1
|
Quan J, Jia Z, Liu L, Tian J. The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I. Genes Dis 2025; 12:101284. [PMID: 39759124 PMCID: PMC11699727 DOI: 10.1016/j.gendis.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 01/07/2025] Open
Abstract
Aging is an independent risk factor for cardiovascular diseases. Cardiac diastolic dysfunction (CDD), ultimately leading to heart failure with preserved ejection fraction (HFpEF), is prevalent among older individuals. Although therapeutics have made great progress, preventive strategies remain unmet medical needs. Green tea catechins have been shown to be effective in improving aging-related cardiovascular and cerebral disorders in animal models and patients. However, little attention has been paid to whether long-term administration of epigallocatechin gallate (EGCG), the major bioactive ingredient of green tea catechins, could prevent the onset and progression of CDD. In this study, 12-month-old female mice were orally administered 50, 100 and 200 mg EGCG mixed with drinking water for 6 months. Aged mice (18 months old) exhibited the major features of HFpEF, including CDD with pEF, cardiac fibrosis, increased cardiomyocyte apoptosis, and mitochondrial damages, as well as elevated A/B-type natriuretic peptide. Cardiac troponin I (cTnI) expression was also reduced. Long-term administration of 100 or 200 mg EGCG prevented aging-related CDD and exercise capacity decline, along with alleviating myocardial apoptosis and mitochondria damage. The transcription and protein expression of cTnI were increased, which might be achieved by inhibiting the expression and activity of histone deacetylase 1 (HDAC1), and reducing its binding level near cTnI's promoter, thereby elevating acetylated histone 3 (AcH3) and acetylated lysine 9 on histone H3 (AcH3K9) in the aged mice. We provide a novel insight that long-term administration of EGCG is a potentially effective strategy in preventing aging-related CDD and cTnI expression decline.
Collapse
Affiliation(s)
- Junjun Quan
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Zhongli Jia
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Department of Pediatrics, The People's Hospital of Leshan, Leshan, Sichuan 614000, China
| | - Lingjuan Liu
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| | - Jie Tian
- Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, China
| |
Collapse
|
2
|
Hou KC, Chen YC, Chen TF, Sun Y, Wen LL, Yip PK, Chu YM, Chiou JM, Chen JH. Coffee and tea consumption and dementia risk: The role of sex and vascular comorbidities. J Formos Med Assoc 2025; 124:178-185. [PMID: 38714417 DOI: 10.1016/j.jfma.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Coffee and tea consumption has been linked to dementia. However, it remained unknown how sex and vascular risk factors modify the association. We aimed to investigate the association of coffee and tea consumption with dementia and whether sex and vascular comorbidities modified the association. METHODS We included 278 elderly patients with Alzheimer's disease (AD) and 102 patients with vascular dementia (VaD) from three hospitals; controls (N = 468) were recruited during the same period. We collected the frequency and amount of coffee and tea consumption and the presence of vascular comorbidities. The multinomial logistic regression model was utilized to evaluate the association of coffee and tea consumption with dementia, stratified by sex and vascular comorbidities. RESULTS Different combinations and quantities of coffee and tea consumption protected against AD and VaD. Consumption of ≥3 cups of coffee or tea per day was protective against AD [adjusted odds ratio (aOR) = 0.42; 95% confidence interval (CI) = 0.22-0.78)] and VaD (aOR = 0.42; 95% CI = 0.19-0.94). Stratified analyses showed that the protective effects of a higher quantity of coffee and tea against AD were more pronounced among females and individuals with hypertension. Consumption of either coffee or tea was associated with a decreased risk of VaD among diabetic participants (aOR = 0.23; 95% CI = 0.06-0.98). Hyperlipidemia modified the association of coffee or tea consumption on the risk of AD and VaD (both Pinteraction < 0.01). CONCLUSION The risk of AD and VaD was lower with increased consumption of coffee and tea; the impact differed by sex and vascular comorbidities including hypertension, hyperlipidemia, and diabetes.
