1
|
Prasad J, Van Steenwinckel J, Gunn AJ, Bennet L, Korzeniewski SJ, Gressens P, Dean JM. Chronic Inflammation Offers Hints About Viable Therapeutic Targets for Preeclampsia and Potentially Related Offspring Sequelae. Int J Mol Sci 2024; 25:12999. [PMID: 39684715 PMCID: PMC11640791 DOI: 10.3390/ijms252312999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
The combination of hypertension with systemic inflammation during pregnancy is a hallmark of preeclampsia, but both processes also convey dynamic information about its antecedents and correlates (e.g., fetal growth restriction) and potentially related offspring sequelae. Causal inferences are further complicated by the increasingly frequent overlap of preeclampsia, fetal growth restriction, and multiple indicators of acute and chronic inflammation, with decreased gestational length and its correlates (e.g., social vulnerability). This complexity prompted our group to summarize information from mechanistic studies, integrated with key clinical evidence, to discuss the possibility that sustained or intermittent systemic inflammation-related phenomena offer hints about viable therapeutic targets, not only for the prevention of preeclampsia, but also the neurobehavioral and other developmental deficits that appear to be overrepresented in surviving offspring. Importantly, we feel that carefully designed hypothesis-driven observational studies are necessary if we are to translate the mechanistic evidence into child health benefits, namely because multiple pregnancy disorders might contribute to heightened risks of neuroinflammation, arrested brain development, or dysconnectivity in survivors who exhibit developmental problems later in life.
Collapse
Affiliation(s)
- Jaya Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | | | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| | - Steven J. Korzeniewski
- C.S. Mott Center for Human Growth and Development, Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Pierre Gressens
- Inserm, Neurodiderot, Université de Paris, 75019 Paris, France;
- Centre for the Developing Brain, Division of Imaging Sciences and Department of Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Justin M. Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; (J.P.); (A.J.G.); (L.B.); (J.M.D.)
| |
Collapse
|
2
|
Emmanuel C, Oran A, Jensen ET, Fichorova RN, Gower WA, Perrin EM, Sanderson K, South AM, Gogcu S, Shenberger J, Singh R, Makker K, Thompson AL, Santos H, Fry RC, O'Shea TM. Neonatal inflammation and its association with asthma and obesity in late childhood among individuals born extremely preterm. Pediatr Res 2024; 96:1749-1758. [PMID: 38914762 DOI: 10.1038/s41390-024-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/06/2024] [Accepted: 04/27/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Asthma and obesity are frequent outcomes among individuals born extremely preterm and are associated with decreased lifespan. Neonatal inflammation is associated with chronic neurodevelopmental disorders; however, it is less studied in association with other later childhood chronic disorders in this population. METHODS Fourteen hospitals in 5 U.S. states enrolled 1506 infants born before 28 weeks of gestation in the Extremely Low Gestational Age Newborn cohort in 2004-2014. Neonatal blood spots were collected on postnatal days 1, 7, 14, 21, and 28, and used to measure 14 inflammation-related proteins. Associations were evaluated between high (top quartile) levels of proteins and two chronic health disorders at ages 10 and 15 years: physician-diagnosed asthma and obesity (body mass index ≥95th percentile). RESULTS Few associations were found between high levels of 14 inflammation-related proteins, either on a single day or on multiple days, and either asthma or obesity. Similarly, few associations were found in analyses stratified by sex or presence/absence of prenatal inflammation. CONCLUSIONS In extremely preterm newborns, systemic elevations of inflammation-related proteins during the neonatal period were not associated with childhood asthma and obesity outcomes at 10 or 15 years of age. IMPACT In the large multi-center Extremely Low Gestational Age Newborn (ELGAN) cohort, sustained elevation of neonatal levels of inflammation-related proteins was not consistently associated with asthma or obesity outcomes at 10 or 15 years of age. This finding contrasts with reported associations of perinatal inflammation with obesity at 2 years and neurodevelopmental disorders at 2-15 years in the ELGANs, suggesting that unlike neurodevelopment, peripubertal obesity and asthma may be driven by later childhood exposures. Future research on perinatal mechanisms of childhood asthma and obesity should account for both fetal and later exposures and pathways in addition to inflammation at birth.
