1
|
Zhu J, Liu L, Wu J, Bai L. Rodent models for dry eye syndrome (DES). Cont Lens Anterior Eye 2025; 48:102383. [PMID: 39956692 DOI: 10.1016/j.clae.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Dry eye syndrome (DES) is a range of ophthalmic conditions characterized by compromised tear film homeostasis, resulting from various pathological factors and primarily manifesting as ocular discomfort and impaired ocular surface integrity. With the rise in screen time due to modern lifestyles, the prevalence of DES is increasing annually, posing a significant global public health challenge. Pathophysiologically, DES involves damage to the lacrimal functional unit (LFU), including the lacrimal glands, meibomian glands, and corneoconjunctival epithelium, highlighting its multifactorial etiology. Current treatments mainly focus on artificial tears for moisture replacement and anti-inflammatory therapies, but both are limited. Consequently, animal models are crucial for understanding the complex pathological mechanisms of DES and identifying potential therapeutic agents. Rodent eyes, with their structural and physiological similarities to human eyes and cost-effectiveness, have become widely used in DES research. This manuscript reviews the current understanding of DES pathogenesis and rodent models, discussing their strengths, weaknesses, and relevant genetic models. The aim is to furnish critical insights and provide a scholarly resource to propel future investigative endeavors into the pathogenesis of and therapy for DES.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Ziyadullaev SK, Khudaiberdiev SS, Aripova TU, Chirumbolo S, Kamalov ZS, Bjørklund G, Rizaev JA, Tashkenbaeva EN, Khamidov OA, Gaffarov UB. Synovial Fluid as a Crucial Component of the Joint Microenvironment in Rheumatoid Arthritis. Immune Netw 2025; 25:e2. [PMID: 40342839 PMCID: PMC12056296 DOI: 10.4110/in.2025.25.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 05/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease closely associated with synovial tissue proliferation, pannus formation in small joints such as the hands, wrists, and feet, cartilage destruction, and systemic complications such as pulmonary, cardiovascular, neurological, and skeletal muscle lesions, glucocorticoid-induced osteoporosis and infections. The importance of confirming the diagnosis and determining local activity is given to the study of synovial fluid. A deep understanding of the pathological process in the joint in RA, characterized by changes in autoreactive CD4+ T cells, B cells, macrophages, inflammatory cytokines, chemokines, and autoantibodies, has now been achieved, although much remains to be explored. This article provides an updated overview of the pathogenesis of RA, revealing even more therapeutic targets for the intra-articular pathological process.
Collapse
Affiliation(s)
| | | | | | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana 8622, Norway
| | | | | | - Obid Abdurakhmanovich Khamidov
- Rehabilitology and Sports Medicine Research Institute of the Samarkand State Medical University, Samarkand 140100, Uzbekistan
| | | |
Collapse
|
3
|
Veerasubramanian PK, Wynn TA, Quan J, Karlsson FJ. Targeting TNF/TNFR superfamilies in immune-mediated inflammatory diseases. J Exp Med 2024; 221:e20240806. [PMID: 39297883 PMCID: PMC11413425 DOI: 10.1084/jem.20240806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulated signaling from TNF and TNFR proteins is implicated in several immune-mediated inflammatory diseases (IMIDs). This review centers around seven IMIDs (rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease, ulcerative colitis, psoriasis, atopic dermatitis, and asthma) with substantial unmet medical needs and sheds light on the signaling mechanisms, disease relevance, and evolving drug development activities for five TNF/TNFR signaling axes that garner substantial drug development interest in these focus conditions. The review also explores the current landscape of therapeutics, emphasizing the limitations of the approved biologics, and the opportunities presented by small-molecule inhibitors and combination antagonists of TNF/TNFR signaling.