Collapse
Affiliation(s)
- Kuan-Chu Hou
- Department of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yu Sun
- Department of Neurology, En Chu Kong Hospital, Taipei, Taiwan.
| | - Li-Li Wen
- Department of Laboratory Medicine, En Chu Kong Hospital, Taipei, Taiwan.
| | - Ping-Keung Yip
- Center of Neurological Medicine, Cardinal Tien Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| | - Yi-Min Chu
- Department of Laboratory Medicine, Cardinal Tien Hospital, Taipei, Taiwan.
| | - Jeng-Min Chiou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
| | - Jen-Hau Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taiwan.
| |
Collapse
|
3
|
Li C, Zhang L, Li X, Hu Q, Mao L, Shao Y, Han M, Zhang S, Ejaz I, Mesbah L, Tang Q, Shang F. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment(VCI). J Nutr Biochem 2025; 136:109803. [PMID: 39551165 DOI: 10.1016/j.jnutbio.2024.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Sulforaphane (Sfn) is a compound naturally found in cruciferous vegetables such as broccoli, Brussels sprouts, cabbage, and kale. It is well-known for its antioxidative and anti-inflammatory effects. Sfn has attracted attention for its potential health benefits, particularly its role in brain health and the potential prevention of dementia and neurodegeneration. Alzheimer's disease (AD) and vascular cognitive impairment (VCI) are the top two causes of dementia. Cerebral vascular lesions give rise to VCI and predispose neurons to degeneration and Alzheimer's disease (AD) by Aβ accumulation and tau hyperphosphorylation. In a rat model of VCI by permanent bilateral common carotid artery occlusion (2VO), we tested the protective effect of the phase II enzyme inducer sulforaphane (Sfn). Sfn ameliorates vascular cognitive deficits by reducing the typical white matter injury and neural atrophy pathological changes in VCI. Moreover, for the first time, we demonstrated that it effectively reduced Aβ and toxic p-tau accumulation in VCI. The protective mechanisms of Sfn involve the induction of HO-1 expression, activation of the Akt/GSK3β pathway, and modulation of amyloid precursor protein (APP) expression levels. Our data suggest that Sfn is a promising therapeutic compound to treat VCI and AD. It inhibits short-term neuron and white matter injuries as well as long-term Aβ and p-tau accumulation caused by cerebral vascular lesions.
Collapse
Affiliation(s)
- Cong Li
- School of Medical Information Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lei Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xin Li
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Neurology, Liaocheng No.4 People's Hospital, Liaocheng, Shandong, China
| | - Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Leilei Mao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yanxin Shao
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mei Han
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Shihao Zhang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Irum Ejaz
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lina Mesbah
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Qin Tang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Feifei Shang
- School of Basic Medical Sciences & Clinical Medicine, Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Department of Physiology and Neurobiology, School of Basic Medical Sciences & Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Koreki A, Nozaki S, Shikimoto R, Tsugane S, Mimura M, Sawada N. A longitudinal cohort study demonstrating the beneficial effect of moderate consumption of green tea and coffee on the prevention of dementia: The JPHC Saku Mental Health Study. J Alzheimers Dis 2025; 103:519-527. [PMID: 39772974 DOI: 10.1177/13872877241303709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND While the preventive effects of green tea and coffee on cognitive decline have been demonstrated, their long-term effects on cognition remain unclear. OBJECTIVE This study aims to investigate the effect of green tea and coffee consumption in middle age on the prevention of dementia. METHODS This population-based cohort study included 1155 participants (aged 44-66 in 1995). Participants' consumption of green tea and coffee was assessed using questionnaires in 1995 and 2000. Their cognitive levels were neuropsychologically evaluated in 2025-2015. Logistic regression analyses were conducted with significant cognitive decline (defined as multi-domain cognitive decline and more severe conditions) as the dependent variable. Stratified analyses were also conducted by sex and age. RESULTS Individuals who consumed 2-3 cups of green tea daily had a significantly reduced risk of cognitive decline (OR = 0.56, 95%CI: 0.35-0.91) after adjusting potential confounders. However, this effect was not significant with consumption of 4 or more cups. This protective effect was particularly observed in males (OR = 0.38, 95%CI: 0.19-0.76). A significant risk reduction was also observed in individuals consuming one or more cups of coffee daily (OR = 0.54, 95%CI: 0.34-0.84) in the older subjects (median age [53 years old] and older in 1995) in the same fully adjusted model, but not in the entire sample. CONCLUSIONS Our findings suggest that moderate green tea consumption in midlife may have a beneficial effect on preventing dementia, particularly in males. The effects of coffee consumption may be more advantageous for older individuals.
