1
|
Martinez B, Peplow PV. MicroRNAs as potential diagnostic biomarkers for bipolar disorder. Neural Regen Res 2025; 20:1681-1695. [PMID: 39104098 PMCID: PMC11688563 DOI: 10.4103/nrr.nrr-d-23-01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 08/07/2024] Open
Abstract
Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of bipolar disorder. We performed a PubMed search for microRNA biomarkers in bipolar disorder and found 18 original research articles on studies performed with human patients and published from January 2011 to June 2023. These studies included microRNA profiling in blood- and brain-based materials. From the studies that had validated the preliminary findings, potential candidate biomarkers for bipolar disorder in adults could be miR-140-3p, -30d-5p, -330-5p, -378a-5p, -21-3p, -330-3p, -345-5p in whole blood, miR-19b-3p, -1180-3p, -125a-5p, let-7e-5p in blood plasma, and miR-7-5p, -23b-5p, -142-3p, -221-5p, -370-3p in the blood serum. Two of the studies had investigated the changes in microRNA expression of patients with bipolar disorder receiving treatment. One showed a significant increase in plasma miR-134 compared to baseline after 4 weeks of treatment which included typical antipsychotics, atypical antipsychotics, and benzodiazepines. The other study had assessed the effects of prescribed medications which included neurotransmitter receptor-site binders (drug class B) and sedatives, hypnotics, anticonvulsants, and analgesics (drug class C) on microRNA results. The combined effects of the two drug classes increased the significance of the results for miR-219 and -29c with miR-30e-3p and -526b* acquiring significance. MicroRNAs were tested to see if they could serve as biomarkers of bipolar disorder at different clinical states of mania, depression, and euthymia. One study showed that upregulation in whole blood of miR-9-5p, -29a-3p, -106a-5p, -106b-5p, -107, -125a-3p, -125b-5p and of miR-107, -125a-3p occurred in manic and euthymic patients compared to controls, respectively, and that upregulation of miR-106a-5p, -107 was found for manic compared to euthymic patients. In two other studies using blood plasma, downregulation of miR-134 was observed in manic patients compared to controls, and dysregulation of miR-134, -152, -607, -633, -652, -155 occurred in euthymic patients compared to controls. Finally, microRNAs such as miR-34a, -34b, -34c, -137, and -140-3p, -21-3p, -30d-5p, -330-5p, -378a-5p, -134, -19b-3p were shown to have diagnostic potential in distinguishing bipolar disorder patients from schizophrenia or major depressive disorder patients, respectively. Further studies are warranted with adolescents and young adults having bipolar disorder and consideration should be given to using animal models of the disorder to investigate the effects of suppressing or overexpressing specific microRNAs.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, NV, USA
- Department of Medicine, University of Nevada-Reno, Reno, NV, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
3
|
Friligkou E, Pathak GA, Tylee DS, De Lillo A, Koller D, Cabrera-Mendoza B, Polimanti R. Characterizing pleiotropy among bipolar disorder, schizophrenia, and major depression: a genome-wide cross-disorder meta-analysis. Psychol Med 2025; 55:e145. [PMID: 40357923 DOI: 10.1017/s0033291725001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BACKGROUND To understand the pathogenetic mechanisms shared among schizophrenia (SCZ), bipolar disorder (BP), and major depression (MDD), we investigated the pleiotropic mechanisms using large-scale genome-wide and brain transcriptomic data. METHODS We analyzed SCZ, BP, and MDD genome-wide association datasets available from the Psychiatric Genomics Consortium using the PLEIO framework and characterized the pleiotropic loci identified using pathway and tissue enrichment analyses. Pleiotropic and disorder-specific loci were also assessed. RESULTS Our pleiotropy-informed genome-wide analysis identified 553 variants that included 192 loci not reaching genome-wide significance in input datasets. These were enriched for five molecular pathways: cadherin signaling (p = 2.18 × 10-8), Alzheimer's disease-amyloid secretase (p = 4 × 10-4), oxytocin receptor-mediated signaling (p = 1.47 × 10-3), metabotropic glutamate receptor group III (p = 5.82 × 10-4) and Wnt signaling (p = 1.61 × 10-11). Pleiotropic loci demonstrated the strongest enrichment in the brain cortex (p = 5.8 × 10-28), frontal cortex (p = 3 × 10-31), and cerebellar hemisphere (p = 9.8 × 10-28). SCZ-BP-MDD pleiotropic variants were also enriched for neurodevelopmental brain transcriptomic profiles related to the second-trimester post-conception (week 21, p = 7.35 × 10-5; week 17, p = 6.36 × 10-4) and first year of life (p = 3.25 × 10-5). CONCLUSIONS Genetic mechanisms shared among SCZ, BP, and MDD appear to be related to early neuronal development. Because the genetic architecture of psychopathology transcends diagnostic boundaries, pleiotropy-focused analyses can lead to increased gene discovery and novel insights into relevant pathogenic mechanisms.
Collapse
Affiliation(s)
- Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Daniel S Tylee
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Antonella De Lillo
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Dora Koller
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
4
|
Shen T, Yu J, Xie B, Huang C, Cui J, Liu K, Liu C, Chen C. Protein arginine methyltransferase 7 linked to schizophrenia through regulation of neural progenitor cell proliferation and differentiation. Cell Rep 2025; 44:115279. [PMID: 39921858 DOI: 10.1016/j.celrep.2025.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Genome-wide association studies (GWASs) have identified numerous genomic loci linked to schizophrenia (SCZ), while their pathogenic mechanisms largely remain unclear. This study demonstrated protein arginine methyltransferase 7 (PRMT7) as a key target of SCZ risk SNPs with allele-specific enhancer activity at 16q22.1. Downregulating PRMT7 in neural progenitor cells (NPCs) decreased proliferation, increased neuronal differentiation, and also led to longer neurites in these neurons. Conversely, overexpressing PRMT7 enhanced NPC proliferation and reduced neuronal differentiation. In three-dimensional (3D) cerebral organoids, similar NPC phenotypic changes were noted following PRMT7 depletion. Mechanistically, PRMT7 regulates the expression of genes related to the cell cycle and neuronal functions, such as CDKN2A and SYP, via symmetrical di-methylation at arginine 3 of histone 4 (H4R3me2s) modification in their promoters. Notably, these genes have a stronger association with SCZ compared to other mental disorders. Together, the results of this study reveal that PRMT7 is a functional gene at 16q22.1, contributing to the etiology of SCZ by modulating NPC proliferation and differentiation as an epigenetic regulator.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Jing Yu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Bin Xie
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Cuiping Huang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jingjie Cui
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Furong Laboratory, Changsha 410000, Hunan, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410000, China.
| |
Collapse
|
5
|
Manafzadeh F, Baradaran B, Noor Azar SG, Javidi Aghdam K, Dabbaghipour R, Shayannia A, Ghafouri-Fard S. Expression study of Wnt/β-catenin signaling pathway associated lncRNAs in schizophrenia. Ann Gen Psychiatry 2025; 24:4. [PMID: 39806445 PMCID: PMC11731566 DOI: 10.1186/s12991-025-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025] Open
Abstract
Schizophrenia is one of the most debilitating mental illnesses affecting any age group. The mechanism and etiology of schizophrenia are extremely complex and multiple signaling pathways recruit genes implicated in the etiology of this disease. While the role of Wnt/β-catenin signaling in this disorder has been verified, the impact of long noncoding RNAs (lncRNAs) associated with this pathway has not been studied in schizophrenia. The objective of this study was to examine the expression levels of Wnt/β-catenin-related lncRNAs, namely CCAT2, SNHG5, PTCSC3, and DANCR, as well as the CTNNB1 gene encoding beta-catenin protein in two groups of schizophrenia patients (drug-naïve and medicated) compared with healthy individuals. This study included 50 medicated patients in the remission phase of the disease, 25 drug-naive patients in the acute phase, and 50 control subjects. There was no significant difference in CTNNB1 gene expression in the medicated patients compared to controls (P value = 0.9754). However, the expression of this gene was significantly decreased in drug-naïve first-episode patients compared with controls (P value < 0.001). In contrast, expression of DANCR, PTCSC3, SNHG5, and CCAT2 genes was significantly higher in medicated (P values < 0.001, < 0.001, = 0.01, < 0.001, respectively) and drug-naive first-episode patients (P value < 0.001) compared to control subjects. ROC curve analysis revealed that DANCR, PTCSC3, SNHG5, and CCAT2 genes had diagnostic power with specificity and sensitivity of 80% and above in separation between study subgroups. In brief, our data demonstrated dysregulation of Wnt/β pathway related genes and lncRNAs in the peripheral blood of patients with schizophrenia and their potential as biomarkers for this disorder.
