1
|
Yang Y, Huo S, Wang J, Maurer U. Spectral and Topological Abnormalities of Resting and Task State EEG in Chinese Children with Developmental Dyslexia. Brain Topogr 2025; 38:50. [PMID: 40493313 DOI: 10.1007/s10548-025-01123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/25/2025] [Indexed: 06/12/2025]
Abstract
Developmental dyslexia (DD) is a common reading disorder with neurological underpinnings; however, it remains unclear whether Chinese children with DD exhibit spectral power or network topology abnormalities. This study investigated spectral power and brain network topology abnormalities using electroencephalography (EEG) during resting states and a one-back Chinese-Korean character task in 85 Hong Kong Chinese children with DD and 51 typically developing peers (ages 7-11). EEG signals were transformed using the Fast Fourier Transform to estimate spectral power. Functional connectivity matrices were derived using the phase-lag index, and network topology was assessed via minimum spanning tree (MST) analysis. The results suggested that children with DD showed reduced alpha power over central, frontal, temporal, parietal, and occipital scalp areas at rest, and over central and frontal areas during the task. MST results revealed decreased beta band integration at rest but increased alpha band integration during the one-back task. Familiar Chinese stimuli elicited greater alpha and beta power and lower beta band integration compared to unfamiliar Korean stimuli. Moreover, resting-state beta band integration correlated positively with reading fluency in children with DD. These findings point to inhibitory control deficits and cortical hyperactivation in Chinese DD, reflected in disrupted large-scale network topology, and highlight the alpha band as a potential biomarker. They also demonstrate that language familiarity modulates neural efficiency and recruits compensatory networks. Overall, the study provides new insights into the neural basis of reading difficulties in Chinese children with DD.
Collapse
Affiliation(s)
- Yaqi Yang
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuting Huo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Wang
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Developmental Psychology, The Chinese University of Hong Kong, Hong Kong, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Smullen D, Bagshaw AP, Shalev L, Tsafrir S, Kolodny T, Mevorach C. White matter properties in fronto-parietal tracts predict maladaptive functional activation and deficient response inhibition in ADHD. Sci Rep 2025; 15:19906. [PMID: 40481036 PMCID: PMC12144249 DOI: 10.1038/s41598-025-02326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/13/2025] [Indexed: 06/11/2025] Open
Abstract
Response inhibition is a key characteristic of adaptive human behaviour. However, in attention deficit hyperactivity disorder (ADHD) it is often impaired. Previous neuroimaging investigations implicate a myriad of brain networks in response inhibition, making it more difficult to understand and overcome response inhibition difficulties. Recently, it has been suggested that a specific fronto-parietal functional circuitry between the inferior frontal gyrus (IFG) and the intraparietal sulcus (IPS), dictates the recruitment of the IPS during response inhibition in ADHD. To ascertain the critical role of the IFG-IPS functional circuit and its relevance to response inhibition in ADHD, it is crucial to understand the underlying structural architecture of this circuit so that the functional relevance could be interpreted correctly. Here we investigated the white matter pathways connecting the IFG and IPS using seed-based probabilistic tractography on diffusion data in 33 ADHD and 19 neurotypicals, assessing their impact on both IPS recruitment during response inhibition and on response inhibition performance in a Go/No-go task. Our results showed that individual differences in the structural properties of the IPS-IFG circuit, including tract volume and diffusivity, were linked to IPS activation and even predicted response inhibition performance outside the scanner. These findings highlight the structural-functional coupling within the IFG-IPS circuit in response inhibition in ADHD and suggest a structural basis for maladaptive functional top-down control in deficient inhibition in ADHD.
Collapse
Affiliation(s)
- Daniel Smullen
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Lilach Shalev
- Constantiner School of Education and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Tamar Kolodny
- Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Psychology, University of Washington, Seattle, WA, US.
- Department of Psychology, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Carmel Mevorach
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Devor T, Einziger T, Ben‐Shachar MS, Klein C, Auerbach JG, Berger A. Reduced Theta Inter-Trial Phase Coherence in Error Processing: A Marker of Neural Dysfunction in Attention Deficit Hyperactivity Disorder. Psychophysiology 2025; 62:e14764. [PMID: 39817345 PMCID: PMC11736539 DOI: 10.1111/psyp.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Cognitive control deficits and increased intra-subject variability have been well established as core characteristics of attention deficit hyperactivity disorder (ADHD), and there is a growing interest in their expression at the neural level. We aimed to study neural variability in ADHD, as reflected in theta inter-trial phase coherence (ITC) during error processing, a process that involves cognitive control. We examined both traditional event-related potential (ERP) measures of error processing (i.e., error-related negativity [ERN] and error-positivity [Pe]) and theta ITC within a prospective longitudinal study of children at familial risk for ADHD. The participants were 63 male adolescents who were followed since birth. At the age of 17 years old, they performed the stop-signal task (SST) while an electroencephalogram (EEG) recording was continuously carried out. The EEG data from the trials in which the subjects failed to inhibit their response were used to calculate three different neurophysiological measures (i.e., ERN, Pe, and theta ITC). Consistent with our hypotheses, theta ITC during error processing predicted ADHD symptomatology above and beyond the traditional ERP measures. Moreover, we found that ADHD symptoms throughout childhood were uniquely associated with theta ITC, beyond ADHD symptomatology during adolescence. Overall, our findings strengthen the view of increased neural variability (as reflected by theta ITC) as a neurophysiological characteristic of a core neural dysfunction in ADHD.
Collapse
Affiliation(s)
- Tali Devor
- Department of PsychologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Tzlil Einziger
- Department of Behavioral SciencesRuppin Academic CenterEmek HeferIsrael
| | | | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Medical FacultyUniversity of FreiburgFreiburgGermany
- Department of Child and Adolescent Psychiatry, Medical FacultyUniversity of CologneCologneGermany
- 2nd Department of PsychiatryNational and Kapodistrian University of AthensAthensGreece
| | - Judith G. Auerbach
- Department of PsychologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Andrea Berger
- Department of PsychologyBen‐Gurion University of the NegevBeer ShevaIsrael
- School of Brain Sciences and CognitionBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
4
|
Shastri GG, Sudre G, Ahn K, Jung B, Kolachana B, Auluck PK, Elnitski L, Shaw P. Examining epigenetic aging in the post-mortem brain in attention deficit hyperactivity disorder. Front Genet 2024; 15:1480761. [PMID: 39440240 PMCID: PMC11493619 DOI: 10.3389/fgene.2024.1480761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Mathematical algorithms known as "epigenetic clocks" use methylation values at a set of CpG sites to estimate the biological age of an individual in a tissue-specific manner. These clocks have demonstrated both acceleration and delays in epigenetic aging in multiple neuropsychiatric conditions, including schizophrenia and neurodevelopmental disorders such as autism spectrum disorder. However, no study to date has examined epigenetic aging in ADHD despite its status as one of the most prevalent neurodevelopmental conditions, with 1 in 9 children having ever received an ADHD diagnosis in the US. Only a handful of studies have examined epigenetic age in brain tissue from neurodevelopmental conditions, with none focused on ADHD, despite the obvious relevance to pathogenesis. Thus, here we asked if post-mortem brain tissue in those with lifetime histories of ADHD would show accelerated or delayed epigenetic age, as has been found for other neurodevelopmental conditions. We applied four different epigenetic clocks to estimate epigenetic age in individuals with ADHD and unaffected controls from cortical (anterior cingulate cortex, N = 55) and striatal (caudate, N = 56) post-mortem brain tissue, as well as peripheral blood (N = 84) and saliva (N = 112). After determining which epigenetic clock performed best in each tissue, we asked if ADHD was associated with altered biological aging in corticostriatal brain and peripheral tissues. We found that a range of epigenetic clocks accurately predicted chronological age in all tissues. We also found that a diagnosis of ADHD was not significantly associated with differential epigenetic aging, neither for the postmortem ACC or caudate, nor for peripheral tissues. These findings held when accounting for comorbid psychiatric diagnoses, substance use, and stimulant medication. Thus, in this study of epigenetic clocks in ADHD, we find no evidence of altered epigenetic aging in corticostriatal brain regions nor in peripheral tissue. We consider reasons for this unexpected finding, including the limited sampling of brain regions, the age range of individuals studied, and the possibility that processes that accelerate epigenetic age may be counteracted by the developmental delay posited in some models of ADHD.
