1
|
Mostauli A, Rauh J, Gamer M, Büchel C, Rief W, Brassen S. Placebo treatment entails resource-dependent downregulation of negative inputs. Sci Rep 2025; 15:9088. [PMID: 40097556 PMCID: PMC11914261 DOI: 10.1038/s41598-025-93589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Clinical trials with antidepressants reveal significant improvements in placebo groups, with effects of up to 80% compared to real treatment. While it has been suggested that treatment expectations rely on cognitive control, direct evidence for affective placebo effects is sparse. Here, we investigated how cognitive resources at both the behavioral and neural levels influence the effects of positive expectations on emotional processing. Forty-nine healthy volunteers participated in a cross-over fMRI study where positive expectations were induced through an alleged oxytocin nasal spray and verbal instruction. Participants completed a spatial cueing task that manipulated attention to emotional face distractors while being scanned and were characterized regarding their general attention control ability. Placebo treatment improved mood and reduced distractibility from fearful compared to happy faces, particularly when more attentional resources were available for processing face distractors. This aligned with changes in activation and functional coupling within prefrontal-limbic networks, suggesting that expectations induce top-down regulation of aversive inputs. Additionally, neurobehavioral effects correlated with individual control ability. Our findings highlight the critical role of cognitive resources in verbally instructed placebo effects. This may be particularly relevant in patients with major depressive disorder, who often demonstrate enhanced negativity processing but have limited cognitive control capacity.
Collapse
Affiliation(s)
- Arasch Mostauli
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Jonas Rauh
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Würzburg, D-97070, Würzburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology and Psychotherapy, Philipps-University Marburg, D-35037, Marburg, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
2
|
Mollica A, Ng E, Burke MJ, Nestor SM, Lee H, Rabin JS, Hamani C, Lipsman N, Giacobbe P. Treatment expectations and clinical outcomes following repetitive transcranial magnetic stimulation for treatment-resistant depression. Brain Stimul 2024; 17:752-759. [PMID: 38901565 DOI: 10.1016/j.brs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Patient expectations, including both positive (placebo) and negative (nocebo) effects, influence treatment outcomes, yet their impact on acute repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant depression (TRD) is unclear. METHODS In this single-center retrospective chart review, 208 TRD patients completed the Stanford Expectation of Treatment Scale (SETS) before starting open-label rTMS treatment. Patients were offered two excitatory rTMS protocols (deep TMS or intermittent theta-burst stimulation), which stimulated the left dorsolateral prefrontal cortex. A minimum of 20 once daily treatments were provided, delivered over 4-6 weeks. Primary outcomes were 1) remission, measured by a post-treatment score of <8 on the Hamilton Depression Rating Scale (HAMD-17), and 2) premature discontinuation. The change in HAMD-17 scores over time was used as a secondary outcome. Physicians were blinded to SETS scores. Logistic and linear regression, adjusting for covariates, assessed SETS and HAMD-17 relationships. RESULTS Of 208 patients, 177 had baseline and covariate data available. The mean positivity bias score (positive expectancy minus negative expectancy subscale averages) was 0.48 ± 2.21, indicating the cohort was neutral regarding the expectations of their treatment on average. Higher positive expectancy scores were significantly associated with greater odds of remission (OR = 1.90, p = 0.003) and greater reduction in HAMD-17 scores (β = 1.30, p = 0.005) at the end of acute treatment, after adjusting for covariates. Negative expectancy was not associated with decreased odds of remission (p = 0.2) or treatment discontinuation (p = 0.8). CONCLUSIONS Higher pre-treatment positive expectations were associated with greater remission rates with open-label rTMS in a naturalistic cohort of patients with TRD.