Collapse
Affiliation(s)
- Fatemeh Manafzadeh
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Gholamreza Noor Azar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Javidi Aghdam
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
7
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory JT, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Stimulating Wnt signaling reveals context-dependent genetic effects on gene regulation in primary human neural progenitors. Nat Neurosci 2024; 27:2430-2442. [PMID: 39349663 PMCID: PMC11633645 DOI: 10.1038/s41593-024-01773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Gene regulatory effects have been difficult to detect at many non-coding loci associated with brain-related traits, likely because some genetic variants have distinct functions in specific contexts. To explore context-dependent gene regulation, we measured chromatin accessibility and gene expression after activation of the canonical Wnt pathway in primary human neural progenitors (n = 82 donors). We found that TCF/LEF motifs and brain-structure-associated and neuropsychiatric-disorder-associated variants were enriched within Wnt-responsive regulatory elements. Genetically influenced regulatory elements were enriched in genomic regions under positive selection along the human lineage. Wnt pathway stimulation increased detection of genetically influenced regulatory elements/genes by 66%/53% and enabled identification of 397 regulatory elements primed to regulate gene expression. Stimulation also increased identification of shared genetic effects on molecular and complex brain traits by up to 70%, suggesting that genetic variant function during neurodevelopmental patterning can lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Jessica T Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA.
| |
Collapse
|
8
|
Stahl A, Heider J, Wüst R, Fallgatter AJ, Schenke-Layland K, Volkmer H, Templin MF. Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia. BMC Psychiatry 2024; 24:757. [PMID: 39482642 PMCID: PMC11526604 DOI: 10.1186/s12888-024-06127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. METHODS Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. RESULTS SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. CONCLUSIONS Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.
Collapse
Affiliation(s)
- Aaron Stahl
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| | - Johanna Heider
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Hansjürgen Volkmer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.
| |
Collapse
|
9
|
Stern S, Zhang L, Wang M, Wright R, Rosh I, Hussein Y, Stern T, Choudhary A, Tripathi U, Reed P, Sadis H, Nayak R, Shemen A, Agarwal K, Cordeiro D, Peles D, Hang Y, Mendes APD, Baul TD, Roth JG, Coorapati S, Boks MP, McCombie WR, Hulshoff Pol H, Brennand KJ, Réthelyi JM, Kahn RS, Marchetto MC, Gage FH. Monozygotic twins discordant for schizophrenia differ in maturation and synaptic transmission. Mol Psychiatry 2024; 29:3208-3222. [PMID: 38704507 PMCID: PMC11449799 DOI: 10.1038/s41380-024-02561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.
Collapse
Affiliation(s)
- Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Wright
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tchelet Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Patrick Reed
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hagit Sadis
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Aviram Shemen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Karishma Agarwal
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Diogo Cordeiro
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yuqing Hang
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ana P D Mendes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tithi D Baul
- Department of Psychiatry at the Boston Medical Center, Boston, MA, USA
| | - Julien G Roth
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marco P Boks
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | | | - Hilleke Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584CS, Utrecht, The Netherlands
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Pamela Sklar Division of Psychiatric Genomics, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Department of Genetics, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - János M Réthelyi
- Molecular Psychiatry Research Group and Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, New York, NY, USA
| | - Maria C Marchetto
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
10
|
Sanchez-Ruiz JA, Treviño-Alvarez AM, Zambrano-Lucio M, Lozano Díaz ST, Wang N, Biernacka JM, Tye SJ, Cuellar-Barboza AB. The Wnt signaling pathway in major depressive disorder: A systematic review of human studies. Psychiatry Res 2024; 339:115983. [PMID: 38870775 DOI: 10.1016/j.psychres.2024.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.
Collapse
Affiliation(s)
- Jorge A Sanchez-Ruiz
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Sofía T Lozano Díaz
- Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Ning Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
11
|
Moskalenko AM, Ikrin AN, Kozlova AV, Mukhamadeev RR, de Abreu MS, Riga V, Kolesnikova TO, Kalueff AV. Decoding Molecular Bases of Rodent Social Hetero-Grooming Behavior Using in Silico Analyses and Bioinformatics Tools. Neuroscience 2024; 554:146-155. [PMID: 38876356 DOI: 10.1016/j.neuroscience.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Highly prevalent in laboratory rodents, 'social' hetero-grooming behavior is translationally relevant to modeling a wide range of neuropsychiatric disorders. Here, we comprehensively evaluated all known to date mouse genes linked to aberrant hetero-grooming phenotype, and applied bioinformatics tools to construct a network of their established protein-protein interactions (PPI). We next identified several distinct molecular clusters within this complex network, including neuronal differentiation, cytoskeletal, WNT-signaling and synapsins-associated pathways. Using additional bioinformatics analyses, we further identified 'central' (hub) proteins within these molecular clusters, likely key for mouse hetero-grooming behavior. Overall, a more comprehensive characterization of intricate molecular pathways linked to aberrant rodent grooming may markedly advance our understanding of underlying cellular mechanisms and related neurological disorders, eventually helping discover novel targets for their pharmacological or gene therapy interventions.
Collapse
Affiliation(s)
- Anastasia M Moskalenko
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Aleksey N Ikrin
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Alena V Kozlova
- Graduate Program in Genetics and Genetic Technologies, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Radmir R Mukhamadeev
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, Sochi 354340, Russia; Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050, Brazil.
| | - Vyacheslav Riga
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Tatiana O Kolesnikova
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Allan V Kalueff
- Neuroscience Department, Sirius University of Science and Technology, Sochi 354340, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 194021, Russia; Suzhou Key Laboratory of Neurobiology and Cell Signaling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China.
| |
Collapse
|
12
|
Xiao Z, Zheng N, Chen H, Yang Z, Wang R, Liang Z. Identifying novel proteins underlying bipolar disorder via integrating pQTLs of the plasma, CSF, and brain with GWAS summary data. Transl Psychiatry 2024; 14:344. [PMID: 39191728 DOI: 10.1038/s41398-024-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Bipolar disorder (BD) presents a significant challenge due to its chronic and relapsing nature, with its underlying pathogenesis remaining elusive. This study employs Mendelian randomization (MR), a widely recognized genetic approach, to unveil intricate causal associations between proteins and BD, leveraging protein quantitative trait loci (pQTL) as key exposures. We integrate pQTL data from brain, cerebrospinal fluid (CSF), and plasma with genome-wide association study (GWAS) findings of BD within a comprehensive systems analysis framework. Our analyses, including two-sample MR, Steiger filtering, and Bayesian colocalization, reveal noteworthy associations. Elevated levels of AGRP, FRZB, and IL36A in CSF exhibit significant associations with increased BD_ALL risk, while heightened levels of CTSF and LRP8 in CSF, and FLRT3 in plasma, correlate with decreased BD_ALL risk. Specifically for Bipolar I disorder (BD_I), increased CSF AGRP levels are significantly linked to heightened BD_I risk, whereas elevated CSF levels of CTSF and LRP8, and plasma FLRT3, are associated with reduced BD_I risk. Notably, genes linked to BD-related proteins demonstrate substantial enrichment in functional pathways such as "antigen processing and presentation," "metabolic regulation," and "regulation of myeloid cell differentiation." In conclusion, our findings provide beneficial evidence to support the potential causal relationship between IL36A, AGRP, FRZB, LRP8 in cerebrospinal fluid, and FLRT3 in plasma, and BD and BD_I, providing insights for future mechanistic studies and therapeutic development.
Collapse
Affiliation(s)
- Zhehao Xiao
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nan Zheng
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Anesthesiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haodong Chen
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhelun Yang
- Fujian Medical University Union Hospital, Fuzhou, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Zeyan Liang
- Fujian Medical University Union Hospital, Fuzhou, China.
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
13
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
14
|
Li M, Yang Y, Wang P, Que W, Zhong L, Cai Z, Liu Y, Yang L, Liu Y. Transcriptome dynamics of the BHK21 cell line in response to human coronavirus OC43 infection. Microbiol Res 2024; 285:127750. [PMID: 38761489 DOI: 10.1016/j.micres.2024.127750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/β-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/β-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/β-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.