Collapse
Affiliation(s)
- Gauri G. Shastri
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
- Zucker Hillside Hospital, Northwell Health, New York, United States
| | - Gustavo Sudre
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Kwangmi Ahn
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Benjamin Jung
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Pavan K. Auluck
- Human Brain Collection Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Philip Shaw
- Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
- Pears Maudsley Center for Children and Young People, King’s College, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| |
Collapse
|
5
|
Chen IC, Chang CL, Huang IW, Chang MH, Ko LW. Electrophysiological functional connectivity and complexity reflecting cognitive processing speed heterogeneity in young children with ADHD. Psychiatry Res 2024; 340:116100. [PMID: 39121760 DOI: 10.1016/j.psychres.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Early intervention is imperative for young children with attention-deficit/hyperactivity disorder (ADHD) who manifest heterogeneous neurocognitive deficits. The study investigated the functional connectivity and complexity of brain activity among young children with ADHD exhibiting a fast cognitive processing speed (ADHD-F, n = 26), with ADHD exhibiting a slow cognitive processing speed (ADHD-S, n = 17), and typically developing children (n = 35) using wireless electroencephalography (EEG) during rest and task conditions. During rest, compared with the typically developing group, the ADHD-F group displayed lower long-range intra-hemispheric connectivity, while the ADHD-S group had lower frontal beta inter-hemispheric connectivity. During task performance, the ADHD-S group displayed lower frontal beta inter-hemispheric connectivity than the typically developing group. The ADHD-S group had lower frontal inter-hemispheric connectivity in broader frequency bands than the ADHD-F group, indicating ADHD heterogeneity in mental processing speed. Regarding complexity, the ADHD-S group tended to show lower frontal entropy estimators than the typically developing group during the task condition. These findings suggest that the EEG profile of brain connectivity and complexity can aid the early clinical diagnosis of ADHD, support subgrouping young children with ADHD based on cognitive processing speed heterogeneity, and may contain specific novel neural biomarkers for early intervention planning.
Collapse
Affiliation(s)
- I-Chun Chen
- Department of Physical Medicine and Rehabilitation, Ton-Yen General Hospital, Hsinchu, Taiwan, ROC; Department of Early Childhood Education and Care, Minghsin University of Science and Technology, Hsinchu, Taiwan, ROC; International Ph.D. Program in Interdisciplinary Neuroscience, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.
| | | | - I-Wen Huang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC
| | - Meng-Han Chang
- Department of Psychiatry, Ton-Yen General Hospital, Hsinchu, Taiwan, ROC
| | - Li-Wei Ko
- Department of Electronics and Electrical Engineering, Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC; Department of Biomedical Science and Environment Biology, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
6
|
Michelini G, Carlisi CO, Eaton NR, Elison JT, Haltigan JD, Kotov R, Krueger RF, Latzman RD, Li JJ, Levin-Aspenson HF, Salum GA, South SC, Stanton K, Waldman ID, Wilson S. Where do neurodevelopmental conditions fit in transdiagnostic psychiatric frameworks? Incorporating a new neurodevelopmental spectrum. World Psychiatry 2024; 23:333-357. [PMID: 39279404 PMCID: PMC11403200 DOI: 10.1002/wps.21225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Features of autism spectrum disorder, attention-deficit/hyperactivity disorder, learning disorders, intellectual disabilities, and communication and motor disorders usually emerge early in life and are associated with atypical neurodevelopment. These "neurodevelopmental conditions" are grouped together in the DSM-5 and ICD-11 to reflect their shared characteristics. Yet, reliance on categorical diagnoses poses significant challenges in both research and clinical settings (e.g., high co-occurrence, arbitrary diagnostic boundaries, high within-disorder heterogeneity). Taking a transdiagnostic dimensional approach provides a useful alternative for addressing these limitations, accounting for shared underpinnings across neurodevelopmental conditions, and characterizing their common co-occurrence and developmental continuity with other psychiatric conditions. Neurodevelopmental features have not been adequately considered in transdiagnostic psychiatric frameworks, although this would have fundamental implications for research and clinical practices. Growing evidence from studies on the structure of neurodevelopmental and other psychiatric conditions indicates that features of neurodevelopmental conditions cluster together, delineating a "neurodevelopmental spectrum" ranging from normative to impairing profiles. Studies on shared genetic underpinnings, overlapping cognitive and neural profiles, and similar developmental course and efficacy of support/treatment strategies indicate the validity of this neurodevelopmental spectrum. Further, characterizing this spectrum alongside other psychiatric dimensions has clinical utility, as it provides a fuller view of an individual's needs and strengths, and greater prognostic utility than diagnostic categories. Based on this compelling body of evidence, we argue that incorporating a new neurodevelopmental spectrum into transdiagnostic frameworks has considerable potential for transforming our understanding, classification, assessment, and clinical practices around neurodevelopmental and other psychiatric conditions.
Collapse
Affiliation(s)
- Giorgia Michelini
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Christina O Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Nicholas R Eaton
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - John D Haltigan
- Department of Psychiatry, Division of Child and Youth Mental Health, University of Toronto, Toronto, ON, Canada
| | - Roman Kotov
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Giovanni A Salum
- Child Mind Institute, New York, NY, USA
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Psiquiatria do Desenvolvimento para a Infância e Adolescência, São Paulo, Brazil
| | - Susan C South
- Department of Psychological Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Kasey Stanton
- Department of Psychology, University of Wyoming, Laramie, WY, USA
| | - Irwin D Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Bandeira CE, Grevet EH, Vitola ES, da Silva BS, Cupertino RB, Picon FA, Ito LT, Tavares MEDA, Rovaris DL, Grimm O, Bau CHD. Exploring Neuroimaging Association Scores in adulthood ADHD and middle-age trajectories. J Psychiatr Res 2024; 176:348-353. [PMID: 38936238 DOI: 10.1016/j.jpsychires.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder associated with brain differences in children, but not in adults. A combined evaluation of the regional brain differences could improve statistical power and, consequently, allow the detection of possible effects in adults. Thus, our aim is to verify whether Neuroimaging Association Scores (NAS) are associated with adulthood ADHD and clinical trajectories of the disorder in midlife. Clinical and neuroimaging data were collected for 121 subjects with ADHD (mean age: 47.1 ± 10.5; 43% male) and 82 controls (mean age: 38.2 ± 9.0; 54.9% male). Cases were assessed seven and thirteen years after baseline diagnosis, and their clinical trajectories were classified as stable if they fulfilled ADHD diagnosis in all assessments or unstable if they presented remission and recurrence of symptoms. Neuroimaging data were acquired in the last clinical assessment (thirteen years after baseline) and NAS were calculated as a weighted sum of the associations previously reported by meta-analyses for three types of structural brain modalities: cortical thickness, cortical surface area, and subcortical volume. The NAS for cortical surface area was higher in cases compared to controls. No association was found for NAS and number of symptoms of ADHD or clinical trajectories. The fact that differences were restricted to ADHD diagnostic status suggests a susceptibility effect that is not extended to subtle aspects of the disorder. Our results also suggest that evaluating overall effects may have advantages especially when applied to adult ADHD samples.