Collapse
Affiliation(s)
- Adriano Mollica
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Enoch Ng
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Matthew J Burke
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sean M Nestor
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Hyewon Lee
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Aulenkamp JL, Icenhour A, Elsenbruch S. Nocebo effects in visceral pain: concept and design of the experimental randomized-controlled pain study 'NoVis'. Front Psychiatry 2023; 14:1270189. [PMID: 37900300 PMCID: PMC10603299 DOI: 10.3389/fpsyt.2023.1270189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
The role of psychological factors in the pathophysiology and treatment of chronic visceral pain in disorders of gut-brain interactions (DGBI) is increasingly appreciated. Placebo research has underscored that expectations arising from the psychosocial treatment context and from prior experiences shape treatment responses. However, effects of negative expectations, i.e., nocebo effects, as they are likely crucial elements of DGBI patients' clinical reality, have thus far only rarely been investigated in the context of visceral pain, with untapped potential for improved prevention and treatment. The experimental randomized-controlled pain study "NoVis," carried out within the Collaborative Research Center (CRC) 289 ("Treatment Expectation"), aims to close gaps regarding the generation and persistence of nocebo effects in healthy volunteers. It is designed to elucidate effects of negative expectations in a multiple-threat paradigm with intensity-matched rectal distensions and cutaneous thermal stimuli, allowing to test nocebo effects in the visceral and somatic pain modalities. Negative expectations are experimentally induced by elements of doctor-patient communication (i.e., instruction) and/or by surreptitious amplification of symptom intensity (i.e., experience/learning) within a treatment context. Accordingly, the repeated measures between-subject design contains the between-group factors "treatment instruction" (negative vs. control) and "treatment experience" (negative vs. control), with volunteers randomized into four experimental groups undergoing several pain stimulation phases (repeated factor). This allows to compare the efficacy of instruction vs. experience, and more importantly, their combined effects on the magnitude of negative expectations and their impact on pain responses, which we expect will be greatest for the visceral modality. After a Baseline, short-term effects are assessed during a test phase accomplished on study day 1 (Test-1 Phase). To explore the persistence of effects, a second test phase is accomplished 1 week later (Test-2 Phase). Effects of negative expectations within and across pain modalities are assessed at the subjective and objective levels, with a focus on psychophysiological and neuroendocrine measures related to stress, fear, and anxiety. Since nocebo effects can play a considerable role in the generation, maintenance, or worsening of chronic visceral pain, and may even constitute risk factors for treatment failure, knowledge from experimental nocebo research has potential to improve treatment outcomes in DGBI and other clinical conditions associated with chronic visceral pain.
Collapse
Affiliation(s)
- Jana Luisa Aulenkamp
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Falkenberg I, Bitsch F, Liu W, Matsingos A, Noor L, Vogelbacher C, Yildiz C, Kircher T. The effects of esketamine and treatment expectation in acute major depressive disorder (Expect): study protocol for a pharmacological fMRI study using a balanced placebo design. Trials 2023; 24:514. [PMID: 37568215 PMCID: PMC10416369 DOI: 10.1186/s13063-023-07556-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a highly prevalent (8-15%), severely disabling disorder and is associated with enormous socioeconomic impact. Antidepressant medication for the treatment of MDD has proven effective in RCTs; however, placebo response is also substantial. Given the potential benefits of modulating the placebo response in patient care and pharmacological research, understanding the mechanisms underlying placebo response is of high clinical relevance. The placebo response is mediated by treatment expectation, i.e. an individual's belief about whether and how much they will improve as a consequence of their treatment. The mechanisms and moderators of treatment expectation effects in MDD are poorly understood. Initial brain imaging studies on placebo responses in MDD point towards the relevance of the lateral prefrontal cortex and the rostral anterior cingulate cortex (rACC). In this project, we will investigate the neural mechanisms underlying the antidepressant effects of treatment expectation associated with the fast-acting antidepressant esketamine in patients with MDD. Esketamine is an NMDA receptor antagonist inducing antidepressant effects within hours. METHODS We will employ a fully balanced placebo design with the factors "treatment" (i.v. esketamine / placebo) and verbally induced "expectation" (high / low) combined with fMRI (resting state, emotion and reward processing paradigms) to investigate the psychological and neural mechanisms underlying the antidepressant effects of expectation, and how these interact with the pharmacological effects of esketamine. DISCUSSION The insights gained by this project promise fundamental implications for clinical treatment and future drug trials. Unraveling the mechanisms underlying expectation effects on antidepressant treatment may inform (1) strategies to modulate these effects and thus improve assay sensitivity in RCTs and (2) novel treatment regiments aiming to maximize the synergistic effects of expectation and pharmacological treatment in the clinical care of patients with MDD. TRIAL REGISTRATION This trial has been prospectively registered with the EU Clinical Trials Register: EudraCT-No.: 2020-000784-23 (November 17, 2020).
Collapse
Affiliation(s)
- Irina Falkenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany.
