbial interventions for cancer interception or therapy.
Collapse
Affiliation(s)
- Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Du J, Huang T, Zheng Z, Fang S, Deng H, Liu K. Biological function and clinical application prospect of tsRNAs in digestive system biology and pathology. Cell Commun Signal 2023; 21:302. [PMID: 37904174 PMCID: PMC10614346 DOI: 10.1186/s12964-023-01341-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
tsRNAs are small non-coding RNAs originating from tRNA that play important roles in a variety of physiological activities such as RNA silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, as well as involvement in cellular differentiation, proliferation, and apoptosis. tsRNA-related abnormalities have a significant influence on the onset, development, and progression of numerous human diseases, including malignant tumors through affecting the cell cycle and specific signaling molecules. This review introduced origins together with tsRNAs classification, providing a summary for regulatory mechanism and physiological function while dysfunctional effect of tsRNAs in digestive system diseases, focusing on the clinical prospects of tsRNAs for diagnostic and prognostic biomarkers. Video Abstract.
Collapse
Affiliation(s)
- Juan Du
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tianyi Huang
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hongxia Deng
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|