Collapse
Affiliation(s)
- Cibele Edom Bandeira
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, Brazil
| | - Eugenio Horacio Grevet
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Psychiatry, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Schneider Vitola
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Santos da Silva
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Felipe Almeida Picon
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Toshio Ito
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil; Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Eduarda de Araujo Tavares
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Luiz Rovaris
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Physiological Genomics of Mental Health (PhysioGen Lab), Instituto de Ciencias Biomedicas da Universidade de São Paulo, São Paulo, Brazil
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Claiton Henrique Dotto Bau
- ADHD Outpatient Program, Clinical Research Center, Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratory of Developmental Psychiatry, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Haigh A, Buckby B. Rhythmic Attention and ADHD: A Narrative and Systematic Review. Appl Psychophysiol Biofeedback 2024; 49:185-204. [PMID: 38198019 DOI: 10.1007/s10484-023-09618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
In recent decades, a growing body of evidence has confirmed the existence of rhythmic fluctuations in attention, but the effect of inter-individual variations in these attentional rhythms has yet to be investigated. The aim of this review is to identify trends in the attention deficit/hyperactivity disorder (ADHD) literature that could be indicative of between-subject differences in rhythmic attention. A narrative review of the rhythmic attention and electrophysiological ADHD research literature was conducted, and the commonly-reported difference in slow-wave power between ADHD subjects and controls was found to have the most relevance to an understanding of rhythmic attention. A systematic review of the literature examining electrophysiological power differences in ADHD was then conducted to identify studies with conditions similar to those utilised in the rhythmic attention research literature. Fifteen relevant studies were identified and reviewed. The most consistent finding in the studies reviewed was for no spectral power differences between ADHD subjects and controls. However, the strongest trend in the studies reporting power differences was for higher power in the delta and theta frequency bands and lower power in the alpha band. In the context of rhythmic attention, this trend is suggestive of a slowing in the frequency and/or increase in the amplitude of the attentional oscillation in a subgroup of ADHD subjects. It is suggested that this characteristic electrophysiological modulation could be indicative of a global slowing of the attentional rhythm and/or an increase in the rhythmic recruitment of neurons in frontal attention networks in individuals with ADHD.
Collapse
Affiliation(s)
- Andrew Haigh
- Department of Psychology, James Cook University, Townsville, Australia.
| | - Beryl Buckby
- Department of Psychology, James Cook University, Townsville, Australia
| |
Collapse
|
9
|
Lin JW, Fan ZC, Tzou SC, Wang LJ, Ko LW. Temporal Alpha Dissimilarity of ADHD Brain Network in Comparison With CPT and CATA. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1333-1343. [PMID: 38289841 DOI: 10.1109/tnsre.2024.3360137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a chronic neurological and psychiatric disorder that affects children during their development. To find neural patterns for ADHD and provide subjective features as decision references to assist specialists and physicians. Many studies have been devoted to investigating the neural dynamics of the brain through resting-state or continuous performance tests (CPT) with EEG or functional magnetic resonance imaging (fMRI). The present study used coherence, which is one of the functional connectivity (FC) methods, to analyze the neural patterns of children and adolescents (8-16 years old) under CPT and continuous auditory test of attention (CATA) task. In the meantime, electroencephalography (EEG) oscillations were recorded by a wireless brain-computer interface (BCI). 72 children were enrolled, of which 53 participants were diagnosed with ADHD and 19 presented to be typical developing (TD). The experimental results exhibited a higher difference in alpha and theta bands between the TD group and the ADHD group. While the differences between the TD group and the ADHD group in all four frequency domains were greater than under CPT conditions. Statistically significant differences ( [Formula: see text]) were observed between the ADHD and TD groups in the alpha rhythm during the CATA task in the short-range of coherence. For the temporal lobe FC during the CATA task, the TD group exhibited statistically significantly FC ( [Formula: see text]) in the alpha rhythm compared to the ADHD group. These findings offering new possibilities for more techniques and diagnostic methods in finding more ADHD features. The differences in alpha and beta frequencies were more pronounced in the ADHD group during the CPT task compared to the CATA task. Additionally, the disparities in brain activity were more evident across delta, theta, alpha and beta frequency domains when the task given was a CATA as opposed to a CPT. The findings presented the underlying mechanisms of the FC differences between children and adolescents with ADHD. Moreover, these findings should extend to use machine learning approaches to assist the ADHD classification and diagnosis.
Collapse
|
10
|
Abedinzadeh Torghabeh F, Hosseini SA, Modaresnia Y. Potential biomarker for early detection of ADHD using phase-based brain connectivity and graph theory. Phys Eng Sci Med 2023; 46:1447-1465. [PMID: 37668834 DOI: 10.1007/s13246-023-01310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
This research investigates an efficient strategy for early detection and intervention of attention-deficit hyperactivity disorder (ADHD) in children. ADHD is a neurodevelopmental condition characterized by inattention and hyperactivity/impulsivity symptoms, which can significantly impact a child's daily life. This study employed two distinct brain functional connectivity measurements to assess our approach across various local graph features. Six common classifiers are employed to distinguish between children with ADHD and healthy control. Based on the phase-based analysis, the study proposes two biomarkers that differentiate children with ADHD from healthy control, with a remarkable accuracy of 99.174%. Our findings suggest that subgraph centrality of phase-lag index brain connectivity within the beta and delta frequency bands could be a promising biomarker for ADHD diagnosis. Additionally, we identify node betweenness centrality of inter-site phase clustering connectivity within the delta and theta bands as another potential biomarker that warrants further exploration. These biomarkers were validated using a t-statistical test and yielded a p-value of under 0.05, which approved their significant difference in these two groups. Suggested biomarkers have the potential to improve the accuracy of ADHD diagnosis and could help identify effective intervention strategies for children with the condition.