Collapse
Affiliation(s)
- Akihiro Koreki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, NHO Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Shoko Nozaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, NHO Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center Japan, Tokyo, Japan
- International University of Health and Welfare Graduate School of Public Health, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center Japan, Tokyo, Japan
| |
Collapse
|
5
|
Daniel M, Smith EL. Promising Roles of Phytocompounds and Nutrients in Interventions to Mitigate Chemotherapy-Induced Peripheral Neuropathy. Semin Oncol Nurs 2024; 40:151713. [PMID: 39147680 DOI: 10.1016/j.soncn.2024.151713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Provide an overview of scientific reports and literature related to the role(s) of phytocompounds and nutrients in neuroprotection. Discuss how these properties may inform nutrition- and dietary interventions to mitigate chemotherapy-induced peripheral neuropathy (CIPN), for which there are no effective treatments. METHODS A literature search (2010-2023) was conducted in PubMed and Google Scholar where search terms-diet, nutrition, neuroprotection, neurodegenerative diseases, and social determinants of health-were used to narrow articles. From this search, manuscripts were reviewed to provide an overview of the neuroprotective properties of various phytocompounds and nutrients and their observed effects in neurodegenerative conditions and CIPN. Social determinant of health factors (SDOH) related to economic stability and access to nutritious foods were also reviewed as potential barriers to dietary interventions. RESULTS Twenty-eight publications were included in this literature review. Phytocompounds found in green tea (EGCG), turmeric (curcumin), cruciferous vegetables (sulforaphane), as well as certain vitamins, are promising, targeted interventions to mitigate CIPN. SDOH factors such as economic instability and limited access to nutritious foods may act as barriers to dietary interventions and limit their generalizability. CONCLUSION Dietary interventions focused on the use of phytocompounds and vitamins with known antioxidant, anti-inflammatory, and neuroprotective properties, hold promise and may provide patients with natural, non-pharmacological therapeutics for the management and/or prevention of CIPN. However, rigorous clinical trial research is needed to explore these effects in humans. IMPLICATIONS FOR NURSING PRACTICE Nurses support cancer survivors at the point-of-care, particularly during and after neurotoxic chemotherapy treatments. If future research supports dietary interventions to mitigate CIPN, nurses will ultimately be positioned to help translate this knowledge into clinical practice through educating patients on how to infuse nutrient-rich foods into their diets. Further, nurses will need to be conscious of SDOH factors that may impede access to these foods.
Collapse
Affiliation(s)
- Michael Daniel
- School of Nursing, University of Alabama, Birmingham, Alabama, USA
| | | |
Collapse
|
6
|
Wang B, Ma T, Yang L, He S, Li J, Sun X. Association between coffee and tea consumption and the risk of dementia in individuals with hypertension: a prospective cohort study. Sci Rep 2024; 14:21063. [PMID: 39256489 PMCID: PMC11387621 DOI: 10.1038/s41598-024-71426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Many studies have shown that drinking coffee and tea may be associated with the risk of hypertension and dementia. Limited research exists on their impact on dementia risk in hypertensive patients. This study aimed to determine the association between coffee and tea consumption and the risk of dementia development in hypertensive population by utilizing Cox proportional risk modeling with 453,913 participants from a UK biobank. Our findings reveal a J-shaped and U-shaped association between the risk of all-cause dementia and the consumption of coffee and tea respectively in hypertensive people. The hypertensive patients who drink 0.5-1 cup of coffee or 4-5 cups of tea per day have the lowest risk of dementia. A U-shaped relationship was observed between daily caffeine consumption and the risk of developing all-cause dementia and vascular dementia in the hypertensive population. Furthermore, the significant association between the amount of coffee and tea consumed and the risk of all-cause and vascular dementia were more likely to be found in hypertensive patients than in the non-hypertensive population.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Ting Ma
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Lingling Yang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Shulan He
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Jiangping Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China
| | - Xian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University , Yinchuan, 750004, China.
