1
|
Bigdeli TB, Harvey PD. Recent Advances in Schizophrenia Genomics and Emerging Clinical Implications. Psychiatr Clin North Am 2025; 48:311-330. [PMID: 40348420 DOI: 10.1016/j.psc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The conceptualization of schizophrenia has evolved from Emil Kraepelin's identification of "dementia praecox" as a distinct illness characterized by cognitive and functional deficits to the modern understanding of its complex nature. Recent research, including the "deficit syndrome," highlights enduring negative symptoms that correlate with poor functional outcomes. Genetic epidemiologic studies reveal a strong heritable basis (60%-80%) for schizophrenia, with its polygenic architecture overlapping with various mental health disorders. This complexity raises questions about targeted precision medicine. Recent advancements in biobanks and neurogenomics research are providing valuable insights that aim to improve patient outcomes through enhanced genomic understanding.
Collapse
Affiliation(s)
- Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Veterans Affairs (VA) New York Harbor Healthcare System, New York, USA.
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA; Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, FL, USA.
| |
Collapse
|
2
|
Kleymann P, Morgenroth C, Gutwinski S, Bermpohl F, Schulze D, Wagner E, Hasan A, Okhuijsen-Pfeifer C, Luykx JJ, van der Horst MZ, Oviedo-Salcedo T, Schreiter S. Negative symptomatology and clozapine-induced obsessive-compulsive symptoms: a cross-sectional analysis. Eur Arch Psychiatry Clin Neurosci 2025:10.1007/s00406-025-02021-z. [PMID: 40377660 DOI: 10.1007/s00406-025-02021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/13/2025] [Indexed: 05/18/2025]
Abstract
Obsessive-compulsive symptoms (OCS) frequently manifest in individuals with schizophrenia, affecting their prognosis and quality of life. The etiology of OCS in schizophrenia is complex, with theories ranging from subtype-specific manifestations to pharmacological influences. Notably, clozapine has been associated with a higher prevalence of OCS. However, the clinical factors influencing clozapine-induced OCS remain unclear. This cross-sectional study recruited individuals diagnosed with schizophrenia who were using clozapine, as well as a comparison group of individuals diagnosed with schizophrenia who were using other second-generation antipsychotics (SGA). Clinical assessments included OCS which were quantified using the Obsessive-Compulsive Inventory-Revised (OCI-R). 189 Participants were recruited, of whom 129 were taking clozapine and 60 other atypical antipsychotics. Statistical analyses, including moderated regression modeling, identified clinical factors influencing OCS occurrence. Clozapine users exhibited significantly higher OCI-R scores compared to non-clozapine users (p = 0.001). Moderated regression analysis revealed a moderating effect of negative symptom severity, indicating that when negative symptoms increased, the difference in OCI-R scores between clozapine and non-clozapine groups decreased. Other factors like duration of illness, medication duration, and psychopathology severity did not significantly moderate the group differences in OCI-R scores. As negative symptoms worsened, the impact of clozapine on OCS lessened, a pattern not seen with other antipsychotics. This suggests that clozapine's effect on OCS is specific and influenced by different mechanisms. The study recommends screening for OCS in patients with mild negative symptoms and further research into biological markers to better understand clozapine-induced OCS.
Collapse
Affiliation(s)
- Phillip Kleymann
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Carla Morgenroth
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, St. Hedwig-Krankenhaus, Charité-Universitätsmedizin, Berlin, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, St. Hedwig-Krankenhaus, Charité-Universitätsmedizin, Berlin, Germany
| | - Daniel Schulze
- Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Elias Wagner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Augsburg, Germany
- Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Augsburg, Germany
- DZPG (German Center for Mental Health), Partner Site München/Augsburg, Augsburg, Germany
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marte Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tatiana Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital-LMU Munich, Munich, Germany
| | - Stefanie Schreiter
- Department of Psychiatry and Neurosciences, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Lock SK, Kappel DB, Owen MJ, Walters JTR, O'Donovan MC, Pardiñas AF, Legge SE. Antipsychotic and pharmacogenomic effects on cross-sectional symptom severity and cognitive ability in schizophrenia. EBioMedicine 2025; 116:105745. [PMID: 40347835 DOI: 10.1016/j.ebiom.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND People with schizophrenia differ in the type and severity of symptoms experienced, as well as their response to medication. A better understanding of the factors that influence this heterogeneity is necessary for the development of individualised patient care. Here, we sought to investigate the relationships between phenotypic severity and both medication and pharmacogenomic variables in a cross-sectional sample of people with schizophrenia or schizoaffective disorder depressed type. METHODS Confirmatory factor analysis derived five dimensions relating to current symptom severity (positive symptoms, negative symptoms of diminished expressivity, negative symptoms of reduced motivation and pleasure, depression and suicide) and cognitive ability in participants prescribed with antipsychotic medication. Linear models were fit to test for associations between medication and pharmacogenomic variables with dimension scores in the full sample (N = 585), and in a sub-sample of participants prescribed clozapine (N = 215). FINDINGS Lower cognitive ability was associated with higher chlorpromazine-equivalent daily antipsychotic dose (β = -0.12; 95% CI, -0.19 to -0.05; p = 0.001) and with the prescription of clozapine (β = -0.498; 95% CI, -0.65 to -0.35; p = 3 × 10-10) and anticholinergic medication (β = -0.345; 95% CI, -0.55 to -0.14; p = 8 × 10-4). We also found associations between pharmacogenomics-inferred cytochrome P450 (CYP) enzyme activity and symptom dimensions. Increased genotype-predicted CYP2C19 and CYP3A5 activity were associated with reduced severity of the positive (β = -0.108; 95% CI, -0.19 to -0.03; p = 0.009) and both negative symptom dimensions (β = -0.113; 95% CI, -0.19 to -0.03; p = 0.007; β = -0.106; 95% CI, -0.19 to -0.02; p = 0.012), respectively. Faster predicted CYP1A2 activity was associated with higher cognitive dimension scores in people taking clozapine (β = 0.17; 95% CI, 0.05-0.29; p = 0.005). INTERPRETATION Our results confirm the importance of taking account of medication history (and particularly antipsychotic type and dose) in assessing potential correlates of cognitive impairment or poor functioning in patients with schizophrenia. We also highlight the potential for pharmacogenomic variation to be a useful tool to help guide drug prescription, although these findings require further validation. FUNDING Medical Research Council (MR/Y004094/1) and The National Center for Mental Health, funded by the Welsh Government through Health and Care Research Wales. SKL was funded by a PhD studentship from Mental Health Research UK (MHRUK). DBK, JTRW, MCOD and AFP were supported by the European Union's Horizon 2020 research and innovation programme under grant agreement 964874.