Collapse
Affiliation(s)
| | - Seyyed Abed Hosseini
- Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Yeganeh Modaresnia
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
11
|
Asadi-Pooya AA, Farazdaghi M, Asadi-Pooya H, Fazelian K. Attention deficit hyperactivity disorder in patients with seizures: Functional seizures vs. epilepsy. J Clin Neurosci 2023; 115:20-23. [PMID: 37459827 DOI: 10.1016/j.jocn.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND We investigated the rates of positive screening for attention deficit-hyperactivity disorder (ADHD) in adults with seizures [i.e., focal epilepsy vs. idiopathic generalized epilepsy (IGE) vs. functional seizures (FS)]. We hypothesized that the rates of positive screening for ADHD are different between these three groups of patients. METHODS This was a cross sectional study. Patients, 19 to 55 years of age, with a diagnosis of IGE, focal epilepsy or FS were investigated at the outpatient epilepsy clinic at Shiraz University of Medical Sciences, Shiraz, Iran, from September 2022 until January 2023 and during their follow-up visits. We used the validated Persian version of Adult ADHD Self-Report Scale (ASRS v1.1)15 to investigate and screen for ADHD in these patients. RESULTS Forty patients with focal epilepsy, 40 with IGE, and 40 with FS were included. Attention deficit-hyperactivity disorder (ADHD) screening was positive in 35% of patients with FS, in 30% of those with focal epilepsy (compared with FS, p = 0.633), and in 10% of patients with IGE (compared with FS, p = 0.007). CONCLUSION Adult patients with functional seizures and those with focal epilepsy are at a high risk of self-reporting experiences that could be characteristic of ADHD. Screening tools [e.g., Adult ADHD Self-Report Scale (ASRS v1.1)] are useful to help clinicians address seizure comorbidities such as ADHD. However, a clinical diagnosis of ADHD should be ascertained in a patient with positive screening.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohsen Farazdaghi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khatereh Fazelian
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Zanus C, Miladinović A, De Dea F, Skabar A, Stecca M, Ajčević M, Accardo A, Carrozzi M. Sleep Spindle-Related EEG Connectivity in Children with Attention-Deficit/Hyperactivity Disorder: An Exploratory Study. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1244. [PMID: 37761543 PMCID: PMC10530036 DOI: 10.3390/e25091244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder with known brain abnormalities but no biomarkers to support clinical diagnosis. Recently, EEG analysis methods such as functional connectivity have rekindled interest in using EEG for ADHD diagnosis. Most studies have focused on resting-state EEG, while connectivity during sleep and spindle activity has been underexplored. Here we present the results of a preliminary study exploring spindle-related connectivity as a possible biomarker for ADHD. We compared sensor-space connectivity parameters in eight children with ADHD and nine age/sex-matched healthy controls during sleep, before, during, and after spindle activity in various frequency bands. All connectivity parameters were significantly different between the two groups in the delta and gamma bands, and Principal Component Analysis (PCA) in the gamma band distinguished ADHD from healthy subjects. Cluster coefficient and path length values in the sigma band were also significantly different between epochs, indicating different spindle-related brain activity in ADHD.
Collapse
Affiliation(s)
- Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Aleksandar Miladinović
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Federica De Dea
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Aldo Skabar
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Matteo Stecca
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| |
Collapse
|
13
|
Sun S, Denyer H, Sankesara H, Deng Q, Ranjan Y, Conde P, Rashid Z, Bendayan R, Asherson P, Bilbow A, Groom M, Hollis C, Folarin AA, Dobson RJB, Kuntsi J. Remote Administration of ADHD-Sensitive Cognitive Tasks: A Pilot Study. J Atten Disord 2023; 27:1040-1050. [PMID: 37269091 PMCID: PMC10291103 DOI: 10.1177/10870547231172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE We assessed the feasibility and validity of remote researcher-led administration and self-administration of modified versions of two cognitive tasks sensitive to ADHD, a four-choice reaction time task (Fast task) and a combined Continuous Performance Test/Go No-Go task (CPT/GNG), through a new remote measurement technology system. METHOD We compared the cognitive performance measures (mean and variability of reaction times (MRT, RTV), omission errors (OE) and commission errors (CE)) at a remote baseline researcher-led administration and three remote self-administration sessions between participants with and without ADHD (n = 40). RESULTS The most consistent group differences were found for RTV, MRT and CE at the baseline researcher-led administration and the first self-administration, with 8 of the 10 comparisons statistically significant and all comparisons indicating medium to large effect sizes. CONCLUSION Remote administration of cognitive tasks successfully captured the difficulties with response inhibition and regulation of attention, supporting the feasibility and validity of remote assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Bilbow
- ADDISS, The National Attention Deficit Disorder Information and Support Service, Edgware, Middlesex, UK
| | | | | | - Amos A. Folarin
- King’s College London, UK
- University College London, UK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, UK
| | - Richard J. B. Dobson
- King’s College London, UK
- University College London, UK
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, UK
| | | |
Collapse
|
14
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
15
|
Halse M, Steinsbekk S, Hammar Å, Wichstrøm L. Longitudinal relations between impaired executive function and symptoms of psychiatric disorders in childhood. J Child Psychol Psychiatry 2022; 63:1574-1582. [PMID: 35478317 PMCID: PMC9790505 DOI: 10.1111/jcpp.13622] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Malfunctioning of executive functions correlates with psychopathology in children. However, the directionality, the extent to which the relation varies for various disorders, and whether prospective relations afford causal interpretations are not known. METHODS A community sample of Norwegian children (n = 874) was studied biennially from the age of 6 to 14 years. Executive functions were assessed using the Behavior Rating Inventory of Executive Function Teacher-report and symptoms of psychopathology were assessed using the Preschool Age Psychiatric Assessment (age 6; parents) and Child and Adolescent Psychiatric Assessment (ages 8-14; children and parents). Prospective reciprocal relations were examined using a random intercept cross-lagged panel model that adjusts for all unobserved time-invariant confounders. RESULTS Even when time-invariant confounders were accounted for, reduced executive functions predicted increased symptoms of depressive disorders, anxiety disorders, attention-deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD) 2 years later, even when previous changes in these symptoms were adjusted for. The level of prediction (B = .83, 95% CI [.37, 1.3]) was not different for different disorders or ages. Conversely, reduced executive functions were predicted by increased symptoms of all disorders (B = .01, 95% CI [.01, .02]). CONCLUSIONS Reduced executive functioning may be involved in the etiology of depression, anxiety, ADHD, and ODD/CD to an equal extent. Moreover, increased depression, anxiety, ADHD, and ODD/CD may negatively impact executive functioning.
Collapse
Affiliation(s)
- Marte Halse
- Norwegian University of Science and TechnologyTrondheimNorway
| | | | | | - Lars Wichstrøm
- Norwegian University of Science and TechnologyTrondheimNorway,Department of Child and Adolescent PsychiatrySt. Olavs HospitalTrondheimNorway
| |
Collapse
|
16
|
Kumar U, Arya A, Agarwal V. Altered functional connectivity in children with ADHD while performing cognitive control task. Psychiatry Res Neuroimaging 2022; 326:111531. [PMID: 36055037 DOI: 10.1016/j.pscychresns.2022.111531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Response inhibition is one of the crucial cognitive domains that exhibit deficit in children with ADHD. To further elucidate it, this study examines the task-based functional-connectivity in children with attention deficit hyperactive disorder (ADHD). We acquired the fMRI data of 16 unmedicated children with ADHD and 16 typically developing (TD) children who performed the flanker task. MVPA and seed-based connectivity analysis was performed to identify the abnormal connectivity pattern across the whole brain. MVPA revealed that six important regions, namely the right IFG, right SMA, bilateral precentral gyrus, left DLPFC, and left cerebellum, had abnormal connectivity in children with ADHD while they performed the cognitive control task. Out of these six regions, four were further used for whole-brain seed-based functional connectivity analyses, which revealed patterns of significantly altered connectivity across multiple regions. Signal intensities changes were also extracted to perform BOLD- reaction time (RT) correlation analysis, that suggest positive correlation between left DLPFC and right IFG. Overall, the results suggest that children with ADHD are unable to endure high cognitive control demand. Our findings highlight the utility of analyzing brain connectivity data in identifying the abnormal connectivity in children with ADHD.