| |
Collapse
|
7
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
Li F, Liu X, Jiang B, Li X, Wang Y, Chen X, Su Y, Wang X, Luo J, Chen L, Li J, Lv Q, Xiao J, Wu J, Ma J, Qin P. Tea, coffee, and caffeine intake and risk of dementia and Alzheimer's disease: a systematic review and meta-analysis of cohort studies. Food Funct 2024; 15:8330-8344. [PMID: 39054894 DOI: 10.1039/d4fo01750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Background: Limited and conflicting evidence exists for the associations between tea, coffee, and caffeine intake and risk of dementia and Alzheimer's disease (AD). This meta-analysis aimed to elucidate these associations and quantify potential dose-response relationships. Methods: PubMed, EMBASE, and Web of Science were searched up to 11 June 2024 for cohort studies. Random effects models were used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs), with the dose-response relationship assessed using restricted cubic splines. The Grading of Recommendations Assessment Development and Evaluation (GRADE) tool was used to assess the risk of bias. Results: Our analysis encompassed 38 cohorts, totalling 751 824 participants and 13 017 dementia and 17 341 AD cases. For dementia, compared with the lowest category, the pooled RRs (95% CI) in the highest category of tea, coffee, and caffeine were 0.84 (0.74-0.96, n = 6), 0.95 (0.87-1.02, n = 9), and 0.94 (0.70-1.25, n = 5), with all rated as low certainty in GRADE. For AD, the pooled RRs (95% CI) in the highest category of tea, coffee, and caffeine compared to the lowest category were 0.93 (0.87-1.00, n = 6), 1.01 (0.90-1.12, n = 10), and 1.34 (1.04-1.74, n = 2), with certainty ratings of low, low, and very low, respectively. Dose-response analysis indicated a non-linear relationship between coffee intake (Poverall = 0.04 and Pnonlinear = 0.01) and dementia risk, showing the protective association of risk of dementia with 1 to 3 cups per day of coffee intake. There is a linear association between tea intake and risk of dementia, with a significantly decreased risk of dementia for each 1 cup per day increase in tea consumption (0.96, 95% CI 0.94-0.99, Poverall = 0.01 and Pnonlinear = 0.68). Conclusion: Increased tea consumption was associated with a decreased risk of dementia and AD, and a non-linear relationship was found between coffee and dementia, supporting public health recommendations for dementia prevention.
Collapse
Affiliation(s)
- Fengjuan Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xiaoning Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Jiang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xinying Li
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yanqi Wang
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xiaojuan Chen
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Yuhao Su
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jun Luo
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Lifang Chen
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jiangtao Li
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Qian Lv
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jian Xiao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jun Wu
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
| | - Jianping Ma
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
| | - Pei Qin
- Center for Clinical Epidemiology and Evidence-Based Medicine, Shenzhen Qianhai Shekou Free Trade Zone, Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Gao PY, Ma LZ, Wang XJ, Wu BS, Huang YM, Wang ZB, Fu Y, Ou YN, Feng JF, Cheng W, Tan L, Yu JT. Physical frailty, genetic predisposition, and incident dementia: a large prospective cohort study. Transl Psychiatry 2024; 14:212. [PMID: 38802408 PMCID: PMC11130190 DOI: 10.1038/s41398-024-02927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Physical frailty and genetic factors are both risk factors for increased dementia; nevertheless, the joint effect remains unclear. This study aimed to investigated the long-term relationship between physical frailty, genetic risk, and dementia incidence. A total of 274,194 participants from the UK Biobank were included. We applied Cox proportional hazards regression models to estimate the association between physical frailty and genetic and dementia risks. Among the participants (146,574 females [53.45%]; mean age, 57.24 years), 3,353 (1.22%) new-onset dementia events were recorded. Compared to non-frailty, the hazard ratio (HR) for dementia incidence in prefrailty and frailty was 1.396 (95% confidence interval [CI], 1.294-1.506, P < 0.001) and 2.304 (95% CI, 2.030-2.616, P < 0.001), respectively. Compared to non-frailty and low polygenic risk score (PRS), the HR for dementia risk was 3.908 (95% CI, 3.051-5.006, P < 0.001) for frailty and high PRS. Furthermore, among the participants, slow walking speed (HR, 1.817; 95% CI, 1.640-2.014, P < 0.001), low physical activity (HR, 1.719; 95% CI, 1.545-1.912, P < 0.001), exhaustion (HR, 1.670; 95% CI, 1.502-1.856, P < 0.001), low grip strength (HR, 1.606; 95% CI, 1.479-1.744, P < 0.001), and weight loss (HR, 1.464; 95% CI, 1.328-1.615, P < 0.001) were independently associated with dementia risk compared to non-frailty. Particularly, precise modulation for different dementia genetic risk populations can also be identified due to differences in dementia risk resulting from the constitutive pattern of frailty in different genetic risk populations. In conclusion, both physical frailty and high genetic risk are significantly associated with higher dementia risk. Early intervention to modify frailty is beneficial for achieving primary and precise prevention of dementia, especially in those at high genetic risk.