Collapse
Affiliation(s)
- Mianhuan Li
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Yang Yang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Pusen Wang
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Weitao Que
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Lin Zhong
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China
| | - Zhao Cai
- Shenzhen Mindray Bio-Medical Electronics Co.,Ltd, Shenzhen 518057, People's Republic of China
| | - Yang Liu
- Southern University of Science and Technology Hospital, Shenzhen 518055, People's Republic of China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China; Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China.
| | - Yingxia Liu
- Shenzhen Third People's Hospital, National Clinical Research Centre for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, People's Republic of China.
| |
Collapse
|
15
|
Sahay S, Hamoud AR, Osman M, Pulvender P, McCullumsmith RE. Expression of WNT Signaling Genes in the Dorsolateral Prefrontal Cortex in Schizophrenia. Brain Sci 2024; 14:649. [PMID: 39061390 PMCID: PMC11274838 DOI: 10.3390/brainsci14070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene expression alterations in postmortem schizophrenia tissue are well-documented and are influenced by genetic, medication, and epigenetic factors. The Wingless/Integrated (WNT) signaling pathway, critical for cell growth and development, is involved in various cellular processes including neurodevelopment and synaptic plasticity. Despite its importance, WNT signaling remains understudied in schizophrenia, a disorder characterized by metabolic and bioenergetic defects in cortical regions. In this study, we examined the gene expression of 10 key WNT signaling pathway transcripts: IQGAP1, CTNNβ1, GSK3β, FOXO1, LRP6, MGEA5, TCF4, βTRC, PPP1Cβ, and DVL2 in the dorsolateral prefrontal cortex (DLPFC) using postmortem tissue from schizophrenia subjects (n = 20, 10 males, 10 females) compared to age, pH, and postmortem interval (PMI)-matched controls (n = 20, 10 males, 10 females). Employing the R-shiny application Kaleidoscope, we conducted in silico "lookup" studies from published transcriptomic datasets to examine cell- and region-level expression of these WNT genes. In addition, we investigated the impact of antipsychotics on the mRNA expression of the WNT genes of interest in rodent brain transcriptomic datasets. Our findings revealed no significant changes in region-level WNT transcript expression; however, analyses of previously published cell-level datasets indicated alterations in WNT transcript expression and antipsychotic-specific modulation of certain genes. These results suggest that WNT signaling transcripts may be variably expressed at the cellular level and influenced by antipsychotic treatment, providing novel insights into the role of WNT signaling in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Mahasin Osman
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Priyanka Pulvender
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Neurosciences Institute, Promedica, Toledo, OH 43606, USA
| |
Collapse
|
16
|
Priya, Yadav N, Anand S, Banerjee J, Tripathi M, Chandra PS, Dixit AB. The multifaceted role of Wnt canonical signalling in neurogenesis, neuroinflammation, and hyperexcitability in mesial temporal lobe epilepsy. Neuropharmacology 2024; 251:109942. [PMID: 38570066 DOI: 10.1016/j.neuropharm.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Epilepsy is a neurological disorder characterised by unprovoked, repetitive seizures caused by abnormal neuronal firing. The Wnt/β-Catenin signalling pathway is involved in seizure-induced neurogenesis, aberrant neurogenesis, neuroinflammation, and hyperexcitability associated with epileptic disorder. Wnt/β-Catenin signalling is crucial for early brain development processes including neuronal patterning, synapse formation, and N-methyl-d-aspartate receptor (NMDAR) regulation. Disruption of molecular networks such as Wnt/β-catenin signalling in epilepsy could offer encouraging anti-epileptogenic targets. So, with a better understanding of the canonical Wnt/-Catenin pathway, we highlight in this review the important elements of Wnt/-Catenin signalling specifically in Mesial Temporal Lobe Epilepsy (MTLE) for potential therapeutic targets.
Collapse
Affiliation(s)
- Priya
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Nitin Yadav
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sneha Anand
- Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
17
|
Del Casale A, Modesti MN, Gentile G, Guariglia C, Ferracuti S, Simmaco M, Borro M. Is the Hedgehog Pathway Involved in the Pathophysiology of Schizophrenia? A Systematic Review of Current Evidence of Neural Molecular Correlates and Perspectives on Drug Development. Curr Issues Mol Biol 2024; 46:5322-5336. [PMID: 38920990 PMCID: PMC11202070 DOI: 10.3390/cimb46060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Among the pathophysiological correlates of schizophrenia, recent research suggests a potential role for the Hedgehog (Hh) signalling pathway, which has been traditionally studied in embryonic development and oncology. Its dysregulation may impact brain homeostasis, neuroplasticity, and potential involvement in neural processes. This systematic review provides an overview of the involvement of Hh signalling in the pathophysiology of schizophrenia and antipsychotic responses. We searched the PubMed and Scopus databases to identify peer-reviewed scientific studies focusing on Hh and schizophrenia, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, finally including eight studies, including three articles focused on patients with schizophrenia, two animal models of schizophrenia, two animal embryo studies, and one cellular differentiation study. The Hh pathway is crucial in the development of midbrain dopaminergic neurons, neuroplasticity mechanisms, regulating astrocyte phenotype and function, brain-derived neurotrophic factor expression, brain glutamatergic neural transmission, and responses to antipsychotics. Overall, results indicate an involvement of Hh in the pathophysiology of schizophrenia and antipsychotic responses, although an exiguity of studies characterises the literature. The heterogeneity between animal and human studies is another main limitation. Further research can lead to better comprehension and the development of novel personalised drug treatments and therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Psychiatry, Emergency and Admissions Department, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Martina Nicole Modesti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Psychiatry, Mental Health Department, Santissimo Gonfalone Hospital, Local Health Service Roma 5, Monterotondo, 00015 Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Scientific Institute for Research, Hospitalization and Healthcare Fondazione Santa Lucia, 00179 Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Risk Management, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Laboratory and Advanced Molecular Diagnostics, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
18
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Rivera AD, Normanton JR, Butt AM, Azim K. The Genomic Intersection of Oligodendrocyte Dynamics in Schizophrenia and Aging Unravels Novel Pathological Mechanisms and Therapeutic Potentials. Int J Mol Sci 2024; 25:4452. [PMID: 38674040 PMCID: PMC11050044 DOI: 10.3390/ijms25084452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.
Collapse
Affiliation(s)
- Andrea D. Rivera
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Via A. Gabelli 65, 35127 Padua, Italy;
| | - John R. Normanton
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
| | - Arthur M. Butt
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- School of Pharmacy and Biomedical Science, University of Portsmouth, Hampshire PO1 2UP, UK
| | - Kasum Azim
- GliaGenesis Limited, Orchard Lea, Horns Lane, Oxfordshire, Witney OX29 8NH, UK; (J.R.N.); (K.A.)
