1
|
Yoshida M, Katada H, Isozumi Y, Suzuki C, Yoshimi A, Ozaki N, Noda Y. Involvement of N-methyl-D-aspartate receptor GluN2C/GluN2D subunits in social behavior impairments in mice exposed to social defeat stress as juveniles. J Pharmacol Sci 2025; 157:139-145. [PMID: 39929588 DOI: 10.1016/j.jphs.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 05/08/2025] Open
Abstract
Glutamatergic system dysfunction is associated with the pathophysiology of stress-related psychiatric disorders. However, the role of N-methyl-D-aspartate (NMDA) receptor GluN2C and GluN2D subunits in the pathophysiology of adverse juvenile experiences remain unclear. This study aimed to investigate the involvement of GluN2C and GluN2D subunits in social behavior impairments in mice exposed to social defeat stress as juveniles. Acute administration of PPDA, a GluN2C/GluN2D antagonist, and ketamine, a non-competitive NMDA receptor antagonist, attenuated social behavior impairments in stressed mice. This attenuating effect of ketamine was partially inhibited by the administration of CIQ, a GluN2C/GluN2D-containing NMDA potentiator. The prefrontal cortex of stressed mice exhibited significantly elevated levels of GluN2C and GluN2D proteins compared to control mice. These findings suggest that activation of GluN2C- and/or GluN2D-containing NMDA receptors contributes to the development of social behavioral impairments induced by juvenile social defeat stress. Moreover, these subunits may play a role in the therapeutic effects of ketamine. Targeting GluN2C/GluN2D subunits of NMDA receptors may be novel therapeutic strategies for stress-related psychiatric disorders in adolescents with adverse juvenile experiences.
Collapse
Affiliation(s)
- Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Hikari Katada
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Yuya Isozumi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Chiharu Suzuki
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan.
| |
Collapse
|
2
|
Tang Q, Chu H, Sun N, Fan X, Han B, Li Y, Yu X, Li L, Wang X, Liu L, Chang H. The effects and mechanisms of chai shao jie yu granules on chronic unpredictable mild stress (CUMS)-induced depressive rats based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119268. [PMID: 39706355 DOI: 10.1016/j.jep.2024.119268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy. AIM OF THE STUDY To explore the effects and mechanisms of CSJY in chronic unpredictable mild stress (CUMS)-induced depression. MATERIALS AND METHODS Rat models of CUMS-induced depression were established, and the rats were randomly allocated into six groups: Control, CUMS, CUMS + Paroxetine (PX), CUMS + CSJY-L, CUMS + CSJY-M, and CUMS + CSJY-H. Throughout the study, the rats' body weight was monitored. Depression-related behaviors were assessed using the sucrose preference test (SPT) and open field test (OFT). High-performance liquid chromatography-mass spectrometry (HPLC-MS) measured monoamine neurotransmitters in the rat cortex and hippocampus. We measured adrenocorticotropic hormone (ACTH), corticosterone (CORT), and corticotropin-release hormone (CRH) levels in rat serum. Additionally, network pharmacology was employed to predict relevant molecular targets and potential mechanisms, followed by in vivo validation. Western blot analysis was conducted to evaluate the protein levels of 5-hydroxytryptamine/serotonin receptor 1A (5-HT1A) and Glutamate (Glu)-related proteins, such as p-GluA1, GluA1, p-GluN1, GluN1, p-GluN2A and GluN2A in the hippocampus. RESULTS In behavioral assessments, CUMS rats exhibited depressive behaviors, which were ameliorated by CSJY or PX treatment. Moreover, CSJY or PX treatment increased serotonin (5-HT) levels. It reduced the kynurenine/tryptophan (KYN/TRP) and gamma-aminobutyric acid/glutamate (GABA/Glu) in the hippocampus and cortex, as well as reduced serum levels of ACTH, CORT and CRH. Furthermore, CSJY or PX administration enhanced the decreased expression of p-GluN1/GluN1 while upregulating 5-HT1A and p-GluA1/GluA1 levels in the CUMS group. CONCLUSION CSJY demonstrated the ability to alleviate depressive behaviors in CUMS-induced depression rats, potentially through the inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, modulation of monoamine neurotransmitters, and glutamatergic neurons. These findings suggest that CSJY could serve as a promising treatment option for depression.