Collapse
Affiliation(s)
- Crisma Emmanuel
- University of North Carolina School of Nursing, Chapel Hill, NC, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth T Jensen
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
| | - Raina N Fichorova
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA
| | - William A Gower
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Eliana M Perrin
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Keia Sanderson
- Department of Medicine-Nephrology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew M South
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Departments of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeffrey Shenberger
- Connecticut Children's Hospital, Hartford, CT and University of Connecticut School of Medicine, Farmington, CT, USA
| | - Rachana Singh
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA, USA
| | - Kartikeya Makker
- Department of Pediatrics, Johns Hopkins University School of Medicine and School of Nursing, Baltimore, MD, USA
| | - Amanda L Thompson
- Department of Anthropology, University of North Carolina, Chapel Hill, NC, USA
| | - Hudson Santos
- University of Miami School of Nursing, Miami, FL, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - T M O'Shea
- Brigham and Women's Hospital, Boston, MA and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
4
|
Freedman AN, Clark J, Eaves LA, Roell K, Oran A, Koval L, Rager J, Santos HP, Kuban K, Joseph RM, Frazier J, Marsit CJ, Burt AA, O’Shea TM, Fry RC. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res 2023; 16:918-934. [PMID: 36938998 PMCID: PMC10192070 DOI: 10.1002/aur.2915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Children born preterm are at heightened risk of neurodevelopmental impairments, including Autism Spectrum Disorder (ASD). The placenta is a key regulator of neurodevelopmental processes, though the precise underlying molecular mechanisms remain unclear. Here, we employed a multi-omic approach to identify placental transcriptomic and epigenetic modifications related to ASD diagnosis at age 10, among children born preterm. Working with the extremely low gestational age (ELGAN) cohort, we hypothesized that a pro-inflammatory placental environment would be predictive of ASD diagnosis at age 10. Placental messenger RNA (mRNA) expression, CpG methylation, and microRNA (miRNA) expression were compared among 368 ELGANs (28 children diagnosed with ASD and 340 children without ASD). A total of 111 genes displayed expression levels in the placenta that were associated with ASD. Within these ASD-associated genes is an ASD regulatory complex comprising key genes that predicted ASD case status. Genes with expression that predicted ASD case status included Ewing Sarcoma Breakpoint Region 1 (EWSR1) (OR: 6.57 (95% CI: 2.34, 23.58)) and Bromodomain Adjacent To Zinc Finger Domain 2A (BAZ2A) (OR: 0.12 (95% CI: 0.03, 0.35)). Moreover, of the 111 ASD-associated genes, nine (8.1%) displayed associations with CpG methylation levels, while 14 (12.6%) displayed associations with miRNA expression levels. Among these, LRR Binding FLII Interacting Protein 1 (LRRFIP1) was identified as being under the control of both CpG methylation and miRNAs, displaying an OR of 0.42 (95% CI: 0.17, 0.95). This gene, as well as others identified as having functional epimutations, plays a critical role in immune system regulation and inflammatory response. In summary, a multi-omic approach was used to identify functional epimutations in the placenta that are associated with the development of ASD in children born preterm, highlighting future avenues for intervention.
Collapse
Affiliation(s)
- Anastasia N. Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren A. Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ali Oran
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lauren Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA
| | - Karl Kuban
- Department of Pediatrics, Division of Child Neurology, Boston Medical Center, Boston, Massachusetts, USA
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jean Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School/University of Massachusetts Memorial Health Care, Worcester, MA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
O'Shea TM, McGrath M, Aschner JL, Lester B, Santos HP, Marsit C, Stroustrup A, Emmanuel C, Hudak M, McGowan E, Patel S, Fry RC. Environmental influences on child health outcomes: cohorts of individuals born very preterm. Pediatr Res 2023; 93:1161-1176. [PMID: 35948605 PMCID: PMC9363858 DOI: 10.1038/s41390-022-02230-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 12/05/2022]
Abstract
The National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) Program was designed to address solution-oriented research questions about the links between children's early life environment and their risks of pre-, peri-, and post-natal complications, asthma, obesity, neurodevelopmental disorders, and positive health. Children born very preterm are at increased risk for many of the outcomes on which ECHO focuses, but the contributions of environmental factors to this risk are not well characterized. Three ECHO cohorts consist almost exclusively of individuals born very preterm. Data provided to ECHO from cohorts can be used to address hypotheses about (1) differential risks of chronic health and developmental conditions between individuals born very preterm and those born at term; (2) health disparities across social determinants of health; and (3) mechanisms linking early-life exposures and later-life outcomes among individuals born very preterm. IMPACT: The National Institutes of Health's Environmental Influences on Child Health Outcomes Program is conducting solution-oriented research on the links between children's environment and health. Three ECHO cohorts comprise study participants born very preterm; these cohorts have enrolled, to date, 1751 individuals born in 14 states in the U.S. in between April 2002 and March 2020. Extensive data are available on early-life environmental exposures and child outcomes related to neurodevelopment, asthma, obesity, and positive health. Data from ECHO preterm cohorts can be used to address questions about the combined effects of preterm birth and environmental exposures on child health outcomes.