Collapse
Affiliation(s)
| | - Thomas A. Wynn
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | - Jie Quan
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA, USA
| | | |
Collapse
|
4
|
Han D, Jiang C, Xu H, Chu R, Zhang R, Fang R, Ge H, Lu M, Wang M, Tai Y, Yan S, Wei W, Wang Q. Inhibition of GRK2 ameliorates the pristane-induced mouse SLE model by suppressing plasma cells differentiation. Int Immunopharmacol 2024; 138:112557. [PMID: 38936060 DOI: 10.1016/j.intimp.2024.112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by diverse clinical manifestations and organ damage. Despite its elusive etiology, dysregulated subsets and functions of B cells are pivotal in SLE pathogenesis. Peoniflorin-6'-O-benzene sulfonate (CP-25), an esterification modification of Paeoniflorin, exhibits potent anti-inflammatory and immunomodulatory properties in autoimmune diseases (AID). However, the involvement of CP-25 and its target, GRK2, in SLE development has not been explored. In this study, we demonstrate that both genetic deficiency and pharmacological inhibition of GRK2 attenuate autoantibodies production, reduce systemic inflammation, and mitigate histopathological alterations in the spleen and kidney in the pristane-induced mouse SLE model. Importantly, our findings highlight that both genetic deficiency and pharmacological inhibition of GRK2 suppress plasma cells generation and restore dysregulated B-cell subsets by modulating two crucial transcription factors, Blimp1 and IRF4. Collectively, targeting GRK2 with CP-25 emerges as a promising therapeutic approach for SLE.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chunru Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Hui Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Meiyue Lu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Mingzhu Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
5
|
Murphy SL, Balzer NR, Ranheim T, Sagen EL, Huse C, Bjerkeli V, Michelsen AE, Finbråten AK, Heggelund L, Dyrhol-Riise AM, Tveita A, Holten AR, Trøseid M, Ueland T, Ulas T, Aukrust P, Barratt-Due A, Halvorsen B, Dahl TB. Extracellular matrix remodelling pathway in peripheral blood mononuclear cells from severe COVID-19 patients: an explorative study. Front Immunol 2024; 15:1379570. [PMID: 38957465 PMCID: PMC11217192 DOI: 10.3389/fimmu.2024.1379570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
There is a reciprocal relationship between extracellular matrix (ECM) remodelling and inflammation that could be operating in the progression of severe COVID-19. To explore the immune-driven ECM remodelling in COVID-19, we in this explorative study analysed these interactions in hospitalised COVID-19 patients. RNA sequencing and flow analysis were performed on peripheral blood mononuclear cells. Inflammatory mediators in plasma were measured by ELISA and MSD, and clinical information from hospitalised COVID-19 patients (N=15) at admission was included in the analysis. Further, we reanalysed two publicly available datasets: (1) lung tissue RNA-sequencing dataset (N=5) and (2) proteomics dataset from PBCM. ECM remodelling pathways were enriched in PBMC from COVID-19 patients compared to healthy controls. Patients treated at the intensive care unit (ICU) expressed distinct ECM remodelling gene profiles compared to patients in the hospital ward. Several markers were strongly correlated to immune cell subsets, and the dysregulation in the ICU patients was positively associated with plasma levels of inflammatory cytokines and negatively associated with B-cell activating factors. Finally, our analysis of publicly accessible datasets revealed (i) an augmented ECM remodelling signature in inflamed lung tissue compared to non-inflamed tissue and (ii) proteomics analysis of PBMC from severe COVID-19 patients demonstrated an up-regulation in an ECM remodelling pathway. Our results may suggest the presence of an interaction between ECM remodelling, inflammation, and immune cells, potentially initiating or perpetuating pulmonary pathology in severe COVID-19.
Collapse
Affiliation(s)
- Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nora Reka Balzer
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ellen Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Vigdis Bjerkeli
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Lars Heggelund
- Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital Ullevål, Oslo, Norway
| | - Anders Tveita
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Aleksander Rygh Holten
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Andreas Barratt-Due
- Division of Laboratory Medicine, Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
6
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 422] [Impact Index Per Article: 422.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Gu C, Sun Y, Mao M, Liu J, Li X, Zhang X. Mechanism of simulated lunar dust-induced lung injury in rats based on transcriptomics. Toxicol Res (Camb) 2024; 13:tfad108. [PMID: 38179001 PMCID: PMC10762671 DOI: 10.1093/toxres/tfad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024] Open
Abstract
Lunar dust particles are an environmental threat to lunar astronauts, and inhalation of lunar dust can cause lung damage. The current study explored the mechanism of lunar dust simulant (CLDS-i) inducing inflammatory pulmonary injury. Wistar rats were exposed to CLDS-i for 4 h/d and 7d/week for 4 weeks. Pathological results showed that a large number of inflammatory cells gathered and infiltrated in the lung tissues of the simulated lunar dust group, and the alveolar structures were destroyed. Transcriptome analysis confirmed that CLDS-i was mainly involved in the regulation of activation and differentiation of immune inflammatory cells, activated signaling pathways related to inflammatory diseases, and promoted the occurrence and development of inflammatory injury in the lung. Combined with metabolomics analysis, the results of joint analysis of omics were found that the genes Kmo, Kynu, Nos3, Arg1 and Adh7 were involved in the regulation of amino acid metabolism in rat lung tissues, and these genes might be the key targets for the treatment of amino acid metabolic diseases. In addition, the imbalance of amino acid metabolism might be related to the activation of nuclear factor kappaB (NF-κB) signaling pathway. The results of quantitative real-time polymerase chain reaction and Western blot further confirmed that CLDS-i may promote the occurrence and development of lung inflammation and lead to abnormal amino acid metabolism by activating the B cell activation factor (BAFF)/ B cell activation factor receptor (BAFFR)-mediated NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chen Gu