Collapse
Affiliation(s)
- Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Haolin Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Nan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lina Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiuli Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liying Liu
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Hongsheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
3
|
Lu C, Gao ZW, Xing S, Wang HH, Huang YK, Zhou H, Wu L. Rapid Antidepressant-Like Potential of Chaihu Shugan San Depends on Suppressing Glutamate Neurotransmission and Activating Synaptic Proteins in Hippocampus of Female Mice. Chin J Integr Med 2024; 30:692-700. [PMID: 38733455 DOI: 10.1007/s11655-024-3906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 05/13/2024]
Abstract
OBJECTIVE To explore the rapid antidepressant potential and the underlying mechanism of Chaihu Shugan San (CSS) in female mice. METHODS Liquid chromatography mass spectrometry (LC-MS)/MS was used to determine the content of main components in CSS to determine its stability. Female C57BL/6J mice were randomly divided into 4 groups, including control (saline), vehicle (saline), CSS (4 g/kg) and ketamine (30 mg/kg) groups. Mice were subjected to irregular stress stimulation for 4 weeks to establish the chronic mild stress (CMS) model, then received a single administration of drugs. Two hours later, the behavioral tests were performed, including open field test, tail suspension test (TST), forced swimming test (FST), novelty suppression feeding test (NSF), and sucrose preference test (SPT). Western blot analysis was used to detect the expression levels of N-methyl-D-aspartate receptor (NMDA) subtypes [N-methyl-D-aspartate receptor 1 (NR1), NR2A, NR2B], synaptic proteins [synapsin1 and post synaptic density protein 95 (PSD95)], and brain-derived neurotrophic factor (BDNF). Moreover, the rapid antidepressant effect of CSS was tested by pharmacological technologies and optogenetic interventions that activated glutamate receptors, NMDA. RESULTS Compared with the vehicle group, a single administration of CSS (4 g/kg) reversed all behavioral defects in TST, FST, SPT and NSF caused by CMS (P<0.05 or P<0.01). CSS also significantly decreased the expressions of NMDA subtypes (NR1, NR2A, NR2B) at 2 h in hippocampus of mice (all P<0.01). In addition, similar to ketamine, CSS increased levels of synaptic proteins and BDNF (P<0.05 or P<0.01). Furthermore, the rapid antidepressant effects of CSS were blocked by transient activation of NMDA receptors in the hippocampus (all P<0.01). CONCLUSION Rapid antidepressant effects of CSS by improving behavioral deficits in female CMS mice depended on rapid suppression of NMDA receptors and activation of synaptic proteins.
Collapse
Affiliation(s)
- Chao Lu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zi-Wei Gao
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Shan Xing
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hui-Hui Wang
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yun-Ke Huang
- Department of Chinese Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Hang Zhou
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Lei Wu
- Department of Chinese Medicine Preparations, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
4
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
5
|
Li X, Teng T, Yan W, Fan L, Liu X, Clarke G, Zhu D, Jiang Y, Xiang Y, Yu Y, Zhang Y, Yin B, Lu L, Zhou X, Xie P. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Transl Psychiatry 2023; 13:200. [PMID: 37308476 DOI: 10.1038/s41398-023-02486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress, chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Niu M, Yang X, Li Y, Sun Y, Wang L, Ha J, Xie Y, Gao Z, Tian C, Wang L, Sun Y. Progresses in GluN2A-containing NMDA Receptors and their Selective Regulators. Cell Mol Neurobiol 2023; 43:139-153. [PMID: 34978648 PMCID: PMC11415211 DOI: 10.1007/s10571-021-01185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
NMDA receptors play an important physiological role in regulating synaptic plasticity, learning and memory. GluN2A subunits are the most abundant functional subunits of NMDA receptors expressed in mature brain, and their dysfunction is related to various neurological diseases. According to subunit composition, GluN2A-containing NMDA receptors can be divided into two types: diheteromeric and triheteromeric receptors. In this review, the expression, functional and pharmacological properties of different kinds of GluN2A-containing NMDA receptors as well as selective GluN2A regulators were described to further understand this type of NMDA receptors.
Collapse
Affiliation(s)
- Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Xin Yang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yanping Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Changzheng Tian
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Donggang Road 89, Shijiazhuang, 050000, Hebei, China.