Collapse
Affiliation(s)
- Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow India.
| | - Amit Arya
- Department of Psychiatry, King George Medical University, Lucknow India
| | - Vivek Agarwal
- Department of Psychiatry, King George Medical University, Lucknow India
| |
Collapse
|
17
|
Xu XP, Wang W, Wan S, Xiao CF. Convergence mechanism of mindfulness intervention in treating attention deficit hyperactivity disorder: Clues from current evidence. World J Clin Cases 2022; 10:9219-9227. [PMID: 36159418 PMCID: PMC9477656 DOI: 10.12998/wjcc.v10.i26.9219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
This paper reviews the underlying evidence for various aspects of the convergence mechanism of mindfulness intervention in attention deficit hyperactivity disorder (ADHD). There may be compatibility among various ADHD remission models and the therapeutic mechanism of mindfulness intervention in ADHD may be mainly via the convergence mechanism. However, neuroimaging-based analysis of the mechanisms of mindfulness intervention in treating ADHD is lacking. Differences in the efficacy of various subtypes of mindfulness intervention, and corresponding specific imaging changes need further investigation. Future research may focus on the neuroimaging features of specific mindfulness intervention subtypes.
Collapse
Affiliation(s)
- Xin-Peng Xu
- Universal Scientific Education and Research Network, Beijing 100088, China
| | - Wei Wang
- Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Song Wan
- Universal Scientific Education and Research Network, Beijing 100088, China
| | - Chun-Feng Xiao
- Universal Scientific Education and Research Network, Beijing 100088, China
| |
Collapse
|
18
|
Chen IC, Chang CL, Chang MH, Ko LW. Atypical functional connectivity during rest and task-related dynamic alteration in young children with attention deficit hyperactivity disorder: An analysis using the phase-locking value. Psychiatry Clin Neurosci 2022; 76:235-245. [PMID: 35235255 DOI: 10.1111/pcn.13344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
AIM The study investigated the electroencephalography (EEG) functional connectivity (FC) profiles during rest and tasks of young children with attention deficit hyperactivity disorder (ADHD) and typical development (TD). METHODS In total, 78 children (aged 5-7 years) were enrolled in this study; 43 of them were diagnosed with ADHD and 35 exhibited TD. Four FC metrics, coherence, phase-locking value (PLV), pairwise phase consistency, and phase lag index, were computed for feature selection to discriminate ADHD from TD. RESULTS The support vector machine classifier trained by phase-locking value (PLV) features yielded the best performance to differentiate the ADHD from the TD group and was used for further analysis. In comparing PLVs with the TD group at rest, the ADHD group exhibited significantly lower values on left intrahemispheric long interelectrode lower-alpha and beta as well as frontal interhemispheric beta frequency bands. However, the ADHD group showed higher values of central interhemispheric PLVs on the theta, higher-alpha, and beta bands. Regarding PLV alterations within resting and task conditions, left intrahemispheric long interelectrode beta PLVs declined from rest to task in the TD group, but the alterations did not differ in the ADHD group. Negative correlations were observed between frontal interhemispheric beta PLVs and the Disruptive Behavior Disorder Rating Scale as rated by teachers. CONCLUSIONS These results, which complement the findings of other sparse studies that have investigated task-related brain FC dynamics, particularly in young children with ADHD, can provide clinicians with significant and interpretable neural biomarkers for facilitating the diagnosis of ADHD.
Collapse
Affiliation(s)
- I-Chun Chen
- International Ph. D. Program in Interdisciplinary Neuroscience, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Physical Medicine and Rehabilitation, Ton-Yen General Hospital, Hsinchu, Taiwan
| | | | - Meng-Han Chang
- Department of Psychiatry, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Li-Wei Ko
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Brain Research Center and the Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 2022; 16:17-41. [PMID: 35126769 PMCID: PMC8807775 DOI: 10.1007/s11571-021-09689-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 02/03/2023] Open
Abstract
Brain network analysis is one efficient tool in exploring human brain diseases and can differentiate the alterations from comparative networks. The alterations account for time, mental states, tasks, individuals, and so forth. Furthermore, the changes determine the segregation and integration of functional networks that lead to network reorganization (or reconfiguration) to extend the neuroplasticity of the brain. Exploring related brain networks should be of interest that may provide roadmaps for brain research and clinical diagnosis. Recent electroencephalogram (EEG) studies have revealed the secrets of the brain networks and diseases (or disorders) within and between subjects and have provided instructive and promising suggestions and methods. This review summarized the corresponding algorithms that had been used to construct functional or effective networks on the scalp and cerebral cortex. We reviewed EEG network analysis that unveils more cognitive functions and neural disorders of the human and then explored the relationship between brain science and artificial intelligence which may fuel each other to accelerate their advances, and also discussed some innovations and future challenges in the end.
Collapse
|
20
|
Ludyga S, Ishihara T. Brain structural changes and the development of interference control in children with ADHD: The predictive value of physical activity and body mass index. NEUROIMAGE: CLINICAL 2022; 35:103141. [PMID: 36002962 PMCID: PMC9421503 DOI: 10.1016/j.nicl.2022.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Children with ADHD show deficits in interference control during preadolescence. Abnormalities in gray-white matter ratio contributed contribute to these deficits. Higher physical activity and lower body mass index predict higher interference control. Gray-white matter ratio underlies the predictive value of body mass index. Brain structure does not explain the predictive value of physical activity.
Background Children with ADHD face deficits in interference control due to abnormalities in brain structure. A low body mass index and high physical activity are factors promoting brain health and may have the potential to reduce ADHD-related cognitive deficits. We aimed to investigate the predictive values of ADHD, body mass index and physical activity for interference control and the potential mediation of these associations by brain structure. Method At 9 and 11 years, 4576 children with ADHD and neurotypical peers from the ABCD-cohort completed a Flanker task, anthropometric assessments and reported physical activity. Additionally, T1- and T2-weighted magnet resonance images were collected at both measurement time points. Results ADHD, lower physical activity and higher body mass index at baseline predicted lower interference control. Gray matter volume, surface area and gray-white matter ratio contributed to interference control. The longitudinal association between body mass index and interference control was mediated by gray-white-matter ratio. This mediating effect was stronger for children with ADHD than neurotypical peers and mainly restricted to regions associated with cognitive control. Conclusion The maintenance of a lower body mass index contributes to interference control by a tendency to normalize regional alterations in grey-white-matter ratio. Being compliant with physical activity also promises higher interference control, but brain structure does not seem to underlie this association.