Collapse
Affiliation(s)
- T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Monica McGrath
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Judy L Aschner
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barry Lester
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School of Brown University, Women & Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Annemarie Stroustrup
- Departments of Pediatrics and Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra, Northwell Health, Cohen Children's Medical Center, New Hyde Park, NY, USA
| | - Crisma Emmanuel
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC, USA
| | - Mark Hudak
- Department of Pediatrics, University of Florida College of Medicine - Jacksonville, Jacksonville, FL, USA
| | - Elisabeth McGowan
- Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Simran Patel
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Dumitriu D, Baldwin E, Coenen RJ, Hammond LA, Peterka DS, Heilbrun L, Frye RE, Palmer R, Norrman HN, Fridell A, Remnelius KL, Isaksson J, Austin C, Curtin P, Bölte S, Arora M. Deciduous tooth biomarkers reveal atypical fetal inflammatory regulation in autism spectrum disorder. iScience 2023; 26:106247. [PMID: 36926653 PMCID: PMC10011823 DOI: 10.1016/j.isci.2023.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Atypical regulation of inflammation has been proposed in the etiology of autism spectrum disorder (ASD); however, measuring the temporal profile of fetal inflammation associated with future ASD diagnosis has not been possible. Here, we present a method to generate approximately daily profiles of prenatal and early childhood inflammation as measured by developmentally archived C-reactive protein (CRP) in incremental layers of deciduous tooth dentin. In our discovery population, a group of Swedish twins, we found heightened inflammation in the third trimester in children with future ASD diagnosis relative to controls (n = 66; 14 ASD cases; critical window: -90 to -50 days before birth). In our replication study, in the US, we observed a similar increase in CRP in ASD cases during the third trimester (n = 47; 23 ASD cases; -128 to -21 days before birth). Our results indicate that the third trimester is a critical period of atypical fetal inflammatory regulation in ASD.
Collapse
Affiliation(s)
- Dani Dumitriu
- Departments of Neuroscience and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Departments of Pediatrics and Psychiatry, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY 10032, USA
| | - Elena Baldwin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roozie J.J. Coenen
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke A. Hammond
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Darcy S. Peterka
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lynne Heilbrun
- Family and Community Medicine, School of Medicine, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Richard E. Frye
- Department of Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Raymond Palmer
- Family and Community Medicine, School of Medicine, University of Texas Health Sciences Center, San Antonio, TX 78229, USA
| | - Hjalmar Nobel Norrman
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anna Fridell
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Child and Adolescent Psychiatry Research Center, Center for Psychiatry Research, Region Stockholm, Stockholm 104 31, Sweden
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Johan Isaksson
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, Uppsala 751 85, Sweden
| | - Christine Austin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| | - Paul Curtin
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| | - Sven Bölte
- Center of Neurodevelopmental Disorder (KIND), Division of Neuropsychiatry, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Child and Adolescent Psychiatry Research Center, Center for Psychiatry Research, Region Stockholm, Stockholm 104 31, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA 6102, Australia
| | - Manish Arora
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Linus Biotechnology Inc., New York, NY 10013, USA
| |
Collapse
|
7
|
Eaves LA, Enggasser AE, Camerota M, Gogcu S, Gower WA, Hartwell H, Jackson WM, Jensen E, Joseph RM, Marsit CJ, Roell K, Santos HP, Shenberger JS, Smeester L, Yanni D, Kuban KCK, O'Shea TM, Fry RC. CpG methylation patterns in placenta and neonatal blood are differentially associated with neonatal inflammation. Pediatr Res 2023; 93:1072-1084. [PMID: 35764815 PMCID: PMC10289042 DOI: 10.1038/s41390-022-02150-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infants born extremely premature are at increased risk for health complications later in life for which neonatal inflammation may be a contributing biological driver. Placental CpG methylation provides mechanistic information regarding the relationship between prenatal epigenetic programming, prematurity, neonatal inflammation, and later-in-life health. METHODS We contrasted CpG methylation in the placenta and neonatal blood spots in relation to neonatal inflammation in the Extremely Low Gestational Age Newborn (ELGAN) cohort. Neonatal inflammation status was based on the expression of six inflammation-related proteins, assessed as (1) day-one inflammation (DOI) or (2) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 postnatal weeks). Epigenome-wide CpG methylation was assessed in 354 placental samples and 318 neonatal blood samples. RESULTS Placental CpG methylation displayed the strongest association with ISSI (48 CpG sites) but was not associated with DOI. This was in contrast to CpG methylation