- Independent Data Lab UG, Frauenmantelanger 31, 80937 Munich, Germany
| |
Collapse
|
20
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
21
|
Li S, Chen X, Qiu Y, Teng Z, Xu X, Tang H, Xiang H, Wang B, Chen J, Yuan H, Wu H. Osteoporosis and low bone mass among schizophrenia and bipolar disorder: A cross-sectional study with newly diagnosed, drug-naïve subjects. J Affect Disord 2024; 348:297-304. [PMID: 38159657 DOI: 10.1016/j.jad.2023.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/02/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND A growing body of data shows that schizophrenia (SCZ) and bipolar disorder (BD) have substantial metabolic risks; however, few studies have focused on bone metabolism. This study aimed to assess the prevalence and associated influencing factors of low bone mass and osteoporosis in SCZ and BD before pharmacological effects occur. METHODS 108 healthy controls (HCs) and drug-naïve individuals with SCZ (n = 56) and BD (n = 130) had their lumbar spine (L1-L4) and left femur (Neck/Trochanter/Ward's triangle) bone mineral density (BMD) determined using dual-energy X-ray absorptiometry. Besides, we measured bone turnover markers (BTMs) levels, including procollagen I N-terminal propeptide, osteocalcin, and C-terminal cross-linking telopeptide of type I collagen in different groups. RESULTS Individuals with SCZ and BD had significantly lower BMD and significantly higher prevalence of low bone mass and osteoporosis compared with HCs. In the main observation regions of the total lumbar (F = 18.368, p < 0.001) and left femur (F = 14.790, p < 0.001), BMD was lower in individuals with SCZ and BD than HCs, with SCZ showing lower BMD than BD. The osteocalcin (H = 11.421, p = 0.003) levels were significantly higher in SCZ and BD than HCs. Binary regression analysis showed that SCZ or BD was an independent risk factor for low bone mass and osteoporosis. In addition, sex, age, and BTMs also influenced the occurrence of low bone mass and osteoporosis. LIMITATIONS Cross-sectional study. CONCLUSION The results findings of the study might contribute to our understanding of the increased risk of bone metabolism in SCZ and BD. CLINICAL TRIAL REGISTRATION www.chictr.org.cn, identifier ChiCTR1900021379.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoqin Chen
- Qingdao Mental Health Center, Qingdao 266034, Shandong, China
| | - Yan Qiu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuelei Xu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Yuan
- Department of Ultrasound Dltrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
22
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
23
|
Deng Q, Gupta A, Jeon H, Nam JH, Yilmaz AS, Chang W, Pietrzak M, Li L, Kim HJ, Chung D. graph-GPA 2.0: improving multi-disease genetic analysis with integration of functional annotation data. Front Genet 2023; 14:1079198. [PMID: 37501720 PMCID: PMC10370274 DOI: 10.3389/fgene.2023.1079198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified a large number of genetic variants associated with traits and diseases. However, it still remains challenging to fully understand the functional mechanisms underlying many associated variants. This is especially the case when we are interested in variants shared across multiple phenotypes. To address this challenge, we propose graph-GPA 2.0 (GGPA 2.0), a statistical framework to integrate GWAS datasets for multiple phenotypes and incorporate functional annotations within a unified framework. Our simulation studies showed that incorporating functional annotation data using GGPA 2.0 not only improves the detection of disease-associated variants, but also provides a more accurate estimation of relationships among diseases. Next, we analyzed five autoimmune diseases and five psychiatric disorders with the functional annotations derived from GenoSkyline and GenoSkyline-Plus, along with the prior disease graph generated by biomedical literature mining. For autoimmune diseases, GGPA 2.0 identified enrichment for blood-related epigenetic marks, especially B cells and regulatory T cells, across multiple diseases. Psychiatric disorders were enriched for brain-related epigenetic marks, especially the prefrontal cortex and the inferior temporal lobe for bipolar disorder and schizophrenia, respectively. In addition, the pleiotropy between bipolar disorder and schizophrenia was also detected. Finally, we found that GGPA 2.0 is robust to the use of irrelevant and/or incorrect functional annotations. These results demonstrate that GGPA 2.0 can be a powerful tool to identify genetic variants associated with each phenotype or those shared across multiple phenotypes, while also promoting an understanding of functional mechanisms underlying the associated variants.
Collapse
Affiliation(s)
- Qiaolan Deng
- The Interdisciplinary PhD Program in Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Arkobrato Gupta
- The Interdisciplinary PhD Program in Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jin Hyun Nam
- Division of Big Data Science, Korea University Sejong Campus, Sejong, Republic of Korea
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Won Chang
- Division of Statistics and Data Science, University of Cincinnati, Cincinnati, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Hang J. Kim
- Division of Statistics and Data Science, University of Cincinnati, Cincinnati, OH, United States
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Eren F, Schwieler L, Orhan F, Malmqvist A, Piehl F, Cervenka S, Sellgren CM, Fatouros-Bergman H, Engberg G, Erhardt S. Immunological protein profiling of first-episode psychosis patients identifies CSF and blood biomarkers correlating with disease severity. Brain Behav Immun 2023; 111:376-385. [PMID: 37146654 DOI: 10.1016/j.bbi.2023.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND AND HYPOTHESIS Immune activation is suggested to play an important role in psychosis. In this study, a large number of immune-related proteins were analyzed to obtain a more comprehensive picture of immune aberrations in schizophrenia. STUDY DESIGN Ninety-two immune markers were analyzed by the Olink Protein Extension Assay (Inflammatory Panel) in plasma and cerebrospinal fluid (CSF) from 77 first-episode psychosis (FEP) patients (of which 43 later received the diagnosis of schizophrenia) and 56 healthy controls, all recruited from the Karolinska Schizophrenia Project (KaSP), Stockholm, Sweden. STUDY RESULTS Differential analysis showed that 12 of 92 inflammatory proteins were significantly higher in the plasma of FEP patients (n = 77) than in controls, and several proteins were positively correlated with disease severity. Patients from the same cohort diagnosed with schizophrenia (n = 43), showed significantly higher levels of 15 plasma proteins compared to controls whereas those not receiving this diagnosis showed no significant differences. The presently used OLINK inflammatory panel allowed the detection of only 47 CSF proteins of which only CD5 differed between patients and controls. CONCLUSIONS The levels of several peripheral immune markers, particularly those interfering with WNT/β-catenin signaling, were significantly higher in patients with FEP than in healthy controls and associated with illness severity.
Collapse
Affiliation(s)
- Feride Eren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Malmqvist
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Chen Z, Li X, Cui X, Zhang L, Liu Q, Lu Y, Wang X, Shi H, Ding M, Yang Y, Li W, Lv L. Association of CTNND2 gene polymorphism with schizophrenia: Two-sample case-control study in Chinese Han population. Int J Psychiatry Med 2023:912174231164669. [PMID: 36930964 DOI: 10.1177/00912174231164669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Genetic factors play an important role in the etiology of schizophrenia (SZ). Catenin Delta 2 (CTNND2) is one of the genes regulating neuronal development in the brain. It is unclear whether CTNND2 is involved in SZ. With the hypothesis that CTNND2 may be a risk gene for SZ, we performed a case-control association analysis to investigate if CTNND2 gene single nucleotide polymorphisms (SNPs) are implicated in SZ in a Han Chinese northern population. MATERIALS AND METHODS We recruited subjects from 2010 to 2022 from the Han population of northern Henan and divided them into two case-control samples, including a discovery sample (SZ = 528 and control = 528) and replication sample (SZ = 2458 and control = 6914). Twenty-one SNPs were genotyped on the Illumina BeadStation 500G platform using GoldenGate technology and analyzed by PLINK. Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. RESULTS Rs16901943, rs7733427, and rs2168878 SNPs were associated with SZ (Chi2 = 7.484, 11.576, and 5.391, respectively, df = 1; p = 0.006, 0.00067, and 0.02, respectively) in two samples. Rs10058868 was associated with SZ in male patients in the discovery sample (Chi2 = 6.264, df = 1, p = .044). Only rs7733427 survived Bonferroni correction. Linkage disequilibrium block three haplotypes were associated with SZ in the discovery and total sample. PANSS analysis of the four SNPs implicated rs10058868 and rs2168878 with symptoms of depression and excitement, respectively, in the SZ patients. CONCLUSION Four SNPs were identified as being correlated with SZ. The CTNND2 gene may be involved in susceptibility to SZ.
Collapse
Affiliation(s)
- Zhaonian Chen
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangzheng Cui
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luwen Zhang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiujuan Wang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Minli Ding
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- 34727The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Burton B, Collins K, Brooks J, Marx K, Renner A, Wilcox K, Moore E, Osowski K, Riley J, Rowe J, Pawlus M. The biotoxin BMAA promotes dysfunction via distinct mechanisms in neuroblastoma and glioblastoma cells. PLoS One 2023; 18:e0278793. [PMID: 36893156 PMCID: PMC9997973 DOI: 10.1371/journal.pone.0278793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic exposure to the Cyanobacteria biotoxin Beta-methylamino-L-alanine (BMAA) has been associated with development of a sporadic form of ALS called Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), as observed within certain Indigenous populations of Guam and Japan. Studies in primate models and cell culture have supported the association of BMAA with ALS/PDC, yet the pathological mechanisms at play remain incompletely characterized, effectively stalling the development of rationally-designed therapeutics or application of preventative measures for this disease. In this study we demonstrate for the first time that sub-excitotoxic doses of BMAA modulate the canonical Wnt signaling pathway to drive cellular defects in human neuroblastoma cells, suggesting a potential mechanism by which BMAA may promote neurological disease. Further, we demonstrate here that the effects of BMAA can be reversed in cell culture by use of pharmacological modulators of the Wnt pathway, revealing the potential value of targeting this pathway therapeutically. Interestingly, our results suggest the existence of a distinct Wnt-independent mechanism activated by BMAA in glioblastoma cells, highlighting the likelihood that neurological disease may result from the cumulative effects of distinct cell-type specific mechanisms of BMAA toxicity.