Collapse
Affiliation(s)
- Siobhan K Lock
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Djenifer B Kappel
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - James T R Walters
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Michael C O'Donovan
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom
| | - Antonio F Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom.
| | - Sophie E Legge
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, Wales, CF24 4HQ, United Kingdom.
| |
Collapse
|
4
|
Serretti A, Baune BT. Transdiagnostic Effects of Schizophrenia Polygenic Scores on Treatment Outcomes in Major Psychiatric Disorders. Neuropsychiatr Dis Treat 2025; 21:547-562. [PMID: 40098640 PMCID: PMC11912901 DOI: 10.2147/ndt.s514514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025] Open
Abstract
Schizophrenia polygenic risk scores (SCZ PRS) have emerged as important tools for modulating factors not only in schizophrenia but also in major psychiatric disorders, such as major depression (MDD) and bipolar disorder (BD). Initially developed to capture the common variant risk for SCZ, accumulating evidence highlights the transdiagnostic impact of SCZ PRS on clinical severity, treatment response, and functional outcomes. This review synthesizes recent findings on the relationship between SCZ PRS and treatment outcomes across SCZ, BD, and MDD. A higher SCZ PRS is associated with poorer treatment outcomes, including treatment resistance or non-remission to antidepressants in MDD, reduced antipsychotic response in SCZ, and diminished lithium efficacy in BD. SCZ PRS is also linked to persistent negative symptoms, cognitive impairments, and long-term illness severity in SCZ. While the effect sizes are generally modest, integration of SCZ PRS with environmental factors, multiomics, and neuroimaging may enhance predictive accuracy. Despite variability in reported associations, the overarching evidence supports a transdiagnostic influence of SCZ PRS on disease trajectories and treatment responses. As a promising component of precision psychiatry, SCZ PRS holds potential for guiding more targeted and effective interventions. Future research should focus on combining SCZ PRS with multimodal approaches to fully realize its clinical utility.
Collapse
Affiliation(s)
- Alessandro Serretti
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
- Oasi Research Institute-IRCCS, Troina, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
van der Horst MZ, de Boer N, Okhuijsen-Pfeifer C, Luykx JJ. Determinants of patient satisfaction in clozapine users: results from the Clozapine International Consortium (CLOZIN). SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:28. [PMID: 39988615 PMCID: PMC11847932 DOI: 10.1038/s41537-025-00570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Clozapine is highly effective for treatment-resistant schizophrenia but is underutilized due to patient and clinician-related concerns. Little is known about the general level of patient satisfaction with clozapine and determinants thereof. We therefore explored determinants of patient satisfaction with clozapine in individuals diagnosed with schizophrenia spectrum disorders (SSDs). Cross-sectional data from 480 clozapine users were used to examine demographic and clinical factors, including symptom severity, treatment response, and adverse drug reactions (ADRs). Patient satisfaction was self-rated on a scale of 1 to 10. Results showed a mean satisfaction score of 7.4 (SD = 1.9), with significant associations between satisfaction and treatment response (B = 0.42, R² = 0.19, p = 3.9 × 10⁻¹⁸), symptom severity (B = 0.10, R² = 0.05, p = 2.06 × 10-9), occurrence of ADRs (B = -0.16, R² = 0.06, p = 3.2 × 10-5), and recreational drug use (B = -1.32, R² = 0.05, p = 2.09 × 10-4). Hypersalivation and prolonged sleep duration were the only ADRs linked to lower satisfaction (B = -0.72, R² = 0.06, p = 3.5 × 10-5 and B = -0.57, R² = 0.04, p = 1.4 × 10-3, respectively). Despite concerns about ADRs, treatment effectiveness showed a stronger association with patient satisfaction among clozapine users than the occurrence of ADRs. In conclusion, our findings suggest that strategies aimed at bolstering clozapine's effectiveness may help counter worldwide underprescription rates of clozapine in patients with SSDs.
Collapse
Affiliation(s)
- Marte Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- GGNet, Warnsveld, The Netherlands.
| | - Nini de Boer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, The Netherlands
- Neuroscience Mood, Anxiety, Psychosis, Stress & Sleep Research Program, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Public Health Mental Health Research Program, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
6
|
De Brabander EY, van Amelsvoort T, van Westrhenen R, GROUP Investigators. Unidentified CYP2D6 genotype does not affect pharmacological treatment for patients with first episode psychosis. J Psychopharmacol 2024; 38:1111-1121. [PMID: 39344086 PMCID: PMC11528939 DOI: 10.1177/02698811241279022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Research on the pharmacogenetic influence of hepatic CYP450 enzyme 2D6 (CYP2D6) on metabolism of drugs for psychosis and associated outcome has been inconclusive. Some results suggest increased risk of adverse reactions in poor and intermediate metabolizers, while others find no relationship. However, retrospective designs may fail to account for the long-term pharmacological treatment of patients. Previous studies found that clinicians adapted risperidone dose successfully without knowledge of patient CYP2D6 phenotype. AIM Here, we aimed to replicate the results of those studies in a Dutch cohort of patients with psychosis (N = 418) on pharmacological treatment. METHOD We compared chlorpromazine-equivalent dose between CYP2D6 metabolizer phenotypes and investigated which factors were associated with dosage. This was repeated in two smaller subsets; patients prescribed pharmacogenetics-actionable drugs according to published guidelines, and risperidone-only as done previously. RESULTS We found no relationship between chlorpromazine-equivalent dose and phenotype in any sample (complete sample: p = 0.3, actionable-subset: p = 0.82, risperidone-only: p = 0.34). Only clozapine dose was weakly associated with CYP2D6 phenotype (p = 0.03). CONCLUSION Clinicians were thus not intuitively adapting dose to CYP2D6 activity in this sample, nor was CYP2D6 activity associated with prescribed dose. Although the previous studies could not be replicated, this study may provide support for existing and future pharmacogenetic research.