Collapse
Affiliation(s)
- Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Jie Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ming Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zhi-Bo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zhang S, Cao H, Chen K, Gao T, Zhao H, Zheng C, Wang T, Zeng P, Wang K. Joint Exposure to Multiple Air Pollutants, Genetic Susceptibility, and Incident Dementia: A Prospective Analysis in the UK Biobank Cohort. Int J Public Health 2024; 69:1606868. [PMID: 38426188 PMCID: PMC10901982 DOI: 10.3389/ijph.2024.1606868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Objectives: This study aimed to evaluate the joint effects of multiple air pollutants including PM2.5, PM10, NO2, and NOx with dementia and examined the modifying effects of genetic susceptibility. Methods: This study included 220,963 UK Biobank participants without dementia at baseline. Weighted air pollution score reflecting the joint exposure to multiple air pollutants were constructed by cross-validation analyses, and inverse-variance weighted meta-analyses were performed to create a pooled effect. The modifying effect of genetic susceptibility on air pollution score was assessed by genetic risk score and APOE ε4 genotype. Results: The HR (95% CI) of dementia for per interquartile range increase of air pollution score was 1.13 (1.07∼1.18). Compared with the lowest quartile (Q1) of air pollution score, the HR (95% CI) of Q4 was 1.26 (1.13∼1.40) (P trend = 2.17 × 10-5). Participants with high air pollution score and high genetic susceptibility had higher risk of dementia compared to those with low air pollution score and low genetic susceptibility. Conclusion: Our study provides evidence that joint exposure to multiple air pollutants substantially increases the risk of dementia, especially among individuals with high genetic susceptibility.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Keying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huashuo Zhao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Xiang Y, Xu H, Chen H, Tang D, Huang Z, Zhang Y, Wang Z, Wang Z, Yangla, Han M, Yin J, Xiao X, Zhao X. Tea consumption and attenuation of biological aging: a longitudinal analysis from two cohort studies. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100955. [PMID: 38075587 PMCID: PMC10700389 DOI: 10.1016/j.lanwpc.2023.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 03/17/2025]
Abstract
BACKGROUND The biological aging process can be modified through lifestyle interventions to prevent age-related diseases and extend healthspan. However, evidence from population-based studies on whether tea consumption could delay the biological aging process in humans remains limited. METHODS This study included 7931 participants aged 30-79 years from the China Multi-Ethnic Cohort (CMEC) Study and 5998 participants aged 37-73 years from the UK Biobank (UKB) who participated in both the baseline and first follow-up surveys. Tea consumption information was collected through questionnaires. Biological age (BA) acceleration was calculated using clinical biomarkers and anthropometric measurements based on the Klemera Doubal method (KDM). Change-to-change analyses were performed to estimate the associations between changes in tea consumption status and changes in BA acceleration using multiple linear models. Follow-up adjusted for baseline analyses were further conducted to examine the prospective exposure-response relationship between tea consumption and BA acceleration among individuals with constant tea consumption status. FINDINGS During a median follow-up of 1.98 (1.78, 2.16) years in the CMEC and 4.50 (3.92, 5.00) years in the UKB, tea consumption was consistently associated with attenuated BA acceleration in both cohorts. Transitioning from nondrinking to tea-drinking was associated with decreased BA acceleration (CMEC: β = -0.319, 95% CI: -0.620 to -0.017 years; UKB: β = -0.267, 95% CI: -0.831 to 0.297 years) compared to consistent nondrinking. Even stronger associations were found in consistent tea drinkers. The exposure-response relationship suggested that consuming around 3 cups of tea or 6-8 g of tea leaves per day may offer the most evident anti-aging benefits. INTERPRETATION Tea consumption was associated with attenuated BA acceleration measured by KDM, especially for consistent tea drinkers with moderate consumption. Our findings highlight the potential role of tea in developing nutrition-oriented anti-aging interventions and guiding healthy aging policies. FUNDING National Natural Science Foundation of China (Grant No. 82273740).