Collapse
Affiliation(s)
- Bryan Burton
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kate Collins
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Brooks
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Karly Marx
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Abigail Renner
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Kaylei Wilcox
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Ellie Moore
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Keith Osowski
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Jordan Riley
- Department of Biology, University of Sioux Falls, Sioux Falls, South Dakota, United States of America
| | - Jarron Rowe
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| | - Matthew Pawlus
- Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America
| |
Collapse
|
27
|
Bharadhwaj VS, Mubeen S, Sargsyan A, Jose GM, Geissler S, Hofmann-Apitius M, Domingo-Fernández D, Kodamullil AT. Integrative analysis to identify shared mechanisms between schizophrenia and bipolar disorder and their comorbidities. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110688. [PMID: 36462601 DOI: 10.1016/j.pnpbp.2022.110688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Schizophrenia and bipolar disorder are characterized by highly similar neuropsychological signatures, implying shared neurobiological mechanisms between these two disorders. These disorders also have comorbidities, such as type 2 diabetes mellitus (T2DM). To date, an understanding of the mechanisms that mediate the link between these two disorders remains incomplete. In this work, we identify and investigate shared patterns across multiple schizophrenia, bipolar disorder and T2DM gene expression datasets through multiple strategies. Firstly, we investigate dysregulation patterns at the gene-level and compare our findings against disease-specific knowledge graphs (KGs). Secondly, we analyze the concordance of co-expression patterns across datasets to identify disease-specific as well as common pathways. Thirdly, we examine enriched pathways across datasets and disorders to identify common biological mechanisms between them. Lastly, we investigate the correspondence of shared genetic variants between these two disorders and T2DM as well as the disease-specific KGs. In conclusion, our work reveals several shared candidate genes and pathways, particularly those related to the immune system, such as TNF signaling pathway, IL-17 signaling pathway and NF-kappa B signaling pathway and nervous system, such as dopaminergic synapse and GABAergic synapse, which we propose mediate the link between schizophrenia and bipolar disorder and its shared comorbidity, T2DM.
Collapse
Affiliation(s)
- Vinay Srinivas Bharadhwaj
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany.
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany; Fraunhofer Center for Machine Learning, Germany
| | - Astghik Sargsyan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany
| | - Geena Mariya Jose
- Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| | | | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Fraunhofer Center for Machine Learning, Germany; Enveda Biosciences, Boulder, CO, 80301, USA
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin 53757, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany; Causality Biomodels, Kinfra Hi-Tech Park, Kalamassery, Cochin, Kerala 683503, India
| |
Collapse
|
28
|
Anderson RA, Oyarbide U. Neuronal expression of ndst3 in early zebrafish development is responsive to Wnt signaling manipulation. Gene Expr Patterns 2023; 47:119300. [PMID: 36503154 PMCID: PMC10006321 DOI: 10.1016/j.gep.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are constituents of the cell surface and extracellular matrix and are vital for various activities within the cell. The N-deacetylase/N-sulfotransferase (heparin glucosaminyl) family of enzymes, or NDST, modifies heparan sulfate (HS) by catalyzing both the N-deacetylation and the N-sulfation of N-acetylglucosamine residues. In zebrafish, a single ndst3 gene is an orthologue of both mammalian NDST3 and NDST4 genes. The role of ndst3 in zebrafish development has not been investigated and such study may provide insight into the role(s) of both mammalian orthologues. Here, we characterized expression of ndst3 during early development in zebrafish and found it to be predominately neuronal. We found that expression of ndst3 is sensitive to Wnt signaling manipulation, with stimulation of the Wnt pathway resulting in robust expansion of ndst3 expression domains. Finally, using CRISPR/Cas9 genome editing, we mutagenized the ndst3 gene and isolated an allele, ndst3nu20, resulting in a frameshift and premature protein truncation. We discovered Ndst3 is not essential for zebrafish survival as ndst3nu20 homozygous mutants are viable and fertile.
Collapse
Affiliation(s)
- Rebecca A Anderson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| | - Usua Oyarbide
- Department of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine in the Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
29
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
30
|
Rastegari M, Salehi N, Zare-Mirakabad F. Biomarker prediction in autism spectrum disorder using a network-based approach. BMC Med Genomics 2023; 16:12. [PMID: 36691005 PMCID: PMC9869547 DOI: 10.1186/s12920-023-01439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder that is usually diagnosed in early childhood. Timely diagnosis and early initiation of treatments such as behavioral therapy are important in autistic people. Discovering critical genes and regulators in this disorder can lead to early diagnosis. Since the contribution of miRNAs along their targets can lead us to a better understanding of autism, we propose a framework containing two steps for gene and miRNA discovery. METHODS The first step, called the FA_gene algorithm, finds a small set of genes involved in autism. This algorithm uses the WGCNA package to construct a co-expression network for control samples and seek modules of genes that are not reproducible in the corresponding co-expression network for autistic samples. Then, the protein-protein interaction network is constructed for genes in the non-reproducible modules and a small set of genes that may have potential roles in autism is selected based on this network. The second step, named the DMN_miRNA algorithm, detects the minimum number of miRNAs related to autism. To do this, DMN_miRNA defines an extended Set Cover algorithm over the mRNA-miRNA network, consisting of the selected genes and corresponding miRNA regulators. RESULTS In the first step of the framework, the FA_gene algorithm finds a set of important genes; TP53, TNF, MAPK3, ACTB, TLR7, LCK, RAC2, EEF2, CAT, ZAP70, CD19, RPLP0, CDKN1A, CCL2, CDK4, CCL5, CTSD, CD4, RACK1, CD74; using co-expression and protein-protein interaction networks. In the second step, the DMN_miRNA algorithm extracts critical miRNAs, hsa-mir-155-5p, hsa-mir-17-5p, hsa-mir-181a-5p, hsa-mir-18a-5p, and hsa-mir-92a-1-5p, as signature regulators for autism using important genes and mRNA-miRNA network. The importance of these key genes and miRNAs is confirmed by previous studies and enrichment analysis. CONCLUSION This study suggests FA_gene and DMN_miRNA algorithms for biomarker discovery, which lead us to a list of important players in ASD with potential roles in the nervous system or neurological disorders that can be experimentally investigated as candidates for ASD diagnostic tests.
Collapse
Affiliation(s)
- Maryam Rastegari
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran, Polytechnic), 424, Hafez Ave, P.O. Box: 15875-4413, Tehran, Iran.
| |
Collapse
|
31
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Liu XQ, Huang J, Song C, Zhang TL, Liu YP, Yu L. Neurodevelopmental toxicity induced by PM2.5 Exposure and its possible role in Neurodegenerative and mental disorders. Hum Exp Toxicol 2023; 42:9603271231191436. [PMID: 37537902 DOI: 10.1177/09603271231191436] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Recent extensive evidence suggests that ambient fine particulate matter (PM2.5, with an aerodynamic diameter ≤2.5 μm) may be neurotoxic to the brain and cause central nervous system damage, contributing to neurodevelopmental disorders, such as autism spectrum disorders, neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, and mental disorders, such as schizophrenia, depression, and bipolar disorder. PM2.5 can enter the brain via various pathways, including the blood-brain barrier, olfactory system, and gut-brain axis, leading to adverse effects on the CNS. Studies in humans and animals have revealed that PM2.5-mediated mechanisms, including neuroinflammation, oxidative stress, systemic inflammation, and gut flora dysbiosis, play a crucial role in CNS damage. Additionally, PM2.5 exposure can induce epigenetic alterations, such as hypomethylation of DNA, which may contribute to the pathogenesis of some CNS damage. Through literature analysis, we suggest that promising therapeutic targets for alleviating PM2.5-induced neurological damage include inhibiting microglia overactivation, regulating gut microbiota with antibiotics, and targeting signaling pathways, such as PKA/CREB/BDNF and WNT/β-catenin. Additionally, several studies have observed an association between PM2.5 exposure and epigenetic changes in neuropsychiatric disorders. This review summarizes and discusses the association between PM2.5 exposure and CNS damage, including the possible mechanisms by which PM2.5 causes neurotoxicity.
Collapse
Affiliation(s)
- Xin-Qi Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Jia Huang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Chao Song
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Tian-Liang Zhang
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Yong-Ping Liu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| | - Li Yu
- School of Basic Medicine, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, China
| |
Collapse
|
33
|
Yeh H, Woodbury ME, Ingraham Dixie KL, Ikezu T, Ikezu S. Microglial WNT5A supports dendritic spines maturation and neuronal firing. Brain Behav Immun 2023; 107:403-413. [PMID: 36395958 PMCID: PMC10588768 DOI: 10.1016/j.bbi.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.