in blood spots, which was associated with DOI (111 CpG sites) and not with ISSI (one CpG site). CONCLUSIONS Placental CpG methylation was strongly associated with ISSI, a measure of inflammation previously linked to later-in-life cognitive impairment, while day-one neonatal blood methylation was associated with DOI. IMPACT Neonatal inflammation increases the risk of adverse later-life outcomes, especially in infants born extremely preterm. CpG methylation in the placenta and neonatal blood spots were evaluated in relation to neonatal inflammation assessed via circulating proteins as either (i) day-one inflammation (DOI) or (ii) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 weeks). Tissue specificity was observed in epigenetic-inflammatory relationships: placental CpG methylation was associated with ISSI, neonatal blood CpG methylation was associated with DOI. Supporting the placental origins of disease framework, placental epigenetic patterns are associated with a propensity for ISSI in neonates.
Collapse
Affiliation(s)
- Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam E Enggasser
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Semsa Gogcu
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William A Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wesley M Jackson
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Jensen
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Nursing & Health Studies, University of Miami, Miami, FL, USA
| | - Jeffrey S Shenberger
- Division of Neonatology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Karl C K Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston University Medical Center, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Breach MR, Lenz KM. Sex Differences in Neurodevelopmental Disorders: A Key Role for the Immune System. Curr Top Behav Neurosci 2023; 62:165-206. [PMID: 35435643 PMCID: PMC10286778 DOI: 10.1007/7854_2022_308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex differences are prominent defining features of neurodevelopmental disorders. Understanding the sex biases in these disorders can shed light on mechanisms leading to relative risk and resilience for the disorders, as well as more broadly advance our understanding of how sex differences may relate to brain development. The prevalence of neurodevelopmental disorders is increasing, and the two most common neurodevelopmental disorders, Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) exhibit male-biases in prevalence rates and sex differences in symptomology. While the causes of neurodevelopmental disorders and their sex differences remain to be fully understood, increasing evidence suggests that the immune system plays a critical role in shaping development. In this chapter we discuss sex differences in prevalence and symptomology of ASD and ADHD, review sexual differentiation and immune regulation of neurodevelopment, and discuss findings from human and rodent studies of immune dysregulation and perinatal immune perturbation as they relate to potential mechanisms underlying neurodevelopmental disorders. This chapter will give an overview of how understanding sex differences in neuroimmune function in the context of neurodevelopmental disorders could lend insight into their etiologies and better treatment strategies.
Collapse
Affiliation(s)
- Michaela R Breach
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Abstract
Individuals born extremely preterm (before 28 weeks of gestation) comprise only about 0.7% of births in the United States and an even lower proportion in other high resource countries. However, these individuals account for a disproportionate number of children with cerebral palsy, intellectual deficit, autism spectrum disorder, attention deficit hyperactivity disorder, and epilepsy. This review describes two large multiple center cohorts comprised of individuals born extremely preterm: the EPICURE cohort, recruited 1995 in the United Kingdom and the Republic of Ireland, and the Extremely Low Gestational Age Newborn (ELGAN), recruited 2002-2004 in five states in the United States. The primary focus of these studies has been neurodevelopmental disorders, but also of interest are growth, respiratory illness, and parent- and self-reported global health and well-being. Both of these studies indicate that among individuals born extremely preterm the risks of most neurodevelopmental disorders are increased. Early life factors that contribute to this risk include perinatal brain damage, some of which can be identified using neonatal head ultrasound, bronchopulmonary dysplasia, and neonatal systemic inflammation. Prenatal factors, particularly the family's socioeconomic position, also appear to contribute to risk. For most adverse outcomes, the risk is higher in males. Young adults born extremely preterm who have neurodevelopmental impairment, as compared to those without such impairment, rate their quality of life lower. However, young adults born extremely preterm who do not have neurodevelopmental impairments rate their quality of life as being similar to that of young adults born at term. Finally, we summarize the current state of interventions designed to improve the life course of extremely premature infants, with particular focus on efforts to prevent premature birth and on postnatal efforts to prevent adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Genevieve L Taylor
- Genevieve L Taylor MD: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine
| | - T Michael O'Shea
- T. Michael O'Shea, MD, MPH: Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of North Carolina School of Medicine.