Collapse
Affiliation(s)
- Emma Y De Brabander
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University Medical Centre, The Netherlands
| | - Roos van Westrhenen
- Department of Psychiatry, Parnassia Groep BV, The Netherlands
- Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, UK
- St. John’s National Academy of Health Sciences, Bangalore, India
| | | |
Collapse
|
7
|
Sharew NT, Clark SR, Schubert KO, Amare AT. Pharmacogenomic scores in psychiatry: systematic review of current evidence. Transl Psychiatry 2024; 14:322. [PMID: 39107294 PMCID: PMC11303815 DOI: 10.1038/s41398-024-02998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
In the past two decades, significant progress has been made in the development of polygenic scores (PGSs). One specific application of PGSs is the development and potential use of pharmacogenomic- scores (PGx-scores) to identify patients who can benefit from a specific medication or are likely to experience side effects. This systematic review comprehensively evaluates published PGx-score studies in psychiatry and provides insights into their potential clinical use and avenues for future development. A systematic literature search was conducted across PubMed, EMBASE, and Web of Science databases until 22 August 2023. This review included fifty-three primary studies, of which the majority (69.8%) were conducted using samples of European ancestry. We found that over 90% of PGx-scores in psychiatry have been developed based on psychiatric and medical diagnoses or trait variants, rather than pharmacogenomic variants. Among these PGx-scores, the polygenic score for schizophrenia (PGSSCZ) has been most extensively studied in relation to its impact on treatment outcomes (32 publications). Twenty (62.5%) of these studies suggest that individuals with higher PGSSCZ have negative outcomes from psychotropic treatment - poorer treatment response, higher rates of treatment resistance, more antipsychotic-induced side effects, or more psychiatric hospitalizations, while the remaining studies did not find significant associations. Although PGx-scores alone accounted for at best 5.6% of the variance in treatment outcomes (in schizophrenia treatment resistance), together with clinical variables they explained up to 13.7% (in bipolar lithium response), suggesting that clinical translation might be achieved by including PGx-scores in multivariable models. In conclusion, our literature review found that there are still very few studies developing PGx-scores using pharmacogenomic variants. Research with larger and diverse populations is required to develop clinically relevant PGx-scores, using biology-informed and multi-phenotypic polygenic scoring approaches, as well as by integrating clinical variables with these scores to facilitate their translation to psychiatric practice.
Collapse
Affiliation(s)
- Nigussie T Sharew
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Asrat Woldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Division of Mental Health, Northern Adelaide Local Health Network, SA Health, Adelaide, Australia
- Headspace Adelaide Early Psychosis - Sonder, Adelaide, SA, Australia
| | - Azmeraw T Amare
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Li D, Pain O, Fabbri C, Wong WLE, Lo CWH, Ripke S, Cattaneo A, Souery D, Dernovsek MZ, Henigsberg N, Hauser J, Lewis G, Mors O, Perroud N, Rietschel M, Uher R, Maier W, Baune BT, Biernacka JM, Bondolfi G, Domschke K, Kato M, Liu YL, Serretti A, Tsai SJ, Weinshilboum R, McIntosh AM, Lewis CM. Metabolic activity of CYP2C19 and CYP2D6 on antidepressant response from 13 clinical studies using genotype imputation: a meta-analysis. Transl Psychiatry 2024; 14:296. [PMID: 39025838 PMCID: PMC11258238 DOI: 10.1038/s41398-024-02981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate, normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. CYP2D6 structural variants cannot be imputed from genotype data, limiting the determination of metabolic phenotypes, and precluding testing for association with response. The association of CYP2C19 metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843 depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal significance but did not survive after multiple testing correction (OR = 1.46, 95% CI [1.03, 2.06], p = 0.033, heterogeneity I2 = 0%, subgroup difference p = 0.72). No metabolic phenotype was associated with percentage improvement from baseline. After stratifying by antidepressants primarily metabolized by CYP2C19, no association was found between metabolic phenotypes and antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more evidence needed. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.
Collapse
Affiliation(s)
- Danyang Li
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB, UK
- Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, CN, China
| | - Oliver Pain
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, GB, UK
| | - Chiara Fabbri
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Win Lee Edwin Wong
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB, UK
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chris Wai Hang Lo
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB, UK
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, DE, Germany
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Annamaria Cattaneo
- Biological Psychiatry Laboratory, IRCCS Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomedical Sciences, University of Milan, Milan, Italy
| | - Daniel Souery
- Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Medicale, Brussels, Italy
| | - Mojca Z Dernovsek
- University Psychiatric Clinic, University of Ljubliana, Ljubljana, Slovenia
| | - Neven Henigsberg
- Department of Psychiatry, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, HR, Croatia
| | - Joanna Hauser
- Psychiatric Genetic Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, GB, UK
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
| | - Nader Perroud
- Department of Psychiatry, Geneva University Hospitals, Geneva, CH, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, Denmark
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Denmark
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Denmark
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Guido Bondolfi
- Department of Psychiatry, Geneva University Hospitals, Geneva, CH, Switzerland
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Denmark
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | | | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB, UK.
- Department of Medical & Molecular Genetics, King's College London, London, GB, UK.
| |
Collapse
|
9
|
Kiltschewskij DJ, Reay WR, Geaghan MP, Atkins JR, Xavier A, Zhang X, Watkeys OJ, Carr VJ, Scott RJ, Green MJ, Cairns MJ. Alteration of DNA Methylation and Epigenetic Scores Associated With Features of Schizophrenia and Common Variant Genetic Risk. Biol Psychiatry 2024; 95:647-661. [PMID: 37480976 DOI: 10.1016/j.biopsych.2023.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Unpacking molecular perturbations associated with features of schizophrenia is a critical step toward understanding phenotypic heterogeneity in this disorder. Recent epigenome-wide association studies have uncovered pervasive dysregulation of DNA methylation in schizophrenia; however, clinical features of the disorder that account for a large proportion of phenotypic variability are relatively underexplored. METHODS We comprehensively analyzed patterns of DNA methylation in a cohort of 381 individuals with schizophrenia from the deeply phenotyped Australian Schizophrenia Research Bank. Epigenetic changes were investigated in association with cognitive status, age of onset, treatment resistance, Global Assessment of Functioning scores, and common variant polygenic risk scores for schizophrenia. We subsequently explored alterations within genes previously associated with psychiatric illness, phenome-wide epigenetic covariance, and epigenetic scores. RESULTS Epigenome-wide association studies of the 5 primary traits identified 662 suggestively significant (p < 6.72 × 10-5) differentially methylated probes, with a further 432 revealed after controlling for schizophrenia polygenic risk on the remaining 4 traits. Interestingly, we uncovered many probes within genes associated with a variety of psychiatric conditions as well as significant epigenetic covariance with phenotypes and exposures including acute myocardial infarction, C-reactive protein, and lung cancer. Epigenetic scores for treatment-resistant schizophrenia strikingly exhibited association with clozapine administration, while epigenetic proxies of plasma protein expression, such as CCL17, MMP10, and PRG2, were associated with several features of schizophrenia. CONCLUSIONS Our findings collectively provide novel evidence suggesting that several features of schizophrenia are associated with alteration of DNA methylation, which may contribute to interindividual phenotypic variation in affected individuals.