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany.
| | - Florian Bitsch
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Wei Liu
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Alexandros Matsingos
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Laila Noor
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Christoph Vogelbacher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
- Department of Clinical Psychology, University of Marburg, Schulstr. 12, 35037, Marburg, Germany
| | - Cüneyt Yildiz
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, 35032, Marburg, Germany
| |
Collapse
|
6
|
Peciña M, Chen J, Karp JF, Dombrovski AY. Dynamic Feedback Between Antidepressant Placebo Expectancies and Mood. JAMA Psychiatry 2023; 80:389-398. [PMID: 36857039 PMCID: PMC9979016 DOI: 10.1001/jamapsychiatry.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/02/2023] [Indexed: 03/02/2023]
Abstract
Importance Despite high antidepressant placebo response rates, the mechanisms underlying the persistence of antidepressant placebo effects are still poorly understood. Objective To investigate the neurobehavioral mechanisms underlying the evolution of antidepressant placebo effects using a reinforcement learning (RL) framework. Design, Setting, and Participants In this acute within-patient cross-sectional study of antidepressant placebos, patients aged 18 to 55 years not receiving medication for major depressive disorder (MDD) were recruited at the University of Pittsburgh between February 21, 2017, to March 1, 2021. Interventions The antidepressant placebo functional magnetic resonance imaging task manipulates placebo-associated expectancies using visually cued fast-acting antidepressant infusions and controls their reinforcement with sham visual neurofeedback while assessing expected and experienced mood improvement. Main Outcomes and Measures The trial-by-trial evolution of expectancies and mood was examined using multilevel modeling and RL, relating model-predicted signals to spatiotemporal dynamics of blood oxygenation level-dependent (BOLD) response. Results A bayesian RL model comparison in 60 individuals (mean [SE] age, 24.5 [0.8] years; 51 females [85%]) with MDD revealed that antidepressant placebo trial-wise expectancies were updated by composite learning signals multiplexing sensory evidence (neurofeedback) and trial-wise mood (bayesian omnibus risk <0.001; exceedance probability = 97%). Placebo expectancy, neurofeedback manipulations, and composite learning signals modulated the visual cortex and dorsal attention network (threshold-free cluster enhancement [TFCE] = 1 - P >.95). As participants anticipated antidepressant infusions, learned placebo expectancies modulated the salience network (SN, TFCE = 1 - P >.95), positively scaling with depression severity. Conclusions and Relevance Results of this cross-sectional study suggest that on a timescale of minutes, antidepressant placebo effects were maintained by positive feedback loops between expectancies and mood improvement. During learning, representations of placebos and their perceived effects were enhanced in primary and secondary sensory cortices. Latent learned placebo expectancies were encoded in the SN.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiazhou Chen
- Section on Development and Affective Neuroscience, National Institute of Health, Bethesda, Maryland
- Division of Psychiatry, University College London, London, United Kingdom
| | | | | |
Collapse
|
7
|
Wendler D. Deceiving Research Participants: Is It Inconsistent With Valid Consent? THE JOURNAL OF MEDICINE AND PHILOSOPHY 2022; 47:558-571. [PMID: 36333927 PMCID: PMC9989839 DOI: 10.1093/jmp/jhac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is widely assumed that the use of deception in research is always inconsistent with obtaining valid consent. In addition, guidelines and regulations permit research without valid consent only when it poses no greater than minimal risk. Current practice thus prohibits studies that use deception and pose greater than minimal risk, including studies that rely on deceptive methods to evaluate experimental treatments. To assess whether these prohibitions are justified, the present paper evaluates five arguments that might be thought to support the assumption that deception is always inconsistent with valid consent. Analysis of these arguments reveals that deception is frequently, but not always, inconsistent with obtaining valid consent for research. This conclusion suggests that, in order to avoid unnecessarily blocking valuable research, current policies and practice should be revised to recognize the conditions under which the use of deception can be consistent with obtaining research participants' valid consent.