| |
Collapse
|
10
|
Cogley C, O'Reilly H, Bramham J, Downes M. A Systematic Review of the Risk Factors for Autism Spectrum Disorder in Children Born Preterm. Child Psychiatry Hum Dev 2021; 52:841-855. [PMID: 32980936 DOI: 10.1007/s10578-020-01071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Preterm birth is associated with an increased risk for autism spectrum disorder, with various factors proposed to underlie this relationship. The aim of this systematic review was to provide a narrative synthesis of the literature regarding the prenatal, perinatal and postnatal factors associated with autism spectrum disorder in children born preterm. Medline, Embase and PsycINFO databases were searched via Ovid to identify studies published from January 1990 to December 2019. Original studies in which a standardized diagnostic tool and/or clinical assessment was used to diagnose autism, along with a risk factor analysis to identify associated predictors, were included. A total of 11 eligible studies were identified. Male sex, being born small for gestational age and general cognitive impairment were the most robust findings, with each reported as a significant factor in at least two studies. Comparisons across studies were limited by variation in risk factor measurement and gestational age ranges investigated.
Collapse
Affiliation(s)
- Clodagh Cogley
- School of Psychology, University College Dublin, Newman Building, Belfield, Dublin 4, Ireland.
| | - Helen O'Reilly
- School of Psychology, University College Dublin, Newman Building, Belfield, Dublin 4, Ireland
| | - Jessica Bramham
- School of Psychology, University College Dublin, Newman Building, Belfield, Dublin 4, Ireland
| | - Michelle Downes
- School of Psychology, University College Dublin, Newman Building, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Chanwuyi Lifestyle Medicine Program Alleviates Immunological Deviation and Improves Behaviors in Autism. NEUROSCI 2021. [DOI: 10.3390/neurosci2020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Given the association between deviated inflammatory chemokines, the pathogenesis of autism spectrum disorders (ASD), and our previous findings of the Chanwuyi Lifestyle Medicine Program regarding improved cognitive and behavioral problems in ASD, the present study aims to explore if this intervention can alter pro-inflammatory chemokines concentration. Thirty-two boys with ASD were assigned to the experimental group receiving the Chanwuyi Lifestyle Medicine Program for 7 months or the control group without a change in their lifestyle. The experimental group, but not the control group, demonstrated significantly reduced CCL2 and CXCL8, a trend of reduction in CCL5, and elevation of CXCL9. The experimental group also demonstrated significantly reduced social communication problems, repetitive/stereotypic behaviors, and hyperactive behaviors. The present findings support the potential efficacy and applicability of the Chanwuyi Lifestyle Medicine Program for reducing both behavioral problems and immunological dysfunction in ASD. Further studies are warranted to verify its treatment effect and its association with brain functions.
Collapse
|
12
|
Autism spectrum disorder and severe social impairment associated with elevated plasma interleukin-8. Pediatr Res 2021; 89:591-597. [PMID: 32330928 DOI: 10.1038/s41390-020-0910-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unclear etiology and pathophysiology. Previous studies have indicated that the dysregulation of cytokines may be involved in the pathogenesis of ASD and that the levels of cytokines may serve as potential biomarkers of this disorder. METHODS The current study employed a family triad-based case-control design to study the levels of plasma cytokines in families with ASD (n = 45 triads) and controls (n = 38 triads) with a Human Cytokine Twenty-Five-Plex Kit. The Social Responsiveness Scale (SRS) was used to measure social impairment of ASD children. RESULTS After controlling for the levels of parental cytokines, we identified that interferon-α (IFN-α), interleukin-7 (IL-7), IL-8, IFN-γ-inducible protein-10, and macrophage inflammatory protein-1β were associated with ASD, and IL-8 was the only cytokine also associated with the levels of both parental cytokines in the offspring-parents regression analysis and three subdomains of SRS (social awareness, cognition, and motivations) in the children with ASD. The receiver operating characteristic curve showed that the log-transformed IL-8 level discriminated children with autism from controls with an area under the curve of 0.858 (95% confidence interval: 0.777-0.939). CONCLUSIONS Our study suggests that IL-8 is a potential biomarker for ASD and may be involved in the pathogenesis of ASD. IMPACT The study suggests that IL-8 is a promising biomarker for ASD and may be involved in the pathogenesis of ASD. Only a very few studies have reported the parental cytokine levels. The significant strength of this article is that we applied the family triad-based approach to explore cytokine levels in families with autism and controls. There are no objective biomarkers, making the accurate diagnosis, prognostic prediction and effective treatment difficult, and our study provides promising results.