Collapse
Affiliation(s)
- Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - William R Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Michael P Geaghan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Xiajie Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Oliver J Watkeys
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Vaughan J Carr
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Centre for Information Based Medicine, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Melissa J Green
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
10
|
Fang J, Lv Y, Xie Y, Tang X, Zhang X, Wang X, Yu M, Zhou C, Qin W, Zhang X. Polygenic effects on brain functional endophenotype for deficit and non-deficit schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:18. [PMID: 38365896 PMCID: PMC10873412 DOI: 10.1038/s41537-024-00432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Deficit schizophrenia (DS) is a subtype of schizophrenia (SCZ). The polygenic effects on the neuroimaging alterations in DS still remain unknown. This study aims to calculate the polygenic risk scores for schizophrenia (PRS-SCZ) in DS, and further explores the potential associations with functional features of brain. PRS-SCZ was calculated according to the Whole Exome sequencing and Genome-wide association studies (GWAS). Resting-state fMRI, as well as biochemical features and neurocognitive data were obtained from 33 DS, 47 NDS and 41 HCs, and association studies of genetic risk with neuroimaging were performed in this sample. The analyses of amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo) and functional connectivity (FC) were performed to detect the functional alterations between DS and NDS. In addition, correlation analysis was used to investigate the relationships between functional features (ALFF, ReHo, FC) and PRS-SCZ. The PRS-SCZ of DS was significantly lower than that in NDS and HC. Compared to NDS, there was a significant increase in the ALFF of left inferior temporal gyrus (ITG.L) and left inferior frontal gyrus (IFG.L) and a significant decrease in the ALFF of right precuneus (PCUN.R) and ReHo of right middle frontal gyrus (MFG.R) in DS. FCs were widely changed between DS and NDS, mainly concentrated in default mode network, including ITG, PCUN and angular gyrus (ANG). Correlation analysis revealed that the ALFF of left ITG, the ReHo of right middle frontal gyrus, the FC value between insula and ANG, left ITG and right corpus callosum, left ITG and right PCUN, as well as the scores of Trail Making Test-B, were associated with PRS-SCZ in DS. The present study demonstrated the differential polygenic effects on functional changes of brain in DS and NDS, providing a potential neuroimaging-genetic perspective for the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yiding Lv
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaowei Tang
- Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Xiaobin Zhang
- Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Xiang Wang
- Medical Psychological Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Miao Yu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
11
|
Morgenroth CL, Kleymann P, Ripke S, Awasthi S, Wagner E, Oviedo-Salcedo T, Okhuijsen-Pfeifer C, Luykx JJ, van der Horst MZ, Hasan A, Bermpohl F, Gutwinski S, Schreiter S. Polygenetic risk scores and phenotypic constellations of obsessive-compulsive disorder in clozapine-treated schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024; 274:181-193. [PMID: 37020043 PMCID: PMC10786740 DOI: 10.1007/s00406-023-01593-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Obsessive-compulsive symptoms (OCS) are frequently observed in individuals with schizophrenia (SCZ) treated with clozapine (CLZ). This study aimed to analyze prevalence of OCS and obsessive-compulsive disorder (OCD) in this subgroup and find possible correlations with different phenotypes. Additionally, this is the first study to examine polygenetic risk scores (PRS) in individuals with SCZ and OCS. A multicenter cohort of 91 individuals with SCZ who were treated with CLZ was recruited and clinically and genetically assessed. Symptom severity was examined using the Positive and Negative Symptom Scale (PANSS), Clinical Global Impression Scale (CGI), the Calgary Depression Scale for Schizophrenia (CDSS), Global Assessment of Functioning Scale (GAF) and Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Participants were divided into subgroups based on phenotypic OCS or OCD using Y-BOCS scores. Genomic-wide data were generated, and PRS analyses were performed to evaluate the association between either phenotypic OCD or OCS severity and genotype-predicted predisposition for OCD, SCZ, cross-disorder, and CLZ/norclozapine (NorCLZ) ratio, CLZ metabolism and NorCLZ metabolism. OCS and OCD were frequent comorbidities in our sample of CLZ-treated SCZ individuals, with a prevalence of 39.6% and 27.5%, respectively. Furthermore, the Y-BOCS total score correlated positively with the duration of CLZ treatment in years (r = 0.28; p = 0.008) and the PANSS general psychopathology subscale score (r = 0.23; p = 0.028). A significant correlation was found between OCD occurrence and PRS for CLZ metabolism. We found no correlation between OCS severity and PRS for CLZ metabolism. We found no correlation for either OCD or OCS and PRS for OCD, cross-disorder, SCZ, CLZ/NorCLZ ratio or NorCLZ metabolism. Our study was able to replicate previous findings on clinical characteristics of CLZ-treated SCZ individuals. OCS is a frequent comorbidity in this cohort and is correlated with CLZ treatment duration in years and PANSS general psychopathology subscale score. We found a correlation between OCD and PRS for CLZ metabolism, which should be interpreted as incidental for now. Future research is necessary to replicate significant findings and to assess possible genetic predisposition of CLZ-treated individuals with SCZ to OCS/OCD. Limitations attributed to the small sample size or the inclusion of subjects on co-medication must be considered. If the association between OCD and PRS for CLZ metabolism can be replicated, it should be further evaluated if CYP1A2 alteration, respectively lower CLZ plasma level, is relevant for OCD development.