Collapse
Affiliation(s)
- Yi Xiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongxiang Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dan Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zitong Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenghong Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Ziyun Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yangla
- High Altitude Health Science Research Center of Tibet University, Lhasa, China
| | - Mingming Han
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Liu W, You J, Ge Y, Wu B, Zhang Y, Chen S, Zhang Y, Huang S, Ma L, Feng J, Cheng W, Yu J. Association of biological age with health outcomes and its modifiable factors. Aging Cell 2023; 22:e13995. [PMID: 37723992 PMCID: PMC10726867 DOI: 10.1111/acel.13995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Collapse
Affiliation(s)
- Wei‐Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jia You
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Yi‐Jun Ge
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shu‐Yi Huang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer CenterShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
13
|
Wei C, Zhang J, Chen N, Xu Z, Tang H. Does frequent tea consumption provide any benefit to cognitive function in older adults? Evidence from a national survey from China in 2018. Front Public Health 2023; 11:1269675. [PMID: 38026433 PMCID: PMC10655233 DOI: 10.3389/fpubh.2023.1269675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives This present study aims to investigate the effect of tea consumption on cognitive function and examine possible psychosocial mechanisms in older adults. Participants and methods The data of this study came from the 2018 wave of the Chinese Longitudinal Healthy Longevity Survey(CLHLS), and a total of 11,910 valid samples were included. We used ordinary least squares (OLS) to explore whether frequent tea consumption had significant effect on the cognitive function of older people. The problem of endogeneity was addressed by using a propensity score matching (PSM). Then we further explored the psychosocial mechanisms of the effect using a stepwise regression approach. Results Frequent tea consumption produced a positive effect on Mini-Mental State Examination (MMSE) score (coefficient = 0.340, p < 0.01), and PSM showed similar results. Specifically, the positive effect of green tea (coefficient 0.409, p < 0.01) was significantly greater than the other teas (coefficient 0.261, p < 0.1). Moreover, frequent tea drinkers were 59.7, 74.8, and 81.8% less likely to have severe, moderate and mild cognitive impairment respectively, compared to infrequent tea drinkers (p < 0.01). Levels of depression and sleep quality had partial mediation effect for frequent tea consumption on cognitive function, accounting for 27.6 and 3.5% of the total effect, respectively. Conclusion Frequent tea consumption was found to have beneficial effects on cognitive function, especially in older people with green tea intake. Sleep quality and levels of depression partially mediated the association between frequent tea consumption and cognitive function among Chinese older adults.
Collapse
Affiliation(s)
- Chen Wei
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
- Center of Health Policy and Management Studies, Nanjing University, Nanjing, China
| | - Jiao Zhang
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Na Chen
- School of Elderly Services and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhou Xu
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huang Tang
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen H, Chen C, Qin Y, Wang L, Zheng J, Gao F. Protective effects of epigallocatechin-3-gallate counteracting the chronic hypobaric hypoxia-induced myocardial injury in plain-grown rats at high altitude. Cell Stress Chaperones 2023; 28:921-933. [PMID: 37875765 PMCID: PMC10746658 DOI: 10.1007/s12192-023-01386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Exposure to hypobaric hypoxia (HH) environment causes stress to the body, especially the oxygen-consuming organs. Chronic HH conditions have adverse effects on the myocardium. Thus, we conducted this experiment and aim to evaluate such adverse effects and explore the therapeutic role of epigallocatechin-3-gallate (EGCG) in rats' heart under chronic HH conditions. For that purpose, we transported rats from plain to a real HH environment at high altitude for establishing the HH model. At high altitude, animals were treated with EGCG while the salidroside was used as the positive control. General physiological data were collected, and routine blood test results were analyzed. Cardiac magnetic resonance (CMR) was examined to assess the structural and functional changes of the heart. Serum levels of cardiac enzymes and pro-inflammatory cytokines were examined. Oxidative markers in the left ventricle (LV) were detected. Additionally, ultrastructural and histopathological changes and apoptosis of the LV were assessed. Furthermore, the antioxidant stress-relevant proteins nuclear factor E2-related factor 2 (Nrf2) and the heme oxygenase-1 (HO-1) were detected. The experiment revealed that EGCG treatment decreased HH-induced elevation of cardiac enzymes and relieved mitochondrial damage of the LV. Notably, EGCG treatment significantly alleviated oxidative stress in the LV and inflammatory response in the blood. Western blot confirmed that EGCG significantly upregulated Nrf2 and HO-1. Therefore, EGCG may be considered a promising natural compound for treating the HH-induced myocardial injuries.