Collapse
|
21
|
Abstract
OBJECTIVE We aimed to understand the association between MW frequency and clinical measures, context regulation of MW and group differences in task performance. METHOD 27 adults with ADHD and 29 controls performed tasks manipulating demand on working memory and sustained attention, and recorded their MW frequency using probes. RESULTS A significant association between MW frequency and the clinical measures was demonstrated. Along with increased MW frequency, individuals with ADHD reported decreasing MW frequency during increasing demands on working memory (context regulation), but not on sustained attention (deficient context regulation). Controls, however, maintained continuous task focus across all conditions. Group differences in task performance were no longer significant after adding MW frequency as a covariate. CONCLUSION Deficient context regulation during increasing demands on sustained attention suggests that sustained attention deficits may play a more important role in regulation of MW in ADHD. MW frequency might also underpin performance deficits in ADHD.
Collapse
Affiliation(s)
- Natali Bozhilova
- King’s College London, De
Crespigny Park, UK,Natali Bozhilova, Social, Genetic
and Developmental Psychiatry Centre, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, De Crespigny Park,
London SE5 8AF, UK.
| | - Giorgia Michelini
- King’s College London, De
Crespigny Park, UK,University of California Los
Angeles, USA
| | | | | | - Katya Rubia
- King’s College London, De
Crespigny Park, UK
| | - Philip Asherson
- King’s College London, De
Crespigny Park, UK,Natali Bozhilova, Social, Genetic
and Developmental Psychiatry Centre, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, De Crespigny Park,
London SE5 8AF, UK.
| |
Collapse
|
22
|
Jaeschke RR, Sujkowska E, Sowa-Kućma M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology (Berl) 2021; 238:2667-2691. [PMID: 34436651 PMCID: PMC8455398 DOI: 10.1007/s00213-021-05946-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/31/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Psychostimulants, including methylphenidate (MPH), are the mainstay of pharmacotherapy for attention-deficit/hyperactivity disorder (ADHD) in adults. Even though MPH is the most commonly used medication for ADHD these days, there are relatively few resources available that provide comprehensive insight into the pharmacological and clinical features of the compound. OBJECTIVE The aim of this paper is to provide an up-to-date outline of the pharmacology and clinical utility of MPH for ADHD in adult patients. METHODS While conducting the narrative review, we applied structured search strategies covering the two major online databases (MEDLINE and Cochrane Central Register of Controlled Trials). In addition, we performed handsearching of reference lists of relevant papers. RESULTS Methylphenidate exhibits multimodal mechanism of action, working primarily as a dopamine and noradrenaline reuptake inhibitor. It also protects the dopaminergic system against the ongoing 'wearing off' (by securing a substantial reserve pool of the neurotransmitter, stored in the presynaptic vesicles). In placebo-controlled trials, MPH was shown to be moderately effective both against the core ADHD symptoms (standardized mean difference [SMD], 0.49; 95% confidence interval [CI], 0.35-0.64), and the accompanying emotion regulation deficits (SMD, 0.34; 95% CI, 0.23-0.45). The most common adverse events related to long-term treatment with MPH are decreased appetite (~ 20%), dry mouth (15%), heart palpitations (13%), gastrointestinal infections (~ 10%), and agitation/feeling restless (~ 10%). CONCLUSIONS There is substantial body of evidence to suggest that MPH is an effective and safe treatment option for adults with ADHD.
Collapse
Affiliation(s)
- Rafał R Jaeschke
- Section of Affective Disorders, Department of Psychiatry, Jagiellonian University Medical College, ul. Kopernika 21a, 31-501, Kraków, Poland.
| | - Ewelina Sujkowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, ul. Kopisto 2a, 35-315, Rzeszów, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszów University, ul. Kopisto 2a, 35-315, Rzeszów, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszów University, ul. Warzywna 1a, 35-310, Rzeszów, Poland
| |
Collapse
|
23
|
Carruthers S, Michelini G, Kitsune V, Hosang GM, Brandeis D, Asherson P, Kuntsi J. Early neurophysiological stimulus processing during a performance-monitoring task differentiates women with bipolar disorder from women with ADHD. Psychiatry Res 2021; 303:114088. [PMID: 34252636 DOI: 10.1016/j.psychres.2021.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
Adults with attention-deficit/hyperactivity disorder (ADHD) or bipolar disorder (BD) may display similar cognitive impairments and clinical symptoms, which might reflect shared mechanisms. Initial evidence indicates disorder-specific and overlapping neurophysiological alterations using event-related potentials (ERPs) in individuals with BD or ADHD during attentional tasks, but it is unknown whether impairments generalize across other processes and tasks. We conduct the first comparison between women with ADHD (n = 20), women with BD (n = 20) and control women (n = 20) on ERPs from a performance-monitoring flanker task. The BD group showed a significantly attenuated frontal ERP of conflict monitoring (N2) compared to the ADHD group across both low-conflict (congruent) and high-conflict (incongruent) task conditions, and compared to controls in the high-conflict condition. However, when controlling for an earlier attentional ERP (frontal N1), which was significantly reduced in participants with BD compared to participants with ADHD and controls, N2 group differences were no longer significant. These results indicate that ERP differences in conflict monitoring may be attributable to differences in earlier attentional processes. These findings identify neural differences in early attention between BD and ADHD which precede conflict monitoring processes, potentially pointing to distinct neural mechanisms implicated in the two disorders.
Collapse
Affiliation(s)
- Sophie Carruthers
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK; Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Giorgia Michelini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Viryanaga Kitsune
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Georgina M Hosang
- Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
24
|
Ahmadi M, Kazemi K, Kuc K, Cybulska-Klosowicz A, Helfroush MS, Aarabi A. Disrupted Functional Rich-Club Organization of the Brain Networks in Children with Attention-Deficit/Hyperactivity Disorder, a Resting-State EEG Study. Brain Sci 2021; 11:938. [PMID: 34356174 PMCID: PMC8305540 DOI: 10.3390/brainsci11070938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
Growing evidence indicates that disruptions in the brain's functional connectivity play an important role in the pathophysiology of ADHD. The present study investigates alterations in resting-state EEG source connectivity and rich-club organization in children with inattentive (ADHDI) and combined (ADHDC) ADHD compared with typically developing children (TD) under the eyes-closed condition. EEG source analysis was performed by eLORETA in different frequency bands. The lagged phase synchronization (LPS) and graph theoretical metrics were then used to examine group differences in the topological properties and rich-club organization of functional networks. Compared with the TD children, the ADHDI children were characterized by a widespread significant decrease in delta and beta LPS, as well as increased theta and alpha LPS in the left frontal and right occipital regions. The ADHDC children displayed significant increases in LPS in the central, temporal and posterior areas. Both ADHD groups showed small-worldness properties with significant increases and decreases in the network degree in the θ and β bands, respectively. Both subtypes also displayed reduced levels of network segregation. Group differences in rich-club distribution were found in the central and posterior areas. Our findings suggest that resting-state EEG source connectivity analysis can better characterize alterations in the rich-club organization of functional brain networks in ADHD patients.
Collapse
Affiliation(s)
- Maliheh Ahmadi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran; (M.A.); (M.S.H.)
| | - Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran; (M.A.); (M.S.H.)
| | - Katarzyna Kuc
- Institute of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland;
| | - Anita Cybulska-Klosowicz
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Mohammad Sadegh Helfroush
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz 7155713876, Iran; (M.A.); (M.S.H.)