Collapse
Affiliation(s)
- Carla Lou Morgenroth
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Philipp Kleymann
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Stephan Ripke
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital-LMU Munich, Munich, Germany
| | - Tatiana Oviedo-Salcedo
- Department of Psychiatry and Psychotherapy, University Hospital-LMU Munich, Munich, Germany
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - Marte Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- GGNet Mental Health, Warnsveld, The Netherlands
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Felix Bermpohl
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, St. Hedwig-Krankenhaus, Charité-Universitätsmedizin, Berlin, Germany
| | - Stefanie Schreiter
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
12
|
Grabb MC, Brady LS. Biomarker Methodologies: A NIMH Perspective. ADVANCES IN NEUROBIOLOGY 2024; 40:3-44. [PMID: 39562439 DOI: 10.1007/978-3-031-69491-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Biomarkers are critically important in the development of drugs, biologics, medical devices, and psychosocial interventions for psychiatric disorders. As the lead federal agency charged with setting and supporting the national agenda for mental health research, the National Institute of Mental Health (NIMH) funds a broad portfolio of basic, translational, and clinical research focused on identifying, developing, and validating biomarkers for serious mental illnesses and neurodevelopmental conditions. In psychiatric research over the past 10 years, there has been an intensive effort to identify biomarkers as potential tools to improve treatment options for individuals with mental health concerns and increase success in the development of novel interventions. This chapter highlights examples of biomarker technologies that have been utilized to advance understanding of the pathophysiology of psychiatric disorders and the development of novel therapeutics.
Collapse
Affiliation(s)
- Margaret C Grabb
- National Institutes of Health, National Institute of Mental Health, Rockville, MD, USA.
| | - Linda S Brady
- National Institutes of Health, National Institute of Mental Health, Rockville, MD, USA
| |
Collapse
|
13
|
Li D, Pain O, Fabbri C, Wong WLE, Lo CWH, Ripke S, Cattaneo A, Souery D, Dernovsek MZ, Henigsberg N, Hauser J, Lewis G, Mors O, Perroud N, Rietschel M, Uher R, Maier W, Baune BT, Biernacka JM, Bondolfi G, Domschke K, Kato M, Liu YL, Serretti A, Tsai SJ, Weinshilboum R, McIntosh AM, Lewis CM. Meta-analysis of CYP2C19 and CYP2D6 metabolic activity on antidepressant response from 13 clinical studies using genotype imputation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291890. [PMID: 37425775 PMCID: PMC10327261 DOI: 10.1101/2023.06.26.23291890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cytochrome P450 enzymes including CYP2C19 and CYP2D6 are important for antidepressant metabolism and polymorphisms of these genes have been determined to predict metabolite levels. Nonetheless, more evidence is needed to understand the impact of genetic variations on antidepressant response. In this study, individual clinical and genetic data from 13 studies of European and East Asian ancestry populations were collected. The antidepressant response was clinically assessed as remission and percentage improvement. Imputed genotype was used to translate genetic polymorphisms to metabolic phenotypes (poor, intermediate, normal, and rapid+ultrarapid) of CYP2C19 and CYP2D6. The association of CYP2C19 and CYP2D6 metabolic phenotypes with treatment response was examined using normal metabolizers as the reference. Among 5843 depression patients, a higher remission rate was found in CYP2C19 poor metabolizers compared to normal metabolizers at nominal significance but did not survive after multiple testing correction (OR=1.46, 95% CI [1.03, 2.06], p=0.033, heterogeneity I2=0%, subgroup difference p=0.72). No metabolic phenotype was associated with percentage improvement from baseline. After stratifying by antidepressants primarily metabolized by CYP2C19 and CYP2D6, no association was found between metabolic phenotypes and antidepressant response. Metabolic phenotypes showed differences in frequency, but not effect, between European- and East Asian-ancestry studies. In conclusion, metabolic phenotypes imputed from genetic variants using genotype were not associated with antidepressant response. CYP2C19 poor metabolizers could potentially contribute to antidepressant efficacy with more evidence needed. CYP2D6 structural variants cannot be imputed from genotype data, limiting inference of pharmacogenetic effects. Sequencing and targeted pharmacogenetic testing, alongside information on side effects, antidepressant dosage, depression measures, and diverse ancestry studies, would more fully capture the influence of metabolic phenotypes.
Collapse
Affiliation(s)
- Danyang Li
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
| | - Oliver Pain
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, GB
| | - Chiara Fabbri
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, IT
| | - Win Lee Edwin Wong
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SG
| | - Chris Wai Hang Lo
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, DE
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, US
| | - Annamaria Cattaneo
- Biological Psychiatry Laboratory, IRCCS Fatebenefratelli, Brescia, IT
- Department of Pharmacological and Biomedical Sciences, University of Milan, Milan, IT
| | - Daniel Souery
- Laboratoire de Psychologie Medicale, Universitè Libre de Bruxelles and Psy Pluriel, Centre Européen de Psychologie Medicale, Brussels, BE
| | - Mojca Z Dernovsek
- University Psychiatric Clinic, University of Ljubliana, Ljubljana, SI
| | - Neven Henigsberg
- Department of Psychiatry, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, HR
| | - Joanna Hauser
- Psychiatric Genetic Unit,, Poznan University of Medical Sciences, Poznan, PL
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, GB
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, DK
| | - Nader Perroud
- Department of Psychiatry, Geneva University Hospitals, Geneva, CH
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, University of Heidelberg, Central Institute of Mental Health, Mannheim, DE
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, NS, CA
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, DE
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, DE
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, AU
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, AU
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Guido Bondolfi
- Department of Psychiatry, Geneva University Hospitals, Geneva, CH
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, DE
| | - Masaki Kato
- Department of Neuropsychiatry, Kansai Medical University, Osaka, JP
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, TW
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, IT
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, TW
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, TW
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
- Department of Medical & Molecular Genetics, King's College London, London, GB
| |
Collapse
|
14
|
van der Horst MZ, Meijer Y, de Boer N, Guloksuz S, Hasan A, Siskind D, Wagner E, Okhuijsen-Pfeifer C, Luykx JJ. Comprehensive dissection of prevalence rates, sex differences, and blood level-dependencies of clozapine-associated adverse drug reactions. Psychiatry Res 2023; 330:115539. [PMID: 37988817 DOI: 10.1016/j.psychres.2023.115539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023]
Abstract
Clozapine is often underused due to concerns about adverse drug reactions (ADRs) but studies into their prevalences are inconclusive. We therefore comprehensively examined prevalences of clozapine-associated ADRs in individuals with schizophrenia and demographic and clinical factors associated with their occurrence. Data from a multi-center study (n = 698 participants) were collected. The mean number of ADRs during clozapine treatment was 4.8, with 2.4 % of participants reporting no ADRs. The most common ADRs were hypersalivation (74.6 %), weight gain (69.3 %), and increased sleep necessity (65.9 %), all of which were more common in younger participants. Participants with lower BMI prior to treatment were more likely to experience significant weight gain (>10 %). Constipation occurred more frequently with higher clozapine blood levels and doses. There were no differences in ADR prevalence rates between participants receiving clozapine monotherapy and polytherapy. These findings emphasize the high prevalence of clozapine-associated ADRs and highlight several demographic and clinical factors contributing to their occurrence. By understanding these factors, clinicians can better anticipate and manage clozapine-associated ADRs, leading to improved treatment outcomes and patient well-being.