Collapse
|
8
|
The Opioid System in Depression. Neurosci Biobehav Rev 2022; 140:104800. [PMID: 35914624 PMCID: PMC10166717 DOI: 10.1016/j.neubiorev.2022.104800] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022]
Abstract
Opioid receptors are widely distributed throughout the brain and play an essential role in modulating aspects of human mood, reward, and well-being. Accumulating evidence indicates the endogenous opioid system is dysregulated in depression and that pharmacological modulators of mu, delta, and kappa opioid receptors hold potential for the treatment of depression. Here we review animal and clinical data, highlighting evidence to support: dysregulation of the opioid system in depression, evidence for opioidergic modulation of behavioural processes and brain regions associated with depression, and evidence for opioidergic modulation in antidepressant responses. We evaluate clinical trials that have examined the safety and efficacy of opioidergic agents in depression and consider how the opioid system may be involved in the effects of other treatments, including ketamine, that are currently understood to exert antidepressant effects through non-opioidergic actions. Finally, we explore key neurochemical and molecular mechanisms underlying the potential therapeutic effects of opioid system engagement, that together provides a rationale for further investigation into this relevant target in the treatment of depression.
Collapse
|
9
|
Baker J, Gamer M, Rauh J, Brassen S. Placebo induced expectations of mood enhancement generate a positivity effect in emotional processing. Sci Rep 2022; 12:5345. [PMID: 35351936 PMCID: PMC8964732 DOI: 10.1038/s41598-022-09342-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
A perceptual bias towards negative emotions is a consistent finding in mood disorders and a major target of therapeutic interventions. Placebo responses in antidepressant treatment are substantial, but it is unclear whether and how underlying expectancy effects can modulate response biases to emotional inputs. In a first attempt to approach this question, we investigated how placebo induced expectation can shape the perception of specific emotional stimuli in healthy individuals. In a controlled cross-over design, positive treatment expectations were induced by verbal instructions and a hidden training manipulation combined with an alleged oxytocin nasal spray before participants performed an emotion classification task on happy and fearful facial expressions with varying intensity. Analyses of response criterion and discrimination ability as derived from emotion-specific psychometric functions demonstrate that expectation specifically lowered participants’ threshold for identifying happy emotions in general, while they became less sensitive to subtle differences in emotional expressions. These indications of a positivity bias were directly correlated with participants’ treatment expectations as well as subjective experiences of treatment effects and went along with a significant mood enhancement. Our findings show that expectations can induce a perceptual positivity effect in healthy individuals which is probably modulated by top-down emotion regulation and which may be able to improve mood state. Clinical implications of these promising results now need to be explored in studies of expectation manipulation in patients with mood disorders.
Collapse
|
10
|
Huneke NTM, Aslan IH, Fagan H, Phillips N, Tanna R, Cortese S, Garner M, Baldwin DS. Functional Neuroimaging Correlates of Placebo Response in Patients With Depressive or Anxiety Disorders: A Systematic Review. Int J Neuropsychopharmacol 2022; 25:433-447. [PMID: 35078210 PMCID: PMC9211006 DOI: 10.1093/ijnp/pyac009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The mechanisms underlying placebo effects of psychotropic drugs remain poorly understood. We carried out the first, to our knowledge, systematic review of functional neuroimaging correlates of placebo response in adults with anxiety/depressive disorders. METHODS We systematically searched a large set of databases up to February 2021 based on a pre-registered protocol (PROSPERO CRD42019156911). We extracted neuroimaging data related to clinical improvement following placebo or related to placebo mechanisms. We did not perform a meta-analysis due to the small number of included studies and significant heterogeneity in study design and outcome measures. RESULTS We found 12 relevant studies for depressive disorders and 4 for anxiety disorders. Activity in the ventral striatum, rostral anterior cingulate cortex and other default mode network regions, orbitofrontal cortex, and dorsolateral prefrontal cortex correlated with placebo antidepressant responses. Activity in regions of the default mode network, including posterior cingulate cortex, was associated with placebo anxiolysis. There was also evidence for possible involvement of the endogenous opioid, dopamine, and serotonin systems in placebo antidepressant and anxiolytic effects. CONCLUSIONS Several brain regions and molecular systems may be involved in these placebo effects. Further adequately powered studies exploring causality and controlling for confounders are required.