Collapse
Affiliation(s)
- Hana Yeh
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Maya E Woodbury
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kaitlin L Ingraham Dixie
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Center for Education Innovation and Learning in the Sciences, University of California, Los Angeles, CA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
34
|
Balasubramanian R, Vinod PK. Inferring miRNA sponge modules across major neuropsychiatric disorders. Front Mol Neurosci 2022; 15:1009662. [PMID: 36385761 PMCID: PMC9650411 DOI: 10.3389/fnmol.2022.1009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is an emerging field of study. The long non-coding RNAs (lncRNAs) are shown to sponge the microRNAs (miRNAs) from interacting with their target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will provide further insights into biological mechanisms and help identify disease biomarkers. In this study, a large-scale inference of the lncRNA-related miRNA sponge network of pan-neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), was carried out using brain transcriptomic (RNA-Seq) data. The candidate miRNA sponge modules were identified based on the co-expression pattern of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical correlation. miRNA sponge modules are associated with chemical synaptic transmission, nervous system development, metabolism, immune system response, ribosomes, and pathways in cancer. The identified modules showed similar and distinct gene expression patterns depending on the neuropsychiatric condition. The preservation of miRNA sponge modules was shown in the independent brain and blood-transcriptomic datasets of NPDs. We also identified miRNA sponging lncRNAs that may be potential diagnostic biomarkers for NPDs. Our study provides a comprehensive resource on miRNA sponging in NPDs.
Collapse
|
35
|
Wnt/β-Catenin Signaling Pathway Is Strongly Implicated in Cadmium-Induced Developmental Neurotoxicity and Neuroinflammation: Clues from Zebrafish Neurobehavior and In Vivo Neuroimaging. Int J Mol Sci 2022; 23:ijms231911434. [PMID: 36232737 PMCID: PMC9570071 DOI: 10.3390/ijms231911434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and worldwide environmental pollutant which seriously threatens human health and ecosystems. It is easy to be adsorbed and deposited in organisms, exerting adverse effects on various organs including the brain. In a very recent study, making full use of a zebrafish model in both high-throughput behavioral tracking and live neuroimaging, we explored the potential developmental neurotoxicity of Cd2+ at environmentally relevant levels and identified multiple connections between Cd2+ exposure and neurodevelopmental disorders as well as microglia-mediated neuroinflammation, whereas the underlying neurotoxic mechanisms remained unclear. The canonical Wnt/β-catenin signaling pathway plays crucial roles in many biological processes including neurodevelopment, cell survival, and cell cycle regulation, as well as microglial activation, thereby potentially presenting one of the key targets of Cd2+ neurotoxicity. Therefore, in this follow-up study, we investigated the implication of the Wnt/β-catenin signaling pathway in Cd2+-induced developmental disorders and neuroinflammation and revealed that environmental Cd2+ exposure significantly affected the expression of key factors in the zebrafish Wnt/β-catenin signaling pathway. In addition, pharmacological intervention of this pathway via TWS119, which can increase the protein level of β-catenin and act as a classical activator of the Wnt signaling pathway, could significantly repress the Cd2+-induced cell cycle arrest and apoptosis, thereby attenuating the inhibitory effects of Cd2+ on the early development, behavior, and activity, as well as neurodevelopment of zebrafish larvae to a certain degree. Furthermore, activation and proliferation of microglia, as well as the altered expression profiles of genes associated with neuroimmune homeostasis triggered by Cd2+ exposure could also be significantly alleviated by the activation of the Wnt/β-catenin signaling pathway. Thus, this study provided novel insights into the cellular and molecular mechanisms of Cd2+ toxicity on the vertebrate central nervous system (CNS), which might be helpful in developing pharmacotherapies to mitigate the neurological disorders resulting from exposure to Cd2+ and many other environmental heavy metals.
Collapse
|
36
|
Hédou J, Cederberg KL, Ambati A, Lin L, Farber N, Dauvilliers Y, Quadri M, Bourgin P, Plazzi G, Andlauer O, Hong SC, Huang YS, Leu-Semenescu S, Arnulf I, Taheri S, Mignot E. Proteomic biomarkers of Kleine-Levin syndrome. Sleep 2022; 45:zsac097. [PMID: 35859339 PMCID: PMC9453623 DOI: 10.1093/sleep/zsac097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/21/2022] [Indexed: 07/23/2023] Open
Abstract
STUDY OBJECTIVES Kleine-Levin syndrome (KLS) is characterized by relapsing-remitting episodes of hypersomnia, cognitive impairment, and behavioral disturbances. We quantified cerebrospinal fluid (CSF) and serum proteins in KLS cases and controls. METHODS SomaScan was used to profile 1133 CSF proteins in 30 KLS cases and 134 controls, while 1109 serum proteins were profiled in serum from 26 cases and 65 controls. CSF and serum proteins were both measured in seven cases. Univariate and multivariate analyses were used to find differentially expressed proteins (DEPs). Pathway and tissue enrichment analyses (TEAs) were performed on DEPs. RESULTS Univariate analyses found 28 and 141 proteins differentially expressed in CSF and serum, respectively (false discovery rate <0.1%). Upregulated CSF proteins included IL-34, IL-27, TGF-b, IGF-1, and osteonectin, while DKK4 and vWF were downregulated. Pathway analyses revealed microglial alterations and disrupted blood-brain barrier permeability. Serum profiles show upregulation of Src-family kinases (SFKs), proteins implicated in cellular growth, motility, and activation. TEA analysis of up- and downregulated proteins revealed changes in brain proteins (p < 6 × 10-5), notably from the pons, medulla, and midbrain. A multivariate machine-learning classifier performed robustly, achieving a receiver operating curve area under the curve of 0.90 (95% confidence interval [CI] = 0.78-1.0, p = 0.0006) in CSF and 1.0 (95% CI = 1.0-1.0, p = 0.0002) in serum in validation cohorts, with some commonality across tissues, as the model trained on serum sample also discriminated CSF samples of controls versus KLS cases. CONCLUSIONS Our study identifies proteomic KLS biomarkers with diagnostic potential and provides insight into biological mechanisms that will guide future research in KLS.
Collapse
Affiliation(s)
- Julien Hédou
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Katie L Cederberg
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Aditya Ambati
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Neal Farber
- Kleine-Levin Syndrome Foundation, Boston, MA, USA
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy-Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, Univ Montpellier, Montpellier, France
- Department of Neurology, Institute for Neurosciences of Montpellier INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Patrice Bourgin
- Sleep Disorders Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Seung-Chul Hong
- Department of Psychiatry, St. Vincent’s Hospital, Catholic University of Korea, Seoul, South Korea
| | - Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and University, Taoyuan, Taiwan
| | - Smaranda Leu-Semenescu
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
| | - Isabelle Arnulf
- Sleep Disorders, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris-Sorbonne, National Reference Center for Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Paris, France
- Sorbonne University, Institut Hospitalo-Universitaire, Institut du Cerveau et de la Moelle, Paris, France
| | - Shahrad Taheri
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine—Qatar, Qatar Foundation—Education City, Doha, Qatar
| | - Emmanuel Mignot
- Corresponding author. Emmanuel Mignot, Center for Narcolepsy and Related Disorders, Stanford University, 3165 Porter Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
37
|
Tao S, Zhang Y, Wang Q, Qiao C, Deng W, Liang S, Wei J, Wei W, Yu H, Li X, Li M, Guo W, Ma X, Zhao L, Li T. Identifying transdiagnostic biological subtypes across schizophrenia, bipolar disorder, and major depressive disorder based on lipidomics profiles. Front Cell Dev Biol 2022; 10:969575. [PMID: 36133917 PMCID: PMC9483200 DOI: 10.3389/fcell.2022.969575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has demonstrated overlapping biological abnormalities underlying schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD); these overlapping abnormalities help explain the high heterogeneity and the similarity of patients within and among diagnostic categories. This study aimed to identify transdiagnostic subtypes of these psychiatric disorders based on lipidomics abnormalities. We performed discriminant analysis to identify lipids that classified patients (N = 349, 112 with SCZ, 132 with BP, and 105 with MDD) and healthy controls (N = 198). Ten lipids that mainly regulate energy metabolism, inflammation, oxidative stress, and fatty acylation of proteins were identified. We found two subtypes (named Cluster 1 and Cluster 2 subtypes) across patients with SCZ, BP, and MDD by consensus clustering analysis based on the above 10 lipids. The distribution of clinical diagnosis, functional impairment measured by Global Assessment of Functioning (GAF) scales, and brain white matter abnormalities measured by fractional anisotropy (FA) and radial diffusivity (RD) differed in the two subtypes. Patients within the Cluster 2 subtype were mainly SCZ and BP patients and featured significantly elevated RD along the genu of corpus callosum (GCC) region and lower GAF scores than patients within the Cluster 1 subtype. The SCZ and BP patients within the Cluster 2 subtype shared similar biological patterns; that is, these patients had comparable brain white matter abnormalities and functional impairment, which is consistent with previous studies. Our findings indicate that peripheral lipid abnormalities might help identify homogeneous transdiagnostic subtypes across psychiatric disorders.