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Fangxing Road 88, Shijiazhuang, 050026, Hebei, China.
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China.
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, Hebei, China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China.
| |
Collapse
|
7
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
8
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
9
|
Yoshida M, Hasegawa S, Taniguchi M, Mouri A, Suzuki C, Yoshimi A, Mamiya T, Ozaki N, Noda Y. Memantine ameliorates the impairment of social behaviors induced by a single social defeat stress as juveniles. Neuropharmacology 2022; 217:109208. [PMID: 35926580 DOI: 10.1016/j.neuropharm.2022.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Clinically, juveniles are more sensitive to stress than adults, and exposure to stress as juveniles prolongs psychiatric symptoms and causes treatment resistance. However, the efficacy of antidepressants for juveniles with psychiatric disorders is unknown. In the present study, we investigated whether the expression or development of impaired social behavior was attenuated by memantine, a NMDA receptor antagonist. In addition, we clarified the molecular mechanisms related to intracellular signal transduction through NMDA receptors and the ameliorating effect of memantine in mice with impaired social behavior. Acute administration of memantine before the social interaction test, but not before exposure to social defeat stress, attenuated social behavioral impairment. A single social defeat stress increased the phosphorylation of NMDA receptor subunit GluN2A and extracellular-signal-related kinase 1/2 (ERK1/2). Memantine inhibited the increase of phosphorylated GluN2A and ERK1/2 resulting from social interaction behavior. In both GluN2A deficient and pharmacological blockaded mice, social behavioral impairment was not observed in the social interaction test through regulation of ERK1/2 phosphorylation. These findings suggest that memantine ameliorates social behavioral impairment in mice exposed to a single social defeat stress as juveniles by regulating the NMDA receptor and subsequent ERK1/2 signaling activation. Memantine may constitute a novel therapeutic drug for stress-related psychiatric disorders in juveniles with adverse juvenile experiences.
Collapse
Affiliation(s)
- Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Chiharu Suzuki
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan.
| |
Collapse
|
10
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L. Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC Psychiatry 2021; 21:388. [PMID: 34348681 PMCID: PMC8335969 DOI: 10.1186/s12888-021-03394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin protein (mTOR) signaling pathway is involved in the pathogenesis of schizophrenia and the mechanism of extrapyramidal adverse reactions to antipsychotic drugs, which might be mediated by an mTOR-dependent autophagy impairment. This study aimed to examine the expression of mTOR pathway genes in patients with schizophrenia treated with olanzapine, which is considered an mTOR inhibitor and autophagy inducer. METHODS Thirty-two patients with acute schizophrenia who had been treated with olanzapine for four weeks (average dose 14.24 ± 4.35 mg/d) and 32 healthy volunteers were recruited. Before and after olanzapine treatment, the Positive and Negative Syndrome Scale (PANSS) was used to evaluate the symptoms of patients with schizophrenia, and the mRNA expression levels of mTOR pathway-related genes, including MTOR, RICTOR, RAPTOR, and DEPTOR, were detected in fasting venous blood samples from all subjects using real-time quantitative PCR. RESULTS The MTOR and RICTOR mRNA expression levels in patients with acute schizophrenia were significantly decreased compared with those of healthy controls and further significantly decreased after four weeks of olanzapine treatment. The DEPTOR mRNA expression levels in patients with acute schizophrenia were not significantly different from those of healthy controls but were significantly increased after treatment. The expression levels of the RAPTOR mRNA were not significantly different among the three groups. The pairwise correlations of MTOR, DEPTOR, RAPTOR, and RICTOR mRNA expression levels in patients with acute schizophrenia and healthy controls were significant. After olanzapine treatment, the correlations between the expression levels of the DEPTOR and MTOR mRNAs and between the DEPTOR and RICTOR mRNAs disappeared. CONCLUSIONS Abnormalities in the mTOR pathway, especially DEPTOR and mTORC2, might play important roles in the autophagy mechanism underlying the pathophysiology of schizophrenia and effects of olanzapine treatment.