Collapse
Affiliation(s)
- Nathan T M Huneke
- Correspondence: Nathan T. M. Huneke, University Department of Psychiatry, Academic Centre, College Keep, 4-12 Terminus Terrace, Southampton, SO14 3DT, UK ()
| | - Ibrahim H Aslan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK,University Department of Psychiatry, Academic Centre, Southampton, UK
| | - Harry Fagan
- Southern Health National Health Service Foundation Trust, Southampton, UK,University Department of Psychiatry, Academic Centre, Southampton, UK
| | | | - Rhea Tanna
- Southern Health National Health Service Foundation Trust, Southampton, UK
| | - Samuele Cortese
- Solent National Health Service Trust, Southampton, UK,Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK,Hassenfeld Children’s Hospital at NYU Langone, New York University Child Study Center, New York City, New York, USA,Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew Garner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK,School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David S Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK,Southern Health National Health Service Foundation Trust, Southampton, UK,University Department of Psychiatry, Academic Centre, Southampton, UK,University Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Abstract
A placebo is an inert substance normally used in clinical trials for comparison with an active substance. However, a placebo has been shown to have an effect on its own; commonly known as the placebo effect. A placebo is an essential component in the design of conclusive clinical trials but has itself become the focus of intense research. The placebo effect is partly the result of positive expectations of the recipient on the state of health. Conversely, a nocebo effect is when negative expectations from a substance lead to poor treatment outcomes and/or adverse events. Randomized controlled trials in functional urology have demonstrated the importance of the placebo and nocebo effects across different diseases such as overactive bladder, urinary incontinence, lower urinary tract symptoms and interstitial cystitis/painful bladder syndrome, as well as male and female sexual dysfunction. Understanding the true nature of the placebo-nocebo complex and the scope of its effect in functional urology could help urologists to maximize the positive effects of this phenomenon while minimizing its potentially negative effects.
Collapse
|
12
|
Peciña M, Chen J, Lyew T, Karp JF, Dombrovski AY. μ Opioid Antagonist Naltrexone Partially Abolishes the Antidepressant Placebo Effect and Reduces Orbitofrontal Cortex Encoding of Reinforcement. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1002-1012. [PMID: 33684624 PMCID: PMC8419202 DOI: 10.1016/j.bpsc.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Like placebo analgesia, the antidepressant placebo effect appears to involve cortical and subcortical endogenous opioid signaling, yet the mechanism through which opioid release affects mood remains unclear. The orbitofrontal cortex (OFC)-which integrates various attributes of a stimulus to predict associated outcomes-has been implicated in placebo effects and is rich in μ opioid receptors. We hypothesized that naltrexone blockade of μ opioid receptors would blunt OFC-dependent antidepressant placebo effects. METHODS Twenty psychotropic-free patients with major depressive disorder completed a randomized, double-blind, placebo-controlled crossover study of 1 oral dose of 50 mg of naltrexone or matching placebo immediately before completing 2 sessions of the antidepressant placebo functional magnetic resonance imaging task. This task manipulates placebo-associated expectancies and their reinforcement while assessing expected and actual mood improvement. RESULTS Behaviorally, manipulations of antidepressant placebo expectancies and their reinforcement had positive, interactive effects on participants' expectancy and mood ratings. The high-expectancy condition recruited the dorsolateral and ventrolateral prefrontal cortex, as well as dorsal attention stream regions. Interestingly, increased dorsolateral and ventrolateral prefrontal cortex brain responses appeared to attenuate the antidepressant placebo effect. The administration of 1 oral dose of naltrexone, compared with placebo, partially abolished the interaction of the expectancy and reinforcement manipulation on mood and blocked reinforcement-induced responses in the right central OFC. CONCLUSIONS Our results show preliminary evidence for the role of μ opioid central OFC modulation in antidepressant placebo effects by positively biasing the value of placebo based on reinforcement and enhancing subsequent hedonic experiences.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Jiazhou Chen
- National Institutes of Health, Bethesda, Maryland; The Faculty of Brain Sciences, Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Thandi Lyew
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jordan F Karp
- Department of Psychiatry, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
13
|
Rajkumar RP. Does Culture Influence Antidepressant Response? A Preliminary Investigation of Randomized Controlled Trials of Fluoxetine. Cureus 2021; 13:e15079. [PMID: 34017669 PMCID: PMC8129591 DOI: 10.7759/cureus.15079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Contemporary models of depression view the disorder as arising from an interaction between genetic vulnerability and adverse life experiences. The nature of these experiences is strongly influenced by social-cultural factors, and there is preliminary evidence that these factors may influence the response to treatment. Methods In this pilot study, pooled response rates obtained from 56 randomized controlled trials of fluoxetine for major depression, conducted across 21 countries, were analyzed in relation to Hofstede’s six dimensions of culture in these countries, while controlling for methodological quality. Results The cultural dimensions of power distance (r = .62, p = .002), masculinity (r = .45, p = .04) and indulgence (r = -.52, p = .016) were significantly correlated with antidepressant response rates, though only the first of these remained significant after correction for multiple comparisons. On linear regression analysis, the association between power distance and antidepressant response remained significant (β = .62, p = .002). Conclusions These preliminary results suggest that certain cultural factors may be significantly associated with cross-national variations in antidepressant response rates during clinical trials.