Collapse
Affiliation(s)
- Shiwan Tao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- *Correspondence: Tao Li,
| |
Collapse
|
38
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
39
|
Integrative Analyses of Transcriptomes to Explore Common Molecular Effects of Antipsychotic Drugs. Int J Mol Sci 2022; 23:ijms23147508. [PMID: 35886854 PMCID: PMC9325239 DOI: 10.3390/ijms23147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
There is little understanding of the underlying molecular mechanism(s) involved in the clinical efficacy of antipsychotics for schizophrenia. This study integrated schizophrenia-associated transcriptional perturbations with antipsychotic-induced gene expression profiles to detect potentially relevant therapeutic targets shared by multiple antipsychotics. Human neuronal-like cells (NT2-N) were treated for 24 h with one of the following antipsychotic drugs: amisulpride, aripiprazole, clozapine, risperidone, or vehicle controls. Drug-induced gene expression patterns were compared to schizophrenia-associated transcriptional data in post-mortem brain tissues. Genes regulated by each of four antipsychotic drugs in the reverse direction to schizophrenia were identified as potential therapeutic-relevant genes. A total of 886 genes were reversely expressed between at least one drug treatment (versus vehicle) and schizophrenia (versus healthy control), in which 218 genes were commonly regulated by all four antipsychotic drugs. The most enriched biological pathways include Wnt signaling and action potential regulation. The protein-protein interaction (PPI) networks found two main clusters having schizophrenia expression quantitative trait loci (eQTL) genes such as PDCD10, ANK2, and AKT3, suggesting further investigation on these genes as potential novel treatment targets.
Collapse
|
40
|
Albeely AM, Williams OOF, Perreault ML. GSK-3β Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cell Mol Neurobiol 2022; 42:1341-1353. [PMID: 33392916 PMCID: PMC11421759 DOI: 10.1007/s10571-020-01020-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Alterations in glycogen synthase kinase-3β (GSK-3β) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3β and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3β, GSK-3β(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3β(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3β, examined. It was demonstrated that increasing GSK-3β(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3β(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3β(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3β(S9A) suggest that aberrant GSK-3β signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada.
| |
Collapse
|
41
|
Saleem A, Qurat-ul-Ain, Akhtar MF. Alternative Therapy of Psychosis: Potential Phytochemicals and Drug Targets in the Management of Schizophrenia. Front Pharmacol 2022; 13:895668. [PMID: 35656298 PMCID: PMC9152363 DOI: 10.3389/fphar.2022.895668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Schizophrenia is a chronic mental and behavioral disorder characterized by clusters of symptoms including hallucinations, delusions, disorganized thoughts and social withdrawal. It is mainly contributed by defects in dopamine, glutamate, cholinergic and serotonergic pathways, genetic and environmental factors, prenatal infections, oxidative stress, immune system activation and inflammation. Management of schizophrenia is usually carried out with typical and atypical antipsychotics, but it yields modest benefits with a diversity of side effects. Therefore, the current study was designed to determine the phytochemicals as new drug candidates for treatment and management of schizophrenia. These phytochemicals alter and affect neurotransmission, cell signaling pathways, endocannabinoid receptors, neuro-inflammation, activation of immune system and status of oxidative stress. Phytochemicals exhibiting anti-schizophrenic activity are mostly flavonoids, polyphenols, alkaloids, terpenoids, terpenes, polypropanoids, lactones and glycosides. However, well-designed clinical trials are consequently required to investigate potential protective effect and therapeutic benefits of these phytochemicals against schizophrenia.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qurat-ul-Ain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
42
|
Luo S, Zheng N, Lang B. ULK4 in Neurodevelopmental and Neuropsychiatric Disorders. Front Cell Dev Biol 2022; 10:873706. [PMID: 35493088 PMCID: PMC9039724 DOI: 10.3389/fcell.2022.873706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The gene Unc51-like kinase 4 (ULK4) belongs to the Unc-51-like serine/threonine kinase family and is assumed to encode a pseudokinase with unclear function. Recently, emerging evidence has suggested that ULK4 may be etiologically involved in a spectrum of neuropsychiatric disorders including schizophrenia, but the underlying mechanism remains unaddressed. Here, we summarize the key findings of the structure and function of the ULK4 protein to provide comprehensive insights to better understand ULK4-related neurodevelopmental and neuropsychiatric disorders and to aid in the development of a ULK4-based therapeutic strategy.
Collapse
Affiliation(s)
- Shilin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Nanxi Zheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Nanxi Zheng, ; Bing Lang,
| |
Collapse
|
43
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
44
|
Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23052810. [PMID: 35269952 PMCID: PMC8910888 DOI: 10.3390/ijms23052810] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a very complex syndrome involving widespread brain multi-dysconnectivity. Schizophrenia is marked by cognitive, behavioral, and emotional dysregulations. Recent studies suggest that inflammation in the central nervous system (CNS) and immune dysfunction could have a role in the pathogenesis of schizophrenia. This hypothesis is supported by immunogenetic evidence, and a higher incidence rate of autoimmune diseases in patients with schizophrenia. The dysregulation of the WNT/β-catenin pathway is associated with the involvement of neuroinflammation in schizophrenia. Several studies have shown that there is a vicious and positive interplay operating between neuroinflammation and oxidative stress. This interplay is modulated by WNT/β-catenin, which interacts with the NF-kB pathway; inflammatory factors (including IL-6, IL-8, TNF-α); factors of oxidative stress such as glutamate; and dopamine. Neuroinflammation is associated with increased levels of PPARγ. In schizophrenia, the expression of PPAR-γ is increased, whereas the WNT/β-catenin pathway and PPARα are downregulated. This suggests that a metabolic-inflammatory imbalance occurs in this disorder. Thus, this research’s triptych could be a novel therapeutic approach to counteract both neuroinflammation and oxidative stress in schizophrenia.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
45
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
46
|
Cross-tissue transcriptome-wide association studies identify susceptibility genes shared between schizophrenia and inflammatory bowel disease. Commun Biol 2022; 5:80. [PMID: 35058554 PMCID: PMC8776955 DOI: 10.1038/s42003-022-03031-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic correlations and an increased incidence of psychiatric disorders in inflammatory-bowel disease have been reported, but shared molecular mechanisms are unknown. We performed cross-tissue and multiple-gene conditioned transcriptome-wide association studies for 23 tissues of the gut-brain-axis using genome-wide association studies data sets (total 180,592 patients) for Crohn’s disease, ulcerative colitis, primary sclerosing cholangitis, schizophrenia, bipolar disorder, major depressive disorder and attention-deficit/hyperactivity disorder. We identified NR5A2, SATB2, and PPP3CA (encoding a target for calcineurin inhibitors in refractory ulcerative colitis) as shared susceptibility genes with transcriptome-wide significance both for Crohn’s disease, ulcerative colitis and schizophrenia, largely explaining fine-mapped association signals at nearby genome-wide association study susceptibility loci. Analysis of bulk and single-cell RNA-sequencing data showed that PPP3CA expression was strongest in neurons and in enteroendocrine and Paneth-like cells of the ileum, colon, and rectum, indicating a possible link to the gut-brain-axis. PPP3CA together with three further suggestive loci can be linked to calcineurin-related signaling pathways such as NFAT activation or Wnt. Florian Uellendahl-Werth et al. conduct cross-tissue transcriptome-wide association studies to explore genetic mechanisms shared across immune-related and psychiatric traits. Their results identify several genes (including PPP3CA) that could mediate the interplay between psychiatric and inflammatory disease.