Collapse
Affiliation(s)
- Marte Z van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands,; GGNet, Warnsveld, the Netherlands.
| | - Yoeki Meijer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nini de Boer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, Australia; Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elias Wagner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany; Evidence-based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Jurjen J Luykx
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands,; GGNet, Warnsveld, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
15
|
Bousman CA, Maruf AA, Marques DF, Brown LC, Müller DJ. The emergence, implementation, and future growth of pharmacogenomics in psychiatry: a narrative review. Psychol Med 2023; 53:7983-7993. [PMID: 37772416 PMCID: PMC10755240 DOI: 10.1017/s0033291723002817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Psychotropic medication efficacy and tolerability are critical treatment issues faced by individuals with psychiatric disorders and their healthcare providers. For some people, it can take months to years of a trial-and-error process to identify a medication with the ideal efficacy and tolerability profile. Current strategies (e.g. clinical practice guidelines, treatment algorithms) for addressing this issue can be useful at the population level, but often fall short at the individual level. This is, in part, attributed to interindividual variation in genes that are involved in pharmacokinetic (i.e. absorption, distribution, metabolism, elimination) and pharmacodynamic (e.g. receptors, signaling pathways) processes that in large part, determine whether a medication will be efficacious or tolerable. A precision prescribing strategy know as pharmacogenomics (PGx) assesses these genomic variations, and uses it to inform selection and dosing of certain psychotropic medications. In this review, we describe the path that led to the emergence of PGx in psychiatry, the current evidence base and implementation status of PGx in the psychiatric clinic, and finally, the future growth potential of precision psychiatry via the convergence of the PGx-guided strategy with emerging technologies and approaches (i.e. pharmacoepigenomics, pharmacomicrobiomics, pharmacotranscriptomics, pharmacoproteomics, pharmacometabolomics) to personalize treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Chad A. Bousman
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
- Departments of Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- AB Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, AB, Canada
- College of Pharmacy, Rady Faculty of Health Sciences, Winnipeg, MB, Canada
| | | | | | - Daniel J. Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Wurzburg, Wurzburg, Germany
| |
Collapse
|
16
|
Sandhu AK, Naderi E, Wijninga MJ, Liemburg EJ, GROUP Investigators, Cath D, Bruggeman R, Alizadeh BZ. Pharmacogenetics of Long-Term Outcomes of Schizophrenia Spectrum Disorders: The Functional Role of CYP2D6 and CYP2C19. J Pers Med 2023; 13:1354. [PMID: 37763122 PMCID: PMC10532576 DOI: 10.3390/jpm13091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Schizophrenia spectrum disorders (SSD) are complex mental disorders, and while treatment with antipsychotics is important, many patients do not respond or develop serious side effects. Genetic variation has been shown to play a considerable role in determining an individual's response to antipsychotic medication. However, previous pharmacogenetic (PGx) studies have been limited by small sample sizes, lack of consensus regarding relevant genetic variants, and cross-sectional designs. The current study aimed to investigate the association between PGx variants and long-term clinical outcomes in 691 patients of European ancestry with SSD. Using evidence from the literature on candidate genes involved in antipsychotic pharmacodynamics, we created a polygenic risk score (PRS) to investigate its association with clinical outcomes. We also created PRS using core variants of psychotropic drug metabolism enzymes CYP2D6 and CYP2C19. Furthermore, the CYP2D6 and CYP2C19 functional activity scores were calculated to determine the relationship between metabolism and clinical outcomes. We found no association for PGx PRSs and clinical outcomes; however, an association was found with CYP2D6 activity scores by the traditional method. Higher CYP2D6 metabolism was associated with high positive and high cognitive impairment groups relative to low symptom severity groups. These findings highlight the need to test PGx efficacy with different symptom domains. More evidence is needed before pharmacogenetic variation can contribute to personalized treatment plans.
Collapse
Affiliation(s)
- Amrit K. Sandhu
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Elnaz Naderi
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Centre for Statistical Genetics, Gertude H. Sergiesky Centre, Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA
| | - Morenika J. Wijninga
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Edith J. Liemburg
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | | - Danielle Cath
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- GGZ Drenthe, Department of Specialist Trainings, 9704 LA Assen, The Netherlands
| | - Richard Bruggeman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Behrooz Z. Alizadeh
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
17
|
Luykx JJ, Gonzalez-Diaz JM, Guu TW, van der Horst MZ, van Dellen E, Boks MP, Guloksuz S, DeLisi LE, Sommer IE, Cummins R, Shiers D, Lee J, Every-Palmer S, Mhalla A, Chadly Z, Chan SKW, Cotes RO, Takahashi S, Benros ME, Wagner E, Correll CU, Hasan A, Siskind D, Endres D, MacCabe J, Tiihonen J. An international research agenda for clozapine-resistant schizophrenia. Lancet Psychiatry 2023:S2215-0366(23)00109-8. [PMID: 37329895 DOI: 10.1016/s2215-0366(23)00109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Treatment-resistant symptoms occur in about a third of patients with schizophrenia and are associated with a substantial reduction in their quality of life. The development of new treatment options for clozapine-resistant schizophrenia constitutes a crucial, unmet need in psychiatry. Additionally, an overview of past and possible future research avenues to optimise the early detection, diagnosis, and management of clozapine-resistant schizophrenia is unavailable. In this Health Policy, we discuss the ongoing challenges associated with clozapine-resistant schizophrenia faced by patients and health-care providers worldwide to improve the understanding of this condition. We then revisit several clozapine guidelines, the diagnostic tests and treatment options for clozapine-resistant schizophrenia, and currently applied research approaches in clozapine-resistant schizophrenia. We also suggest methodologies and targets for future research, divided into innovative nosology-oriented field trials (eg, examining dimensional symptom staging), translational approaches (eg, genetics), epidemiological research (eg, real-world studies), and interventional studies (eg, non-traditional trial designs incorporating lived experiences and caregivers' perspectives). Finally, we note that low-income and middle-income countries are under-represented in studies on clozapine-resistant schizophrenia and propose an agenda to guide multinational research on the cause and treatment of clozapine-resistant schizophrenia. We hope that this research agenda will empower better global representation of patients living with clozapine-resistant schizophrenia and ultimately improve their functional outcomes and quality of life.