Collapse
Affiliation(s)
- Ravi P Rajkumar
- Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
14
|
Peciña M, Dombrovski AY, Price R, Karim HT. Understanding the Neurocomputational Mechanisms of Antidepressant Placebo Effects. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6:e210001. [PMID: 33732892 PMCID: PMC7963355 DOI: 10.20900/jpbs.20210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the last two decades, neuroscientists have used antidepressant placebo probes to examine the biological mechanisms implicated in antidepressant placebo effects. However, findings from these studies have not yet elucidated a model-based theory that would explain the mechanism through which antidepressant expectancies evolve to induce persistent mood changes. Emerging evidence suggests that antidepressant placebo effects may be informed by models of reinforcement learning (RL). Such that an individual's expectation of improvement is updated with the arrival of new sensory evidence, by incorporating a reward prediction error (RPE), which signals the mismatch between the expected (expected value) and perceived improvement. Consistent with this framework, neuroimaging studies of antidepressant placebo effects have demonstrated placebo-induced μ-opioid activation and increased blood-oxygen-level dependent (BOLD) responses in regions tracking expected values (e.g., ventromedial prefrontal cortex (vmPFC)) and RPEs (e.g., ventral striatum (VS)). In this study, we will demonstrate the causal contribution of reward learning signals (expected values and RPEs) to antidepressant placebo effects by experimentally manipulating expected values using transcranial magnetic stimulation (TMS) targeting the vmPFC and μ-opioid striatal RPE signal using pharmacological approaches. We hypothesized that antidepressant placebo expectancies are represented in the vmPFC (expected value) and updated by means of μ-opioid-modulated striatal learning signal. In a 3 × 3 factorial double-blind design, we will randomize 120 antidepressant-free individuals with depressive symptoms to one of three between-subject opioid conditions: the μ-opioid agonist buprenorphine, the μ-opioid antagonist naltrexone, or an inert pill. Within each arm, individuals will be assigned to receive three within-subject counterbalanced forms of TMS targeting the vmPFC-intermittent Theta Burst Stimulation (TBS) expected to potentiate the vmPFC, continuous TBS expected to de-potentiate the vmPFC, or sham TBS. These experimental manipulations will be used to modulate trial-by-trial reward learning signals and related brain activity during the Antidepressant Placebo functional MRI (fMRI) Task to address the following aims: (1) investigate the relationship between reward learning signals within the vmPFC-VS circuit and antidepressant placebo effects; (2) examine the causal contribution of vmPFC expected value computations to antidepressant placebo effects; and (3) investigate the causal contribution of μ-opioid-modulated striatal RPEs to antidepressant placebo effects. The proposed study will be the first to investigate the causal contribution of μ-opioid-modulated vmPFC-VS learning signals to antidepressant placebo responses, paving the way for developing novel treatments modulating learning processes and objective means of quantifying and potentially reducing placebo effects during drug development. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04276259.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Rebecca Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Chahal R, Gotlib IH, Guyer AE. Research Review: Brain network connectivity and the heterogeneity of depression in adolescence - a precision mental health perspective. J Child Psychol Psychiatry 2020; 61:1282-1298. [PMID: 32458453 PMCID: PMC7688558 DOI: 10.1111/jcpp.13250] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Adolescence is a period of high risk for the onset of depression, characterized by variability in symptoms, severity, and course. During adolescence, the neurocircuitry implicated in depression continues to mature, suggesting that it is an important period for intervention. Reflecting the recent emergence of 'precision mental health' - a person-centered approach to identifying, preventing, and treating psychopathology - researchers have begun to document associations between heterogeneity in features of depression and individual differences in brain circuitry, most frequently in resting-state functional connectivity (RSFC). METHODS In this review, we present emerging work examining pre- and post-treatment measures of network connectivity in depressed adolescents; these studies reveal potential intervention-specific neural markers of treatment efficacy. We also review findings from studies examining associations between network connectivity and both types of depressive symptoms and response to treatment in adults, and indicate how this work can be extended to depressed adolescents. Finally, we offer recommendations for research that we believe will advance the science of precision mental health of adolescence. RESULTS Nascent studies suggest that linking RSFC-based pathophysiological variation with effects of different types of treatment and changes in mood following specific interventions will strengthen predictions of prognosis and treatment response. Studies with larger sample sizes and direct comparisons of treatments are required to determine whether RSFC patterns are reliable neuromarkers of treatment response for depressed adolescents. Although we are not yet at the point of using RSFC to guide clinical decision-making, findings from research examining the stability and reliability of RSFC point to a favorable future for network-based clinical phenotyping. CONCLUSIONS Delineating the correspondence between specific clinical characteristics of depression (e.g., symptoms, severity, and treatment response) and patterns of network-based connectivity will facilitate the development of more tailored and effective approaches to the assessment, prevention, and treatment of depression in adolescents.