Collapse
|
47
|
Grad M, Nir A, Levy G, Trangle SS, Shapira G, Shomron N, Assaf Y, Barak B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022; 11:cells11010158. [PMID: 35011720 PMCID: PMC8750756 DOI: 10.3390/cells11010158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Williams syndrome (WS) is a multisystem neurodevelopmental disorder caused by a de novo hemizygous deletion of ~26 genes from chromosome 7q11.23, among them the general transcription factor II-I (GTF2I). By studying a novel murine model for the hypersociability phenotype associated with WS, we previously revealed surprising aberrations in myelination and cell differentiation properties in the cortices of mutant mice compared to controls. These mutant mice had selective deletion of Gtf2i in the excitatory neurons of the forebrain. Here, we applied diffusion magnetic resonance imaging and fiber tracking, which showed a reduction in the number of streamlines in limbic outputs such as the fimbria/fornix fibers and the stria terminalis, as well as the corpus callosum of these mutant mice compared to controls. Furthermore, we utilized next-generation sequencing (NGS) analysis of cortical small RNAs' expression (RNA-Seq) levels to identify altered expression of microRNAs (miRNAs), including two from the miR-34 cluster, known to be involved in prominent processes in the developing nervous system. Luciferase reporter assay confirmed the direct binding of miR-34c-5p to the 3'UTR of PTPRU-a gene involved in neural development that was elevated in the cortices of mutant mice relative to controls. Moreover, we found an age-dependent variation in the expression levels of doublecortin (Dcx)-a verified miR-34 target. Thus, we demonstrate the substantial effect a single gene deletion can exert on miRNA regulation and brain structure, and advance our understanding and, hopefully, treatment of WS.
Collapse
Affiliation(s)
- Meitar Grad
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Ariel Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Gilad Levy
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
| | - Sari Schokoroy Trangle
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Life Sciences, School of Neurobiology, Biochemistry & Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (A.N.); (G.L.); (N.S.); (Y.A.)
- Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- Correspondence:
| |
Collapse
|
48
|
Yang Q, Xing Q, Yang Q, Gong Y. Classification for psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder using machine learning. Comput Struct Biotechnol J 2022; 20:5054-5064. [PMID: 36187923 PMCID: PMC9486057 DOI: 10.1016/j.csbj.2022.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder (MDD) are the most common psychiatric disorders. Because there were lots of overlaps among these disorders from genetic epidemiology and molecular genetics, it is hard to realize the diagnoses of these psychiatric disorders. Currently, plenty of studies have been conducted for contributing to the diagnoses of these diseases. However, constructing a classification model with superior performance for differentiating SCZ, BP, and MDD samples is still a great challenge. In this study, the transcriptomic data was applied for discovering key genes and constructing a classification model. In this dataset, there were 268 samples including four groups (67 SCZ patients, 40 BP patients, 57 MDD patients, and 104 healthy controls), which were applied for constructing a classification model. First, 269 probes of differentially expressed genes (DEGs) among four sample groups were identified by the feature selection method. Second, these DEGs were validated by the literature review including disease relevance with the psychiatric disorders of these DEGs, the hub genes in the PPI (protein–protein interaction) network, and GO (gene ontology) terms and pathways. Third, a classification model was constructed using the identified DEGs by machine learning method to classify different groups. The ROC (receiver operator characteristic) curve and AUC (area under the curve) value were used to assess the classification capacity of the model. In summary, this classification model might provide clues for the diagnoses of these psychiatric disorders.
Collapse
Affiliation(s)
- Qingxia Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Corresponding authors.
| | - Qiaowen Xing
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qingfang Yang
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Yaguo Gong
- School of Pharmacy, Macau University of Science and Technology, Macau
- Corresponding authors.
| |
Collapse
|
49
|
Blokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, et alBlokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, Boomsma DI, Penninx BWJH, Hottenga JJ, de Geus EJC, Willemsen G, Milaneschi Y, Tiemeier H, Grabe HJ, Teumer A, Van der Auwera S, Völker U, Hamilton SP, Magnusson PKE, Viktorin A, Mehta D, Mullins N, Adams MJ, Breen G, McIntosh AM, Lewis CM, Hougaard DM, Nordentoft M, Mors O, Mortensen PB, Werge T, Als TD, Børglum AD, Petryshen TL, Smoller JW, Goldstein JM. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol Psychiatry 2022; 91:102-117. [PMID: 34099189 PMCID: PMC8458480 DOI: 10.1016/j.biopsych.2021.02.972] [Show More Authors] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark; Bioinformatics Research Centre (BiRC), Aarhus, Denmark
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Biogen Inc., Cambridge, Massachusetts
| | - Chris Cotsapas
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Departments of Neurology and Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Stuart Tobet
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert Handa
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - David St Clair
- University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Todd Lencz
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, The Park - Centre for Mental Health, Wacol, Queensland, Australia
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Brian Kelly
- Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Tõnu Esko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hannelore Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes Steixner-Kumar
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, SAR China
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Alan R Sanders
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Joseph D Buxbaum
- Departments of Human Genetics and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Ina Giegling
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | | | - Elvira Bramon
- Mental Health Neuroscience Research Department, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robin M Murray
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - Jimmy Lee
- Research Division and Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roel A Ophoff
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands; Department of Human Genetics, University of California, Los Angeles, California; David Geffen School of Medicine, and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Anil K Malhotra
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Nicholas G Martin
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia; Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andreas J Forstner
- Centre for Human Genetics, University of Marburg, Marburg, Germany; Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sabrina Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- University of Liverpool, Liverpool, United Kingdom; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Marion Leboyer
- Faculté de Médecine, Université Paris Est, Créteil, France; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Stéphane Jamain
- Faculté de Médecine, Université Paris Est, Créteil, France; INSERM U955, Psychiatrie Translationnelle, Créteil, France
| | - Bruno Etain
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France
| | - Frank Bellivier
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France; Paris Bipolar and TRD Expert Centres, FondaMental Foundation, Paris, France
| | - John B Vincent
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pablo Cervantes
- Department of Psychiatry, Mood Disorders Program, McGill University Health Center, Montréal, Québec, Canada
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mark Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Eli A Stahl
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, Germany
| | - Tracy Air
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Austrlalia, Australia
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douglas F Levinson
- Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - James A Knowles
- Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Roy H Perlis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Henning Tiemeier
- Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Divya Mehta
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerome Breen
- NIHR Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben B Mortensen
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; National Centre for Register-Based Research (NCCR), Aarhus University, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Concert Pharmaceuticals, Inc., Lexington, Massachusetts
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jill M Goldstein
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry and Vincent Department of Obstetrics, Gynecology & Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts; MGH-MIT-HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
50
|
Drozd MM, Capovilla M, Previderé C, Grossi M, Askenazy F, Bardoni B, Fernandez A. A Pilot Study on Early-Onset Schizophrenia Reveals the Implication of Wnt, Cadherin and Cholecystokinin Receptor Signaling in Its Pathophysiology. Front Genet 2021; 12:792218. [PMID: 34976023 PMCID: PMC8719199 DOI: 10.3389/fgene.2021.792218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Early-Onset Schizophrenia (EOS) is a very rare mental disorder that is a form of schizophrenia occurring before the age of 18. EOS is a brain disease marked by an early onset of positive and negative symptoms of psychosis that impact development and cognitive functioning. Clinical manifestations commonly include premorbid features of Autism Spectrum Disorder (ASD), attention deficits, Intellectual Disability (ID), neurodevelopmental delay, and behavioral disturbances. After the onset of psychotic symptoms, other neuropsychiatric comorbidities are also common, including obsessive-compulsive disorder, major depressive disorder, expressive and receptive language disorders, auditory processing, and executive functioning deficits. With the purpose to better gain insight into the genetic bases of this disorder, we developed a pilot project performing whole exome sequencing of nine trios affected by EOS, ASD, and mild ID. We carried out gene prioritization by combining multiple bioinformatic tools allowing us to identify the main pathways that could underpin the neurodevelopmental phenotypes of these patients. We identified the presence of variants in genes belonging to the Wnt, cadherin and cholecystokinin receptor signaling pathways.
Collapse
Affiliation(s)
- Malgorzata Marta Drozd
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Maria Capovilla
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carlo Previderé
- Laboratorio di Genetica Forense, Unità di Medicina Legale e Scienze Forensi Antonio Fornari, Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, Pavia, Italy
| | - Mauro Grossi
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- Département de Psychiatrie de l’Enfant et de l’Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France
- CoBTek, EA7276, Université Côte d’Azur, Valbonne, France
| | - Barbara Bardoni
- Université Côte d’Azur, Inserm, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Arnaud Fernandez
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Département de Psychiatrie de l’Enfant et de l’Adolescent, Hôpitaux Pédiatriques de Nice, CHU-Lenval, Nice, France
- CoBTek, EA7276, Université Côte d’Azur, Valbonne, France
| |
Collapse
|