Collapse
|
13
|
Liu SH, Shi XJ, Fan FC, Cheng Y. Peripheral blood neurotrophic factor levels in children with autism spectrum disorder: a meta-analysis. Sci Rep 2021; 11:15. [PMID: 33420109 PMCID: PMC7794512 DOI: 10.1038/s41598-020-79080-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that abnormal regulation of neurotrophic factors is involved in the etiology and pathogenesis of Autism Spectrum Disorder (ASD). However, clinical data on neurotrophic factor levels in children with ASD were inconsistent. Therefore, we performed a systematic review of peripheral blood neurotrophic factors levels in children with ASD, and quantitatively summarized the clinical data of peripheral blood neurotrophic factors in ASD children and healthy controls. A systematic search of PubMed and Web of Science identified 31 studies with 2627 ASD children and 4418 healthy controls to be included in the meta-analysis. The results of random effect meta-analysis showed that the peripheral blood levels of brain-derived neurotrophic factor (Hedges’ g = 0.302; 95% CI = 0.014 to 0.591; P = 0.040) , nerve growth factor (Hedges’ g = 0.395; 95% CI = 0.104 to 0.686; P = 0.008) and vascular endothelial growth factor (VEGF) (Hedges’ g = 0.097; 95% CI = 0.018 to 0.175; P = 0.016) in children with ASD were significantly higher than that of healthy controls, whereas blood neurotrophin-3 (Hedges’ g = − 0.795; 95% CI = − 1.723 to 0.134; P = 0.093) and neurotrophin-4 (Hedges’ g = 0.182; 95% CI = − 0.285 to 0.650; P = 0.445) levels did not show significant differences between cases and controls. Taken together, these results clarified circulating neurotrophic factor profile in children with ASD, strengthening clinical evidence of neurotrophic factor aberrations in children with ASD.
Collapse
Affiliation(s)
- Shu-Han Liu
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Xiao-Jie Shi
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Fang-Cheng Fan
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China
| | - Yong Cheng
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Zhongguancun South St, Haidian District, Beijing, 100081, China.
| |
Collapse
|
14
|
Bangma JT, Hartwell H, Santos HP, O'Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res 2021; 89:326-335. [PMID: 33184498 PMCID: PMC7658618 DOI: 10.1038/s41390-020-01236-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 10/08/2020] [Indexed: 01/30/2023]
Abstract
Individuals born extremely preterm are at significant risk for impaired neurodevelopment. After discharge from the neonatal intensive care, associations between the child's well-being and factors in the home and social environment become increasingly apparent. Mothers' prenatal health and socioeconomic status are associated with neurodevelopmental outcomes, and emotional and behavioral problems. Research on early life risk factors and on mechanisms underlying inter-individual differences in neurodevelopment later in life can inform the design of personalized approaches to prevention. Here, we review early life predictors of inter-individual differences in later life neurodevelopment among those born extremely preterm. Among biological mechanisms that mediate relationships between early life predictors and later neurodevelopmental outcomes, we highlight evidence for disrupted placental processes and regulated at least in part via epigenetic mechanisms, as well as perinatal inflammation. In relation to these mechanisms, we focus on four prenatal antecedents of impaired neurodevelopment, namely, (1) fetal growth restriction, (2) maternal obesity, (3) placental microorganisms, and (4) socioeconomic adversity. In the future, this knowledge may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm. IMPACT: This review highlights early life risk factors and mechanisms underlying inter-individual differences in neurodevelopment later in life. The review emphasizes research on early life risk factors (fetal growth restriction, maternal obesity, placental microorganisms, and socioeconomic adversity) and on mechanisms (disrupted placental processes and perinatal inflammation) underlying inter-individual differences in neurodevelopment later in life. The findings highlighted here may inform efforts to detect and prevent adverse outcomes in infants born extremely preterm.