Collapse
Affiliation(s)
- Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Amanda E. Guyer
- Department of Human Ecology, University of California, Davis, Davis, CA, USA,Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Tursic A, Eck J, Lührs M, Linden DEJ, Goebel R. A systematic review of fMRI neurofeedback reporting and effects in clinical populations. Neuroimage Clin 2020; 28:102496. [PMID: 33395987 PMCID: PMC7724376 DOI: 10.1016/j.nicl.2020.102496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Real-time fMRI-based neurofeedback is a relatively young field with a potential to impact the currently available treatments of various disorders. In order to evaluate the evidence of clinical benefits and investigate how consistently studies report their methods and results, an exhaustive search of fMRI neurofeedback studies in clinical populations was performed. Reporting was evaluated using a limited number of Consensus on the reporting and experimental design of clinical and cognitive-behavioral neurofeedback studies (CRED-NF checklist) items, which was, together with a statistical power and sensitivity calculation, used to also evaluate the existing evidence of the neurofeedback benefits on clinical measures. The 62 found studies investigated regulation abilities and/or clinical benefits in a wide range of disorders, but with small sample sizes and were therefore unable to detect small effects. Most points from the CRED-NF checklist were adequately reported by the majority of the studies, but some improvements are suggested for the reporting of group comparisons and relations between regulation success and clinical benefits. To establish fMRI neurofeedback as a clinical tool, more emphasis should be placed in the future on using larger sample sizes determined through a priori power calculations and standardization of procedures and reporting.
Collapse
Affiliation(s)
- Anita Tursic
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Judith Eck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - Michael Lührs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands.
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
18
|
Rief W. [The role of placebo and nocebo mechanisms in depressive diseases and their treatment]. DER NERVENARZT 2020; 91:675-683. [PMID: 32607602 DOI: 10.1007/s00115-020-00940-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND There is substantial evidence that placebo and nocebo effects occur during treatment with antidepressants. A better understanding of the underlying mechanisms of these effects is necessary to optimize the outcome of treatment and to make clinical studies more sensitive. METHODS Placebo and nocebo mechanisms were analyzed based on empirical studies and the results are summarized in a narrative review. RESULTS Clinical studies and also experimental mechanism-oriented studies underline the effects of placebo and nocebo mechanisms in the treatment with antidepressants. CONCLUSION The success of treatment in the use of antidepressants can be increased and the probability of side effects can be reduced by the effective use of placebo mechanisms and reduction of nocebo effects. The results emphasize the influence of clinician-patient interactions, the role of the treatment context and previous experiences with other treatments of the patient. Simultaneously, the results of this research field stimulate a new understanding of mental disorders, in particular depression and also provide points of reference for optimization of psychotherapeutic treatment.
Collapse
Affiliation(s)
- Winfried Rief
- Psychotherapie Ambulanz, Philipps Universität Marburg, Gutenbergstraße 18, 35032, Marburg, Deutschland.