Collapse
Affiliation(s)
- Fengwei Cui
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Shuguang Gu
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Yue Gu
- grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Jiajun Yin
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
12
|
Kukuia KKE, Mensah JA, Amoateng P, Osei-Safo D, Koomson AE, Torbi J, Adongo DW, Ameyaw EO, Ben IO, Amponsah SK, Bugyei KA, Asiedu-Gyekye IJ. Glycine/NMDA Receptor Pathway Mediates the Rapid-onset Antidepressant Effect of Alkaloids From Trichilia Monadelpha. Basic Clin Neurosci 2021; 12:395-408. [PMID: 34917298 PMCID: PMC8666917 DOI: 10.32598/bcn.12.3.2838.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Major depressive disorder is often associated with suicidal tendencies, and this condition accentuates the need for rapid-acting antidepressants. We previously reported that Alkaloids (ALK) from Trichilia monadelpha possess antidepressant action in acute animal models of depression and that this effect is mediated through the monoamine and L-arginine-NO-cGMP pathways. This study investigated the possible rapid-onset antidepressant effect of ALK from T. monadelpha and its connection with the glycine/NMDA receptor pathway. METHODS The onset of ALK action from T. monadelpha was evaluated using the Open Space Swim Test (OSST), a chronic model of depression. The modified forced swimming and tail suspension tests were used to assess the effect of the ALK on the glycine/NMDA receptor pathway. The Instutute of Cancer Research (ICR) mice were treated with either ALK (30-300 mg/kg, orally [PO]), imipramine (3-30 mg/kg, PO), fluoxetine (3-30 mg/kg, PO), or saline. To identify the role of glycine/NMDA receptor pathway in the effect of ALK, we pretreated mice with a partial agonist of the glycine/NMDA receptor, D-cycloserine (2.5 mg/kg, intraperitoneally [IP]), and an agonist of glycine/NMDA receptor, D-serine (600 mg/kg, IP), before ALK administration. RESULTS ALK reversed immobility in mice after the second day of drug treatment in the OSST. In contrast, there was a delay in the effects induced by fluoxetine and imipramine. ALK also increased mean swimming and climbing scores in mice. ALK was more efficacious than imipramine and fluoxetine in reducing immobility and increasing distance traveled. It is noteworthy that ALK was less potent than fluoxetine and imipramine. D-cycloserine potentiated mobility observed in the ALK- and fluoxetine-treated mice. In contrast, D-serine decreased mobility in the ALK-treated mice. CONCLUSION The study results suggest that ALK from T. monadelpha exhibits rapid antidepressant action in mice, and the glycine/NMDA receptor pathway possibly mediates the observed effect.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, U.S. A
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Awo Efua Koomson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Joseph Torbi
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Inemesit Okon Ben
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
13
|
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110041. [PMID: 32682872 PMCID: PMC7484229 DOI: 10.1016/j.pnpbp.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022]
Abstract
Depression is the most common psychiatric illness affecting numerous people world-wide. The currently available antidepressant treatment presents low response and remission rates. Thus, new effective antidepressants need to be developed or discovered. Aiming to give an overview of novel possible antidepressant drug targets, we summarized the molecular targets of antidepressants and the underlying neurobiology of depression. We have also addressed the multidimensional perspectives on the progress in the psychopharmacological treatment of depression and on the new potential approaches with effective drug discovery.
Collapse
Affiliation(s)
- Qingzhong Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Gordillo-Salas M, Pascual-Antón R, Ren J, Greer J, Adell A. Antidepressant-Like Effects of CX717, a Positive Allosteric Modulator of AMPA Receptors. Mol Neurobiol 2020; 57:3498-3507. [DOI: 10.1007/s12035-020-01954-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
|
15
|
Hippocampal Neurogenesis Is Enhanced in Adult Tau Deficient Mice. Cells 2020; 9:cells9010210. [PMID: 31947657 PMCID: PMC7016791 DOI: 10.3390/cells9010210] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Tau dysfunction is common in several neurodegenerative diseases including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). Affective symptoms have often been associated with aberrant tau pathology and are commonly comorbid in patients with tauopathies, indicating a connection between tau functioning and mechanisms of depression. The current study investigated depression-like behavior in Mapt−/− mice, which contain a targeted deletion of the gene coding for tau. We show that 6-month Mapt−/− mice are resistant to depressive behaviors, as evidenced by decreased immobility time in the forced swim and tail suspension tests, as well as increased escape behavior in a learned helplessness task. Since depression has also been linked to deficient adult neurogenesis, we measured neurogenesis in the hippocampal dentate gyrus and subventricular zone using 5-bromo-2-deoxyuridine (BrdU) labeling. We found that neurogenesis is increased in the dentate gyrus of 14-month-old Mapt−/− brains compared to wild type, providing a potential mechanism for their behavioral phenotypes. In addition to the hippocampus, an upregulation of proteins involved in neurogenesis was observed in the frontal cortex and amygdala of the Mapt−/− mice using proteomic mass spectrometry. All together, these findings suggest that tau may have a role in the depressive symptoms observed in many neurodegenerative diseases and identify tau as a potential molecular target for treating depression.