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (LNFP, EA 4559), University Research Center (CURS), University Hospital, 80054 Amiens, France
- Faculty of Medicine, University of Picardy Jules Verne, 80036 Amiens, France
| |
Collapse
|
25
|
Kangas BD, Iturra-Mena AM, Robble MA, Luc OT, Potter D, Nickels S, Bergman J, Carlezon WA, Pizzagalli DA. Concurrent electrophysiological recording and cognitive testing in a rodent touchscreen environment. Sci Rep 2021; 11:11665. [PMID: 34083596 PMCID: PMC8175731 DOI: 10.1038/s41598-021-91091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
Challenges in therapeutics development for neuropsychiatric disorders can be attributed, in part, to a paucity of translational models capable of capturing relevant phenotypes across clinical populations and laboratory animals. Touch-sensitive procedures are increasingly used to develop innovative animal models that better align with testing conditions used in human participants. In addition, advances in electrophysiological techniques have identified neurophysiological signatures associated with characteristics of neuropsychiatric illness. The present studies integrated these methodologies by developing a rat flanker task with electrophysiological recordings based on reverse-translated protocols used in human electroencephalogram (EEG) studies of cognitive control. Various touchscreen-based stimuli were evaluated for their ability to efficiently gain stimulus control and advance to flanker test sessions. Optimized stimuli were then examined for their elicitation of prototypical visual evoked potentials (VEPs) across local field potential (LFP) wires and EEG skull screws. Of the stimuli evaluated, purple and green photographic stimuli were associated with efficient training and expected flanker interference effects. Orderly stimulus-locked outcomes were also observed in VEPs across LFP and EEG recordings. These studies along with others verify the feasibility of concurrent electrophysiological recordings and rodent touchscreen-based cognitive testing and encourage future use of this integrated approach in therapeutics development.
Collapse
Affiliation(s)
- Brian D. Kangas
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Ann M. Iturra-Mena
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Mykel A. Robble
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Oanh T. Luc
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - David Potter
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Stefanie Nickels
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Jack Bergman
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - William A. Carlezon
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Diego A. Pizzagalli
- grid.38142.3c000000041936754XHarvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
26
|
Shaw P, Sudre G. Adolescent Attention-Deficit/Hyperactivity Disorder: Understanding Teenage Symptom Trajectories. Biol Psychiatry 2021; 89:152-161. [PMID: 32753233 PMCID: PMC7736482 DOI: 10.1016/j.biopsych.2020.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Symptoms of attention-deficit/hyperactivity disorder (ADHD) run a variable course through adolescence. While most affected individuals show some improvement, particularly of hyperactivity-impulsivity, symptoms of inattention are more persistent, and some individuals may meet diagnostic criteria for the first time during adolescence. Genetic factors affect adolescent symptom trajectories; those showing persistence likely carry a greater burden of common risk alleles. Rare structural genomic variants, such as copy number variants and point mutations, might also play a role. Although psychostimulant medication is associated with better functional outcomes, an impact on underlying adolescent symptom trajectories has been hard to demonstrate. At a neural level, several studies report that adolescents whose childhood ADHD symptoms have remitted are indistinguishable from neurotypical individuals. This finding could reflect the "carrying forward" of relatively typical childhood neural features among those destined for adolescent remission or the correction of early childhood anomalies with a convergence toward typical dimensions. Other studies have noted unique, possibly compensatory patterns of neural activity among adolescents whose ADHD has improved. Finally, different neural processes might occur in different brain regions. Thus, some functional imaging studies find that subcortical anomalies reflect the onset of ADHD and remain throughout life regardless of symptom change, whereas the variable clinical course of adolescent ADHD is determined by plasticity of the cerebral cortex. Integrating an understanding of the neural processes with genomic risk could elucidate the mechanisms underlying the complex course of adolescent ADHD.
Collapse
Affiliation(s)
- Philip Shaw
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.
| | - Gustavo Sudre
- Neurobehavioral Clinical Research Section, Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Mamiya PC, Arnett AB, Stein MA. Precision Medicine Care in ADHD: The Case for Neural Excitation and Inhibition. Brain Sci 2021; 11:brainsci11010091. [PMID: 33450814 PMCID: PMC7828220 DOI: 10.3390/brainsci11010091] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has become increasingly prevalent worldwide. Its core symptoms, including difficulties regulating attention, activity level, and impulses, appear in early childhood and can persist throughout the lifespan. Current pharmacological options targeting catecholamine neurotransmissions have effectively alleviated symptoms in some, but not all affected individuals, leaving clinicians to implement trial-and-error approach to treatment. In this review, we discuss recent experimental evidence from both preclinical and human studies that suggest imbalance of excitation/inhibition (E/I) in the fronto-striatal circuitry during early development may lead to enduring neuroanatomical abnormality of the circuitry, causing persistence of ADHD symptoms in adulthood. We propose a model of precision medicine care that includes E/I balance as a candidate biomarker for ADHD, development of GABA-modulating medications, and use of magnetic resonance spectroscopy and scalp electrophysiology methods to monitor the effects of treatments on shifting E/I balance throughout the lifespan.
Collapse
Affiliation(s)
- Ping C. Mamiya
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| | - Anne B. Arnett
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; (A.B.A.); (M.A.S.)
| | - Mark A. Stein
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; (A.B.A.); (M.A.S.)
| |
Collapse
|
28
|
Bozhilova N, Kuntsi J, Rubia K, Michelini G, Asherson P. Electrophysiological modulation of sensory and attentional processes during mind wandering in attention-deficit/hyperactivity disorder. NEUROIMAGE-CLINICAL 2020; 29:102547. [PMID: 33444949 PMCID: PMC7808945 DOI: 10.1016/j.nicl.2020.102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/03/2022]
Abstract
Adults with ADHD relative to controls reported lower P1 during high demands on sustained attention. Adults with ADHD also showed lower P1 during task focus, but not during mind wandering than controls. Increased mind wandering frequency in ADHD might account for these between-group effects.
We recently reported increased mind wandering (MW) frequency in adults with attention-deficit/hyperactivity disorder (ADHD) relative to controls during high demands on sustained attention, reflecting deficient context regulation of MW. Studies on community samples previously linked context regulation of MW with attenuation in brain sensory processes, reflecting perceptual decoupling, and attentional processes during MW compared to task focus. However, the association between deficient context regulation of MW and these neural processes has not been studied in ADHD. We addressed this question by comparing adults with ADHD (N = 23) and controls (N = 25) on event-related potentials of early sensory processes (P1) and attention allocation (P3) during tasks manipulating cognitive demands (high vs low) on working memory and sustained attention, and during periods of MW and task focus measured through experience-sampling. Compared to controls, adults with ADHD showed reduced P1 during high sustained attention demands, as well as reduced P3 during high working memory demands. These group differences were no longer significant after adding MW frequency as a covariate. Across tasks, adults with ADHD showed no differences from controls on the P1 during MW episodes, but attenuated P1 during task focus. P3 was reduced in adults with ADHD compared to controls during MW, but not during task focus during the sustained attention task. These findings converge to indicate that impairments in early sensory processing in individuals with ADHD seem parallel to increased MW frequency and might reflect inefficient adjustments from periods of MW to task focus.