| |
Collapse
|
19
|
Fede SJ, Dean SF, Manuweera T, Momenan R. A Guide to Literature Informed Decisions in the Design of Real Time fMRI Neurofeedback Studies: A Systematic Review. Front Hum Neurosci 2020; 14:60. [PMID: 32161529 PMCID: PMC7052377 DOI: 10.3389/fnhum.2020.00060] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Although biofeedback using electrophysiology has been explored extensively, the approach of using neurofeedback corresponding to hemodynamic response is a relatively young field. Real time functional magnetic resonance imaging-based neurofeedback (rt-fMRI-NF) uses sensory feedback to operantly reinforce patterns of neural response. It can be used, for example, to alter visual perception, increase brain connectivity, and reduce depression symptoms. Within recent years, interest in rt-fMRI-NF in both research and clinical contexts has expanded considerably. As such, building a consensus regarding best practices is of great value. Objective: This systematic review is designed to describe and evaluate the variations in methodology used in previous rt-fMRI-NF studies to provide recommendations for rt-fMRI-NF study designs that are mostly likely to elicit reproducible and consistent effects of neurofeedback. Methods: We conducted a database search for fMRI neurofeedback papers published prior to September 26th, 2019. Of 558 studies identified, 146 met criteria for inclusion. The following information was collected from each study: sample size and type, task used, neurofeedback calculation, regulation procedure, feedback, whether feedback was explicitly related to changing brain activity, feedback timing, control group for active neurofeedback, how many runs and sessions of neurofeedback, if a follow-up was conducted, and the results of neurofeedback training. Results: rt-fMRI-NF is typically upregulation practice based on hemodynamic response from a specific region of the brain presented using a continually updating thermometer display. Most rt-fMRI-NF studies are conducted in healthy samples and half evaluate its effect on immediate changes in behavior or affect. The most popular control group method is to provide sham signal from another region; however, many studies do not compare use a comparison group. Conclusions: We make several suggestions for designs of future rt-fMRI-NF studies. Researchers should use feedback calculation methods that consider neural response across regions (i.e., SVM or connectivity), which should be conveyed as intermittent, auditory feedback. Participants should be given explicit instructions and should be assessed on individual differences. Future rt-fMRI-NF studies should use clinical samples; effectiveness of rt-fMRI-NF should be evaluated on clinical/behavioral outcomes at follow-up time points in comparison to both a sham and no feedback control group.
Collapse
Affiliation(s)
| | | | | | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Neural Predictors of the Antidepressant Placebo Response. Pharmaceuticals (Basel) 2019; 12:ph12040158. [PMID: 31635043 PMCID: PMC6958379 DOI: 10.3390/ph12040158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
The antidepressant placebo response remains a barrier to the development of novel therapies for depression, despite decades of efforts to identify and methodologically address its clinical correlates. This manuscript reviews recent neuroimaging studies that aim to identify the neural signature of antidepressant placebo response. Data captured in clinical trials have primarily focused on antidepressant efficacy or predicting antidepressant response and have reliably implicated the rostral anterior cingulate cortex (rACC) in antidepressant placebo response, but also in medication response. Imaging and electroencephalography (EEG) experiments specifically interrogating the mechanism of antidepressant placebo response, while few, suggest the reward network, including opiate neurotransmission, is also involved. Therefore, while the rACC is likely involved in the antidepressant placebo response, its observation in isolation is unlikely to prospectively distinguish antidepressant placebo from medication responders. Instead, future studies of antidepressant placebo response should probe the reward network as a whole and incorporate sophisticated computational analytical approaches.
Collapse
|
21
|
Brown V, Peciña M. Neuroimaging Studies of Antidepressant Placebo Effects: Challenges and Opportunities. Front Psychiatry 2019; 10:669. [PMID: 31616327 PMCID: PMC6768950 DOI: 10.3389/fpsyt.2019.00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022] Open
Abstract
Over the last two decades, neuroscientists have used antidepressant placebo probes to examine the biological mechanisms implicated in expectancies of mood improvement.However, findings from these studies have yet to elucidate a model-based theory that would explain the mechanisms through which antidepressant expectancies evolve to induce persistent mood changes. Compared to other fields, the development of experimental models of antidepressant placebo effects faces significant challenges, such as the delayed mechanism of action of conventional antidepressants and the complex internal dynamics of mood. Still, recent neuroimaging studies of antidepressant placebo effects have shown remarkable similarities to those observed in other disciplines (e.g., placebo analgesia), such as placebo-induced increased µ-opioid signaling and blood-oxygen-level dependent (BOLD) responses in areas involved in cognitive control, the representation of expected values and reward and emotional processing. This review will summarize these findings and the challenges and opportunities that arise from applying methodologies used in the field of placebo analgesia into the field of antidepressant placebo effects.
Collapse
Affiliation(s)
| | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|