Collapse
|
16
|
Caffino L, Verheij MM, Que L, Guo C, Homberg JR, Fumagalli F. Increased cocaine self-administration in rats lacking the serotonin transporter: a role for glutamatergic signaling in the habenula. Addict Biol 2019; 24:1167-1178. [PMID: 30144237 DOI: 10.1111/adb.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022]
Abstract
Serotonin (5-HT) and the habenula (Hb) contribute to motivational and emotional states such as depression and drug abuse. The dorsal raphe nucleus, where 5-HT neurons originate, and the Hb are anatomically and reciprocally interconnected. Evidence exists that 5-HT influences Hb glutamatergic transmission. Using serotonin transporter knockout (SERT-/- ) rats, which show depression-like behavior and increased cocaine intake, we investigated the effect of SERT reduction on expression of genes involved in glutamate neurotransmission under both baseline conditions as well as after short-access or long-access cocaine (ShA and LgA, respectively) intake. In cocaine-naïve animals, SERT removal led to reduced baseline Hb mRNA levels of critical determinants of glutamate transmission, such as SLC1A2, the main glutamate transporter and N-methyl-D-aspartate (Grin1, Grin2A and Grin2B) as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (Gria1 and Gria2) receptor subunits, with no changes in the scaffolding protein Dlg4. In response to ShA and LgA cocaine intake, SLC1A2 and Grin1 mRNA levels decreased in SERT+/+ rats to levels equal of those of SERT-/- rats. Our data reveal that increased extracellular levels of 5-HT modulate glutamate neurotransmission in the Hb, serving as critical neurobiological substrate for vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di Milano Italy
| | - Michel M.M. Verheij
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
- Department of Molecular Animal Physiology, Nijmegen Center for Molecular Life SciencesRadboud University Nijmegen The Netherlands
| | - Lin Que
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Chao Guo
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Nijmegen Medical Centre The Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di Milano Italy
| |
Collapse
|
17
|
Pochwat B, Nowak G, Szewczyk B. An update on NMDA antagonists in depression. Expert Rev Neurother 2019; 19:1055-1067. [DOI: 10.1080/14737175.2019.1643237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Gabriel Nowak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Laboratory of Trace Elements Neurobiology, Krakow, Poland
| |
Collapse
|
18
|
Fahim A, Rehman Z, Bhatti MF, Virk N, Ali A, Rashid A, Paracha RZ. The Route to 'Chemobrain' - Computational probing of neuronal LTP pathway. Sci Rep 2019; 9:9630. [PMID: 31270411 PMCID: PMC6610097 DOI: 10.1038/s41598-019-45883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy causes deleterious side effects during the course of cancer management. The toxic effects may be extended to CNS chronically resulting in altered cognitive function like learning and memory. The present study follows a computational assessment of 64 chemotherapeutic drugs for their off-target interactions against the major proteins involved in neuronal long term potentiation pathway. The cancer chemo-drugs were subjected to induced fit docking followed by scoring alignment and drug-targets interaction analysis. The results were further probed by electrostatic potential computation and ligand binding affinity prediction of the top complexes. The study identified novel off-target interactions by Dactinomycin, Temsirolimus, and Everolimus against NMDA, AMPA, PKA and ERK2, while Irinotecan, Bromocriptine and Dasatinib were top interacting drugs for CaMKII. This study presents with basic foundational knowledge regarding potential chemotherapeutic interference in LTP pathway which may modulate neurotransmission and synaptic plasticity in patient receiving these chemotherapies.
Collapse
Affiliation(s)
- Ammad Fahim
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Zaira Rehman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Nasar Virk
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, Oestrich-Winkel, 65375, Germany
| | - Amjad Ali
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amir Rashid
- Department of Biochemistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|