Collapse
Affiliation(s)
- Haotian Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Chen Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yuhui Qin
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ghosh P, Fontanella RA, Scisciola L, Pesapane A, Taktaz F, Franzese M, Puocci A, Ceriello A, Prattichizzo F, Rizzo MR, Paolisso G, Barbieri M. Targeting redox imbalance in neurodegeneration: characterizing the role of GLP-1 receptor agonists. Theranostics 2023; 13:4872-4884. [PMID: 37771773 PMCID: PMC10526673 DOI: 10.7150/thno.86831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 09/30/2023] Open
Abstract
Reactive oxygen species (ROS) have emerged as essential signaling molecules regulating cell survival, death, inflammation, differentiation, growth, and immune response. Environmental factors, genetic factors, or many pathological condition such as diabetes increase the level of ROS generation by elevating the production of advanced glycation end products, reducing free radical scavengers, increasing mitochondrial oxidative stress, and by interfering with DAG-PKC-NADPH oxidase and xanthine oxidase pathways. Oxidative stress, and therefore the accumulation of intracellular ROS, determines the deregulation of several proteins and caspases, damages DNA and RNA, and interferes with normal neuronal function. Furthermore, ROS play an essential role in the polymerization, phosphorylation, and aggregation of tau and amyloid-beta, key mediators of cognitive function decline. At the neuronal level, ROS interfere with the DNA methylation pattern and various apoptotic factors related to cell death, promoting neurodegeneration. Only few drugs are able to quench ROS production in neurons. The cross-linking pathways between diabetes and dementia suggest that antidiabetic medications can potentially treat dementia. Among antidiabetic drugs, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been found to reduce ROS generation and ameliorate mitochondrial function, protein aggregation, neuroinflammation, synaptic plasticity, learning, and memory. The incretin hormone glucagon-like peptide-1 (GLP-1) is produced by the enteroendocrine L cells in the distal intestine after food ingestion. Upon interacting with its receptor (GLP-1R), it regulates blood glucose levels by inducing insulin secretion, inhibiting glucagon production, and slowing gastric emptying. No study has evidenced a specific GLP-1RA pathway that quenches ROS production. Here we summarize the effects of GLP-1RAs against ROS overproduction and discuss the putative efficacy of Exendin-4, Lixisenatide, and Liraglutide in treating dementia by decreasing ROS.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
- UniCamillus, International Medical University, Rome Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
16
|
Jiang N, Ma J, Wang Q, Xu Y, Wei B. Tea intake or consumption and the risk of dementia: a meta-analysis of prospective cohort studies. PeerJ 2023; 11:e15688. [PMID: 37483967 PMCID: PMC10361076 DOI: 10.7717/peerj.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
PURPOSE Dementia affects as many as 130 million people, which presents a significant and growing medical burden globally. This meta-analysis aims to assess whether tea intake, tea consumption can reduce the risk of dementia, Alzheimer's disease (AD) and Vascular dementia (VD). PATIENTS AND METHODS Cochrane Library, PubMed and Embase were searched for cohort studies from inception to November 1, 2022. The Newcastle Ottawa Quality Assessment Scale (NOS) was applied to evaluate the risk of bias of the included studies. We extracted the data as the relative risks (RRs) for the outcome of the interest, and conducted the meta-analysis utilizing the random effect model due to the certain heterogeneity. Sensitivity analysis were performed by moving one study at a time, Subgroup-analysis was carried out according to different ages and dementia types. And the funnel plots based on Egger's and Begger's regression tests were used to evaluate publication bias. All statistical analyses were performed using Stata statistical software version 14.0 and R studio version 4.2.0. RESULTS Seven prospective cohort studies covering 410,951 individuals, which were published from 2009 and 2022 were included in this meta-analysis. The methodological quality of these studies was relatively with five out of seven being of high quality and the remaining being of moderate. The pooling analysis shows that the relationship between tea intake or consumption is associated with a reduced risk of all-cause dementia (RR = 0.71, 95% CI [0.57-0.88], I2 = 79.0%, p < 0.01). Further, the subgroup-analysis revealed that tea intake or consumption is associated with a reduced risk of AD (RR = 0.88, 95% CI [0.79-0.99], I2 = 52.6%, p = 0.024) and VD (RR = 0.75, 95% CI [0.66-0.85], I = 0.00%, p < 0.001). Lastly, tea intake or consumption could reduce the risk of all-cause dementia to a greater degree among populations with less physical activity, older age, APOE carriers, and smokers. CONCLUSION Our meta-analysis demonstrated that tea (green tea or black tea) intake or consumption is associated with a significant reduction in the risk of dementia, AD or VD. These findings provide evidence that tea intake or consumption should be recognized as an independent protective factor against the onset of dementia, AD or VD.
Collapse
Affiliation(s)
- Ning Jiang
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Jinlong Ma
- Yanbian University, Yanbian, Jilin, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, China
| | - Yuzhen Xu
- The Second Affiliated Hospital, Shandong First Medical University, Taian, Shandong, China
| | - Baojian Wei
- School of Nursing, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
17
|
Yu J, Zhang K, Wang Y, Zhai X, Wan X. Flavor perception and health benefits of tea. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:129-218. [PMID: 37722772 DOI: 10.1016/bs.afnr.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
As one of the most consumed non-alcoholic beverages in the world, tea is acclaimed for its pleasant flavor and various health benefits. Different types of tea present a distinctive flavor and bioactivity due to the changes in the composition and proportion of respective compounds. This article aimed to provide a more comprehensive understanding of tea flavor (including aroma and taste) and the character of tea in preventing and alleviating diseases. The recent advanced modern analytical techniques for revealing flavor components in tea, including enrichment, identification, quantitation, statistics, and sensory evaluation methodologies, were summarized in the following content. Besides, the role of tea in anti-cancer, preventing cardiovascular disease and metabolic syndrome, anti-aging and neuroprotection, and regulating gut microbiota was also listed in this article. Moreover, questions and outlooks were mentioned to objectify tea products' flavor quality and health benefits on a molecular level and significantly promote our understanding of the comprehensive value of tea as a satisfactory health beverage in the future.