Collapse
Affiliation(s)
- Jurjen J Luykx
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; GGNet Mental Health, Warnsveld, Netherlands.
| | - Jairo M Gonzalez-Diaz
- Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain; UR Center for Mental Health, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica Nuestra Señora de la Paz, Orden Hospitalaria de San Juan de Dios, Bogotá, Colombia
| | - Ta-Wei Guu
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, Department of Internal Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Marte Z van der Horst
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; GGNet Mental Health, Warnsveld, Netherlands
| | - Edwin van Dellen
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Intensive Care Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Neurology, UZ Brussel and Vrije Universiteit Brussel, Jette, Belgium
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - David Shiers
- Psychosis Research Unit, Greater Manchester Mental Health NHS Trust, Manchester, UK
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore; Neuroscience and Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Susanna Every-Palmer
- Department of Psychological Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Ahmed Mhalla
- Department of Psychiatry, Fattouma Bourguiba Hospital, Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Zohra Chadly
- Department of Pharmacology, Fattouma Bourguiba Hospital, Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Sherry K W Chan
- Department of Psychiatry, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Robert O Cotes
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan; Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Michael E Benros
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christoph U Correll
- Department of Child and Adolescent Psychiatry, Charité Universitaetsmedizin Berlin, Berlin, Germany; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Augsburg, Medical Faculty, Augsburg, Germany
| | - Dan Siskind
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia; Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - James MacCabe
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet, and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| |
Collapse
|
18
|
Qu K, Zhou Q, Zhu H, Zhou Z, Shen Y, Tian L, Su X. The Association Between Clozapine Plasma Concentration, CYP2D6 (*10, *2) Polymorphisms and Risk of Adverse Reactions. PSYCHIAT CLIN PSYCH 2023; 33:76-83. [PMID: 38765922 PMCID: PMC11082567 DOI: 10.5152/pcp.2023.22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2023] [Indexed: 05/22/2024] Open
Abstract
Background The aim of this article was to study the relationships between the risk of adverse reactions, plasma concentration, and cytochrome P450 2D6 rs1065852 (*10) and rs16947 (*2) polymorphisms for clozapine. Methods The steady-state clozapine plasma concentration of 100 Chinese inpatients with schizophrenia was determined using 2-dimensional liquid chromatography. The polymorphisms of cytochrome P450 2D6 (*10 and *2) were determined using fluorescent in situ hybridization protocols. Results The decreased percentages of white blood cells and neutrophils and the elevated percentages of creatine kinase, alanine aminotransferase, and aspartate transferase in patients treated with clozapine for 6 months were linearly associated with clozapine plasma concentration. Compared with the corresponding groups, the clozapine plasma concentrations of individuals with the *10TT genotype and individuals with the *2CC genotype were the highest (P < .05). The decreased percentages of white blood cells and neutrophils and elevated percentages of creatine kinase, alanine aminotransferase, and aspartate transferase for patients with the *10TT genotype were significantly higher than those for patients with the *10CC and *10CT genotypes (P < .05). The decreased percentages of white blood cells and neutrophils and increased percentages of creatine kinase, alanine aminotransferase, and aspartate transferase for patients with the *2CC genotype were significantly higher than those of the other groups (P < .05). The therapeutic reference range of clozapine for Chinese patients with schizophrenia was defined as 102.5-483.1 ng/mL. Conclusion This study demonstrated that the determination of cytochrome P450 2D6 polymorphisms and therapeutic drug monitoring of clozapine might be beneficial for identifying patients with a higher risk of adverse reactions.
Collapse
Affiliation(s)
- Kankan Qu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Qin Zhou
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Haohao Zhu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Zhenhe Zhou
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yuan Shen
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Lin Tian
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Xujiang Su
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
19
|
Ying J, Chew QH, McIntyre RS, Sim K. Treatment-Resistant Schizophrenia, Clozapine Resistance, Genetic Associations, and Implications for Precision Psychiatry: A Scoping Review. Genes (Basel) 2023; 14:689. [PMID: 36980961 PMCID: PMC10048540 DOI: 10.3390/genes14030689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment-resistant schizophrenia (TRS) is often associated with severe burden of disease, poor quality of life and functional impairment. Clozapine is the gold standard for the treatment of TRS, although it is also known to cause significant side effects in some patients. In view of the burgeoning interest in the role of genetic factors in precision psychiatry, we conducted a scoping review to narratively summarize the current genetic factors associated with TRS, clozapine resistance and side effects to clozapine treatment. We searched PubMed from inception to December 2022 and included 104 relevant studies in this review. Extant evidence comprised associations between TRS and clozapine resistance with genetic factors related to mainly dopaminergic and serotoninergic neurotransmitter systems, specifically, TRS and rs4680, rs4818 within COMT, and rs1799978 within DRD2; clozapine resistance and DRD3 polymorphisms, CYP1A2 polymorphisms; weight gain with LEP and SNAP-25 genes; and agranulocytosis risk with HLA-related polymorphisms. Future studies, including replication in larger multi-site samples, are still needed to elucidate putative risk genes and the interactions between different genes and their correlations with relevant clinical factors such as psychopathology, psychosocial functioning, cognition and progressive changes with treatment over time in TRS and clozapine resistance.