Collapse
Affiliation(s)
- Jacqueline T Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Oldenburg KS, O'Shea TM, Fry RC. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin Fetal Neonatal Med 2020; 25:101115. [PMID: 32444251 PMCID: PMC7363586 DOI: 10.1016/j.siny.2020.101115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among individuals born very preterm, perinatal inflammation, particularly if sustained or recurring, is highly likely to contribute to adverse neurodevelopmental outcomes, including cerebral white matter damage, cerebral palsy, cognitive impairment, attention-deficit/hyperactivity disorder, and autism spectrum disorder. Antecedents and correlates of perinatal inflammation include socioeconomic disadvantage, maternal obesity, maternal infections, fetal growth restriction, neonatal sepsis, necrotizing enterocolitis, and prolonged mechanical ventilation. Genetic factors can modify susceptibility to perinatal inflammation and to neurodevelopmental disorders. Preliminary evidence supports a role of epigenetic markers as potential mediators of the presumed effects of preterm birth and/or its consequences on neurodevelopment later in life. Further study is needed of factors such as sex, psychosocial stressors, and environmental exposures that could modify the relationship of early life inflammation to later neurodevelopmental impairments. Also needed are pharmacological and non-pharmacological interventions to attenuate inflammation towards the goal of improving the neurodevelopment of individuals born very preterm.
Collapse
Affiliation(s)
- Kirsi S Oldenburg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, USA.
| | - T Michael O'Shea
- Department of Pediatrics (Neonatology), University of North Carolina School of Medicine, USA.
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
16
|
Kuban KCK, Jara H, O'Shea TM, Heeren T, Joseph RM, Fichorova RN, Alshamrani K, Aakil A, Beaulieu F, Horn M, Douglass LM, Frazier JA, Hirtz D, Rollins JV, Cochran D, Paneth N. Association of Circulating Proinflammatory and Anti-inflammatory Protein Biomarkers in Extremely Preterm Born Children with Subsequent Brain Magnetic Resonance Imaging Volumes and Cognitive Function at Age 10 Years. J Pediatr 2019; 210:81-90.e3. [PMID: 31076229 PMCID: PMC7137312 DOI: 10.1016/j.jpeds.2019.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To examine elevated neonatal inflammatory and neurotrophic proteins from children born extremely preterm in relation to later childhood brain Magnetic Resonance Imaging volumes and cognition. STUDY DESIGN We measured circulating inflammation-related proteins and neurotrophic proteins on postnatal days 1, 7, and 14 in 166 children at 10 years of age (73 males; 93 females). Top quartile levels on ≥2 days for ≥3 inflammation-related proteins and for ≥4 neurotrophic proteins defined exposure. We examined associations among protein levels, brain Magnetic Resonance Imaging volumes, and cognition with multiple linear and logistic regressions. RESULTS Analyses were adjusted for gestational age at birth and sex. Children with ≥3 elevated inflammation-related proteins had smaller grey matter, brain stem/cerebellar, and total brain volumes than those without elevated inflammation-related proteins, adjusted for neurotrophic proteins. When adjusted for inflammation-related proteins, children with ≥4 neurotrophic proteins, compared with children with no neurotrophic proteins, had larger grey matter and total brain volumes. Higher grey matter, white matter, and cerebellum and brainstem volumes were significantly correlated with higher IQ. Grey and white matter volumes were correlated with each other (r = -0.18; P = .021), and cerebellum and brainstem was highly correlated with grey matter (r = 0.55; P < .001) and white matter (r = 0.29; P < .001). Adjusting for other brain compartments, cerebellum and brainstem was associated with IQ (P = .016), but the association with white matter was marginally significant (P = .051). Grey matter was not associated with IQ. After adjusting for brain volumes, elevated inflammation-related proteins remained significantly associated with a lower IQ, and elevated neurotrophic proteins remained associated with a higher IQ. CONCLUSIONS Newborn inflammatory and neurotrophin protein levels are associated with later brain volumes and cognition, but their effects on cognition are not entirely explained by altered brain volumes.