Collapse
Affiliation(s)
- Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, PR China.
| |
Collapse
|
18
|
Sun Y, Liang Z, Xia X, Wang MH, Zhu C, Pan Y, Sun R. Extra cup of tea intake associated with increased risk of Alzheimer's disease: Genetic insights from Mendelian randomization. Front Nutr 2023; 10:1052281. [PMID: 36761219 PMCID: PMC9905237 DOI: 10.3389/fnut.2023.1052281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Observational studies report inconclusive effects of tea consumption on the risk of Alzheimer's disease (AD), and the mechanisms are unclear. This study aims to investigate the effects of genetically predicted tea intake (cups of tea consumed per day) on AD, brain volume, and cerebral small vessel disease (CSVD) using the two-sample Mendelian randomization (MR) method. Methods Summary statistics of tea intake were obtained from UK Biobank (N = 447,485), and AD was from the International Genomics of Alzheimer's Project (N = 54,162). Genetic instruments were retrieved from UK Biobank using brain imaging-derived phenotypes for brain volume outcomes (N > 33,224) and genome-wide association studies for CSVD (N: 17,663-48,454). Results In the primary MR analysis, tea intake significantly increased the risk of AD using two different methods (ORIVW = 1.48, 95% CI: [1.14, 1.93]; ORWM = 2.00, 95% CI: [1.26, 3.18]) and reached a weak significant level using MR-Egger regression (p < 0.1). The result passed all the sensitivity analyses, including heterogeneity, pleiotropy, and outlier tests. In the secondary MR analysis, per extra cup of tea significantly decreased gray matter (βWM = -1.63, 95% CI: [-2.41, -0.85]) and right hippocampus volume (βWM = -1.78, 95% CI: [-2.76, -0.79]). We found a nonlinear association between tea intake and AD in association analysis, which suggested that over-drinking with more than 13 cups per day might be a risk factor for AD. Association analysis results were consistent with MR results. Conclusion This study revealed a potential causal association between per extra cup of tea and an increased risk of AD. Genetically predicted tea intake was associated with a decreased brain volume of gray matter and the right hippocampus, which indicates that over-drinking tea might lead to a decline in language and memory functions. Our results shed light on a novel possible mechanism of tea intake to increase the risk of AD by reducing brain volume.
Collapse
Affiliation(s)
- Yuxuan Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zixin Liang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxuan Xia
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Maggie Haitian Wang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rui Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
19
|
Quan W, Lin Y, Zou H, Li M, Luo J, He Z, Chen J, Liu Z. Can habitual tea drinking be an effective approach against age-related neurodegenerative cognitive disorders: A systematic review and meta-analysis of epidemiological evidence. Crit Rev Food Sci Nutr 2022; 64:5835-5851. [PMID: 36579429 DOI: 10.1080/10408398.2022.2158780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our present knowledge about the efficacy of tea consumption in improving age-related cognitive disorders is incomplete since previous epidemiological studies provide inconsistent evidence. This unified systematic review and meta-analysis based on updated epidemiological cohort studies and randomized controlled trials (RCTs) evidence aimed to overcome the limitations of previous reviews by examining the efficacy of distinct types of tea consumption. PubMed, Embase, and MEDLINE were searched up to May 20, 2022, and 23 cohorts and 12 cross-sectional studies were included. Random-effects meta-analyses were conducted to obtain pooled RRs or mean differences with 95% CIs. The pooled RRs of the highest versus lowest tea consumption categories were 0.81 (95% CIs: 0.75-0.88) and 0.69 (95% CIs: 0.61-0.77), respectively. The pooled mean difference of four included RCTs revealed a beneficial effect of tea on cognitive dysfunction (MMSE ES: 1.03; 95% CI, 0.14-1.92). Subgroup analyses further demonstrated that green and black tea intake was associated with a lower risk of cognitive disorders in eastern countries, especially in women. The evidence quality was generally low to moderate. The present review provides insight into whether habitual tea consumption can be an effective approach against age-related neurodegenerative cognitive disorders and summarizes potential mechanisms based on currently published literature.
Collapse
Affiliation(s)
- Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Lin
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Huiyu Zou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Maiquan Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
20
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|