Collapse
Affiliation(s)
- Jiangbo Ying
- East Region, Institute of Mental Health, Singapore 539747, Singapore
| | - Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore 539747, Singapore
| | - Roger S. McIntyre
- Department of PsychiSatry, University of Toronto, Toronto, ON M5R 0A3, Canada
- Brain and Cognition Discovery Foundation Toronto, Toronto, ON M4W 3W4, Canada
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore 539747, Singapore
| |
Collapse
|
20
|
Lin BD, Pinzón-Espinosa J, Blouzard E, van der Horst MZ, Okhuijsen-Pfeifer C, van Eijk KR, Guloksuz S, Peyrot WJ, Luykx JJ. Associations Between Polygenic Risk Score Loading, Psychosis Liability, and Clozapine Use Among Individuals With Schizophrenia. JAMA Psychiatry 2023; 80:181-185. [PMID: 36542388 PMCID: PMC9857760 DOI: 10.1001/jamapsychiatry.2022.4234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Importance Predictors consistently associated with psychosis liability and course of illness in schizophrenia (SCZ) spectrum disorders (SSD), including the need for clozapine treatment, are lacking. Longitudinally ascertained medication use may empower studies examining associations between polygenic risk scores (PRSs) and pharmacotherapy choices. Objective To examine associations between PRS-SCZ loading and groups with different liabilities to SSD (individuals with SSD taking clozapine, individuals with SSD taking other antipsychotics, their parents and siblings, and unrelated healthy controls) and between PRS-SCZ and the likelihood of receiving a prescription of clozapine relative to other antipsychotics. Design, Setting, and Participants This genetic association study was a multicenter, observational cohort study with 6 years of follow-up. Included were individuals diagnosed with SSD who were taking clozapine or other antipsychotics, their parents and siblings, and unrelated healthy controls. Data were collected from 2004 until 2021 and analyzed between October 2021 and September 2022. Exposures Polygenic risk scores for SCZ. Main Outcomes and Measures Multinomial logistic regression was used to examine possible differences between groups by computing risk ratios (RRs), ie, ratios of the probability of pertaining to a particular group divided by the probability of healthy control status. We also computed PRS-informed odd ratios (ORs) for clozapine use relative to other antipsychotics. Results Polygenic risk scores for SCZ were generated for 2344 participants (mean [SD] age, 36.95 years [14.38]; 994 female individuals [42.4%]) who remained after quality control screening (557 individuals with SSD taking clozapine, 350 individuals with SSD taking other antipsychotics during the 6-year follow-up, 542 parents and 574 siblings of individuals with SSD, and 321 unrelated healthy controls). All RRs were significantly different from 1; RRs were highest for individuals with SSD taking clozapine (RR, 3.24; 95% CI, 2.76-3.81; P = 2.47 × 10-46), followed by individuals with SSD taking other antipsychotics (RR, 2.30; 95% CI, 1.95-2.72; P = 3.77 × 10-22), parents (RR, 1.44; 95% CI, 1.25-1.68; P = 1.76 × 10-6), and siblings (RR, 1.40; 95% CI, 1.21-1.63; P = 8.22 × 10-6). Polygenic risk scores for SCZ were positively associated with clozapine vs other antipsychotic use (OR, 1.41; 95% CI, 1.22-1.63; P = 2.98 × 10-6), suggesting a higher likelihood of clozapine prescriptions among individuals with higher PRS-SCZ. Conclusions and Relevance In this study, PRS-SCZ loading differed between groups of individuals with SSD, their relatives, and unrelated healthy controls, with patients taking clozapine at the far end of PRS-SCZ loading. Additionally, PRS-SCZ was associated with a higher likelihood of clozapine prescribing. Our findings may inform early intervention and prognostic studies of the value of using PRS-SCZ to personalize antipsychotic treatment.
Collapse
Affiliation(s)
- Bochao D. Lin
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Justo Pinzón-Espinosa
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Sant Pau Mental Health Group, Institut d’Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama City, Panama
| | - Elodie Blouzard
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Marte Z. van der Horst
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
- GGNet Mental Health, Warnsveld, the Netherlands
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Kristel R. van Eijk
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Wouter J. Peyrot
- Department of Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, the Netherlands
| | - Jurjen J. Luykx
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, the Netherlands
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center Rudolf Magnus, Utrecht, the Netherlands
- GGNet Mental Health, Warnsveld, the Netherlands
| |
Collapse
|
21
|
van der Horst MZ, Papadimitriou G, Luykx JJ. Genetic determinants associated with response to clozapine in schizophrenia: an umbrella review. Psychiatr Genet 2022; 32:163-170. [PMID: 35855515 DOI: 10.1097/ypg.0000000000000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Clozapine response varies widely from person to person, which may be due to inter-individual genetic variability. This umbrella review aims to summarize the current evidence on associations between pharmacodynamic genes and response to clozapine treatment. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis methodology, a systematic literature search was conducted in the PubMed and EMBASE databases from inception to November 2021 to identify systematic reviews and meta-analyses of studies that examined genetic determinants of clozapine response. The quality of the reviews was assessed with the AMSTAR-2 tool. RESULTS From a total of 128 records, 10 studies representing nine systematic reviews and one meta-analysis met our inclusion criteria. The overall quality of the included studies was poor. All systematic reviews concluded that the results of primary studies were largely negative or conflicting. Most evidence was found for an association with clozapine response and rs6313 and rs6314 within HTR2A and rs1062613 within HTR3A in the serotonergic system. CONCLUSIONS Conclusive evidence for associations between genetic variants and clozapine response is still lacking. Hypothesis-generating genetic studies in large, well-characterized study populations are urgently needed to obtain more consistent and clinically informative results. Future studies may also include multi-omics approaches to identify novel genetic determinants associated with clozapine response.
Collapse
Affiliation(s)
- Marte Z van der Horst
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld
- Department of Translational Neuroscience
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
| | - Georgia Papadimitriou
- Department of Psychology, Panteion University of Social and Political Sciences, Athens, Greece
| | - Jurjen J Luykx
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld
- Department of Translational Neuroscience
- Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Brain Center, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
22
|
Luykx JJ. The future of antipsychotics studies: How innovative designs may benefit patients with psychotic disorders. Eur Neuropsychopharmacol 2022; 62:46-48. [PMID: 35896056 DOI: 10.1016/j.euroneuro.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jurjen J Luykx
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, University, Utrecht, The Netherlands; Outpatient second opinion clinic, GGNet Mental Health, Warnsveld, The Netherland.
| |
Collapse
|