Collapse
Affiliation(s)
- Karl C K Kuban
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, MA.
| | - Hernan Jara
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - T Michael O'Shea
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Khalid Alshamrani
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Adam Aakil
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Forrest Beaulieu
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Mitchell Horn
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Laurie M Douglass
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, MA
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, UMASS Medical School/University of Massachusetts Memorial Health Care, Worcester, MA
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Julie Vanier Rollins
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - David Cochran
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics and Pediatrics, Michigan State University, East Lansing, MI
| |
Collapse
|
17
|
Leviton A, Allred EN, Dammann O, Joseph RM, Fichorova RN, O’Shea TM, Kuban KCK. Socioeconomic status and early blood concentrations of inflammation-related and neurotrophic proteins among extremely preterm newborns. PLoS One 2019; 14:e0214154. [PMID: 30913246 PMCID: PMC6435168 DOI: 10.1371/journal.pone.0214154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The main objective of this study was to evaluate the relationship between mother’s socioeconomic disadvantage and blood concentrations of inflammation-related proteins among extremely preterm newborns (<28 weeks gestation), a group at heightened risk of cognitive impairment when exposed to systemic inflammation. We measured the concentrations of 27 inflammatory and neurotrophic proteins in blood specimens collected a week apart during the first postnatal month from 857 extremely preterm newborns in the United States. We classified children according to 3 indicators/correlates of socioeconomic disadvantage, mother’s eligibility for government-provided medical care insurance (Medicaid), mother’s formal education level, and mother’s IQ approximated with the Kaufman Brief Intelligence Test– 2. The risks of a top-quartile concentration of each protein on each of 5 days a week apart, on two occasions during the first two postnatal weeks, and during the next two weeks were modeled as functions of each indicator of socioeconomic disadvantage. The risks of top quartile concentrations of multiple (2–5) inflammation-related proteins on multiple days during the first two weeks were increased for each of the 3 indicators of socioeconomic disadvantage, while the risks of top quartile concentrations of selected neurotrophic proteins were reduced. Adjustment for socioeconomic disadvantage did not alter the relationships between protein concentrations and both low IQ and low working memory 10 years later. Among extremely preterm newborns, indicators of socioeconomic disadvantage are associated with modestly increased risk of systemic inflammation in postnatal blood during the first postnatal month and with a slightly reduced risk of a neurotrophic signal, but do not confound relationships between protein concentrations and outcomes.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Elizabeth N. Allred
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States of America
| | - Robert M. Joseph
- Boston University School of Medicine, Boston, MA, United States of America
| | - Raina N. Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - T. Michael O’Shea
- University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Karl C. K. Kuban
- Boston Medical Center and Boston University School of Medicine, Boston, MA, United States of America
| |
Collapse
|
18
|
Zhou KQ, Green CR, Bennet L, Gunn AJ, Davidson JO. The Role of Connexin and Pannexin Channels in Perinatal Brain Injury and Inflammation. Front Physiol 2019; 10:141. [PMID: 30873043 PMCID: PMC6400979 DOI: 10.3389/fphys.2019.00141] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Perinatal brain injury remains a major cause of death and life-long disability. Perinatal brain injury is typically associated with hypoxia-ischemia and/or infection/inflammation. Both hypoxia-ischemia and infection trigger an inflammatory response in the brain. The inflammatory response can contribute to brain cell loss and chronic neuroinflammation leading to neurological impairments. It is now well-established that brain injury evolves over time, and shows a striking spread from injured to previously uninjured regions of the brain. There is increasing evidence that this spread is related to opening of connexin hemichannels and pannexin channels, both of which are large conductance membrane channels found in almost all cell types in the brain. Blocking connexin hemichannels within the first 3 h after hypoxia-ischemia has been shown to improve outcomes in term equivalent fetal sheep but it is important to also understand the downstream pathways linking membrane channel opening with the development of injury in order to identify new therapeutic targets. Open membrane channels release adenosine triphosphate (ATP), and other neuroactive molecules, into the extracellular space. ATP has an important physiological role, but has also been reported to act as a damage-associated molecular pattern (DAMP) signal mediated through specific purinergic receptors and so act as a primary signal 1 in the innate immune system inflammasome pathway. More crucially, extracellular ATP is a key inflammasome signal 2 activator, with purinergic receptor binding triggering the assembly of the multi-protein inflammasome complex. The inflammasome pathway and complex formation contribute to activation of inflammatory caspases, and the release of inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-18, and vascular endothelial growth factor (VEGF). We propose that the NOD-like receptor protein-3 (NLRP3) inflammasome, which has been linked to inflammatory responses in models of ischemic stroke and various inflammatory diseases, may be one mechanism by which connexin hemichannel opening especially mediates perinatal brain injury.
Collapse
Affiliation(s)
- Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|