Collapse
Affiliation(s)
- Natali Bozhilova
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College University London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Giorgia Michelini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom; Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, United States
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| |
Collapse
|
29
|
McNorgan C, Judson C, Handzlik D, Holden JG. Linking ADHD and Behavioral Assessment Through Identification of Shared Diagnostic Task-Based Functional Connections. Front Physiol 2020; 11:583005. [PMID: 33391011 PMCID: PMC7773605 DOI: 10.3389/fphys.2020.583005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
A mixed literature implicates atypical connectivity involving attentional, reward and task inhibition networks in ADHD. The neural mechanisms underlying the utility of behavioral tasks in ADHD diagnosis are likewise underexplored. We hypothesized that a machine-learning classifier may use task-based functional connectivity to compute a joint probability function that identifies connectivity signatures that accurately predict ADHD diagnosis and performance on a clinically-relevant behavioral task, providing an explicit neural mechanism linking behavioral phenotype to diagnosis. We analyzed archival MRI and behavioral data of 80 participants (64 male) who had completed the go/no-go task from the longitudinal follow-up of the Multimodal Treatment Study of ADHD (MTA 168) (mean age = 24 years). Cross-mutual information within a functionally-defined mask measured functional connectivity for each task run. Multilayer feedforward classifier models identified the subset of functional connections that predicted clinical diagnosis (ADHD vs. Control) and split-half performance on the Iowa Gambling Task (IGT). A sample of random models trained on functional connectivity profiles predicted validation set clinical diagnosis and IGT performance with 0.91 accuracy and d' > 2.9, indicating very high sensitivity and specificity. We identified the most diagnostic functional connections between visual and ventral attentional networks and the anterior default mode network. Our results show that task-based functional connectivity is a biomarker of ADHD. Our analytic framework provides a template approach that explicitly ties behavioral assessment measures to both clinical diagnosis, and functional connectivity. This may differentiate otherwise similar diagnoses, and promote more efficacious intervention strategies.
Collapse
Affiliation(s)
- Chris McNorgan
- Department of Psychology, University at Buffalo – SUNY, Buffalo, NY, United States
| | - Cary Judson
- Department of Psychology, University at Buffalo – SUNY, Buffalo, NY, United States
| | - Dakota Handzlik
- Department of Computer Science, University at Buffalo – SUNY, Buffalo, NY, United States
| | - John G. Holden
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
30
|
Abstract
Impaired cognition is common in many neuropsychiatric disorders and severely compromises quality of life. Synchronous electrophysiological rhythms represent a core mechanism for sculpting communication dynamics among large-scale brain networks that underpin cognition and its breakdown in neuropsychiatric disorders. Here, we review an emerging neuromodulation technology called transcranial alternating current stimulation that has shown remarkable early results in rapidly improving various domains of human cognition by modulating properties of rhythmic network synchronization. Future noninvasive neuromodulation research holds promise for potentially rescuing network activity patterns and improving cognition, setting groundwork for the development of drug-free, circuit-based therapeutics for people with cognitive brain disorders.
Collapse
Affiliation(s)
- Shrey Grover
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , ,
| | - Robert M G Reinhart
- Department of Psychological & Brain Sciences, Boston University, Boston, Massachusetts 02215, USA; , , .,Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215, USA.,Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts 02215, USA.,Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
31
|
Jang KM, Kim MS, Kim DW. The Dynamic Properties of a Brain Network During Spatial Working Memory Tasks in College Students With ADHD Traits. Front Hum Neurosci 2020; 14:580813. [PMID: 33132887 PMCID: PMC7505193 DOI: 10.3389/fnhum.2020.580813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
This study investigated deficits of spatial working memory in college students with attention-deficit/hyperactivity disorder (ADHD) traits using event-related potentials (ERPs) and the spatial 2-back task. We also computed sensory-level activity using EEG data and investigated theta and alpha neural oscillations, phase-locking values (PLV), and brain networks. Based on the scores from the Adult ADHD Self-Report Scale (ASRS) and Conners' Adult ADHD Rating Scales (CAARS), an ADHD-trait group (n = 40) and a normal control group (n = 41) were selected. Participants were required to respond to whether the presented stimulus was at the same location as that presented two trials earlier. The ADHD-trait group showed significantly slower response times than the control group in the spatial 2-back task. In terms of spectrum, the ADHD-trait group showed significantly reduced theta power than the control group. In contrast, the ADHD-trait group exhibited an increased alpha power compared to the control group with the 250-1000 ms interval after stimulus onset. In terms of the PLV, the ADHD-trait group showed significantly weaker theta phase synchrony and fewer connection numbers in frontal-occipital areas than the control group. In terms of the theta brain network, the ADHD-trait group showed a significantly lower clustering coefficient and longer characteristic path length than the control group for the theta band. The present results indicate that college students with ADHD traits have deficits in spatial working memory and that these abnormal activities in neural oscillation, functional connectivity, and the network may contribute to spatial working memory deficits.
Collapse
Affiliation(s)
- Kyoung-Mi Jang
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - Myung-Sun Kim
- Department of Psychology, Sungshin Women's University, Seoul, South Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| |
Collapse
|
32
|
Bozhilova N, Cooper R, Kuntsi J, Asherson P, Michelini G. Electrophysiological correlates of spontaneous mind wandering in attention-deficit/hyperactivity disorder. Behav Brain Res 2020; 391:112632. [PMID: 32361038 PMCID: PMC7303944 DOI: 10.1016/j.bbr.2020.112632] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 11/18/2022]
Abstract
We recently hypothesised that increased spontaneous mind wandering (MW-S) reflects a core process underlying attention-deficit/hyperactivity disorder (ADHD). Previous studies show that individuals with ADHD and neurotypical individuals with increased MW-S display similar cognitive-performance and electrophysiological (EEG) impairments in attentional processes. However, the cognitive-EEG markers associated with increased MW-S in ADHD remain poorly understood. We therefore investigated such markers in a sample of 69 sex- and age-matched adults with ADHD and 29 controls during the Sustained Attention to Response Task. We compared task performance and EEG measures (P3, time-frequency brain-oscillations) of attentional processes between groups, and examined their association with a validated self-report questionnaire of MW-S. Finally, we tested the hypothesis that MW-S and ADHD diagnosis relate to the same cognitive-EEG impairments using a hierarchical regression model. Compared to controls, adults with ADHD showed attenuations in P3, event-related alpha and beta suppression during response inhibition (No-Go trials), and theta power activations during response execution (Go trials), as well as increased reaction time variability and more commission/omission errors. MW-S was also continuously associated with most cognitive-EEG measures related to ADHD. The hierarchical regressions on measures associated with both ADHD diagnosis and MW-S showed that MW-S did not explain additional variance in the cognitive-EEG markers (except for beta suppression) beyond ADHD diagnosis, and vice versa. These findings are consistent with our hypothesis that ADHD diagnosis and MW-S share common neural deficits, and that MW-S may reflect a core symptom of the disorder.
Collapse
Affiliation(s)
- Natali Bozhilova
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Ruth Cooper
- Newham Centre for Mental Health, Unit for Social and Community Psychiatry, Queen Mary University of London, London, United Kingdom
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Giorgia Michelini
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, United Kingdom; Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 9002/4, United States.
| |
Collapse
|