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Yan Sun
- School of Pharmacy, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Meiqi Mao
- College of Basic Medical Sciences, Shenyang Medical College, Huanghe North Street 146, Shenyang 110034, China
| | - Jinguo Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Nanta Street 114, Shenyang 110016, China
| | - Xiongyao Li
- Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Lincheng West Road 99, Guiyang 550081, China
| | - Xiaoping Zhang
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Weilong Road, Taipa, Macau 999078, China
| |
Collapse
|
8
|
Pan S, Xiao X, Li T, Wu S, Zhou J, Tan S, Cheng J, Tian Y, Zhang H, Zhang X. Definition of follicular helper T cell and cytokines expression in synovial fluid of rheumatoid arthritis. Clin Rheumatol 2024; 43:129-135. [PMID: 37792147 DOI: 10.1007/s10067-023-06772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE This study aimed to assess the role of synovial fluid (SF) CD4+T, CD19+B, follicular helper cells (Tfh), and cytokines in the pathogenesis of rheumatoid arthritis (RA). METHODS This study enrolled 16 patients with RA and 8 patients with osteoarthritis (OA). The frequencies of the SF CD4+ T, CD19+ B, Tfh cells, and Tfh subsets were assessed using flow cytometry. The medical condition in patients with RA was evaluated using The Disease Activity Score 28 (DAS28), the Clinical Disease Activity Index (CDAI), and the Simplified Disease Activity Index (SDAI). Levels of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), anti-cyclic citrullinated peptide (anti-CCP), and rheumatoid factor (RF) were measured. The cytokines IL-4, IL-13, IL-21, and BLyS were measured by ELISA test. RESULTS The percentages of SF CD4+T, CD19+B, and PD-1+CXCR5+ Tfh in RA patients were higher than those in OA patients. And the Tfh2 was the main subset among Tfh subsets. In addition, levels of IL-21 and BLyS were higher in patients with RA compared to patients with OA. Furthermore, the treatment of TNF-α inhibitors may be associated with decreased levels of SF Tfh. CONCLUSIONS Elevated SF Tfh, B cell, and cytokines expression profiles were observed in RA patients. Tfh2 was the major subset of the Tfh, and IL-21 and BLyS were significantly enhanced. Additionally, TNF-α inhibitors reduced Tfh in SF. Therefore, Tfh, B, and Tfh2 cells could play a significant role in the progression of RA. Key Points •Tfh cells in the synovial fluid are significantly higher in RA patients and are dominated by the Tfh2 subpopulation. •Synovial fluid Tfh cells decrease in RA patients after anti-TNF-α treatment.
Collapse
Affiliation(s)
- Shaowei Pan
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- The Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Xiaoyu Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
| | - Tong Li
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Shiyao Wu
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Junyu Zhou
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Shuangyun Tan
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Jiaomei Cheng
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Yuzi Tian
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China
| | - Huali Zhang
- The Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, China
| | - Xiaoli Zhang
- The Department of Rheumatology and Immunology, Xiangya hospital of Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
- Provincial Clinical Research Center for Rheumatic and immunologic Diseases, Xiangya Hospital, Changsha, China.
| |
Collapse
|
9
|
刘 天, 周 学, 黄 传, 周 玲, 谌 曦, 万 磊, 纵 瑞, 范 海, 孙 玥, 俞 志, 汤 忠, 徐 耿, 周 子. [Mechanism of Qingluo Tongbi Formula for regulating immune-bone erosion in rheumatoid arthritis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1706-1714. [PMID: 37933646 PMCID: PMC10630194 DOI: 10.12122/j.issn.1673-4254.2023.10.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the mechanism of Qingluo Tongbi formula for regulating "immune-bone erosion" in rheumatoid arthritis (RA). METHODS Sixty-four RA patients were randomized into two groups to receive treatment with oral methotrexate or Qingluo Tongbi Formula for 12 weeks. Flow cytometry was used to analyze the changes in the percentages of CD3-CD19+, CD19+CD27 and CD19+BAFFR+B cell subpopulations in peripheral blood of the patients, and serum levels of B cell activating factor (BAFF), RANKL, RANK and osteoprotegerin (OPG) levels were detected using ELISA. Before and after the treatment, serum levels of β-CTX, TRACP-5b, BGP, BALP, and PINP were measured with ELISA, and bone mineral density was determined with DXEA dual-energy X-ray absorptiometry. In the cell experiment, RAW264.7 cells were induced to differentiated into osteoclasts and treated with Qingluo Tongbi Formula at low-, moderate and high doses (125, 250 and 500 μg/mL, respectively) or with methotrexate (2 μg/mL) for 48 h, and the changes in the expression levels of RANKL, RANK, OPG and c-Fos were detected using Western blotting. RESULTS The B cell subgroups in RA patients were correlated with the RANKL/RANK/OPG system. Treatment with Qingluo Tongbi Formula obviously down-regulated the percentages of the B cell subgroups, lowered serum levels of BAFF, β-CTX and TRACP-5b, increased the levels of BGP, BALP and PINP, and improved lumbar bone density of RA patients (P<0.05); All these changes were significantly correlated with the regulation of B cell expressions (P<0.05). In RAW264.7 cells-derived osteoclasts, Qingluo Tongbi Formula significantly decreased the expressions of RANKL, RANK and c-Fos and increased the expression of OPG (P<0.05). CONCLUSION Qingluo Tongbi Formula inhibits bone erosion in RA possibly by regulating B cell subset percentages and BAFF expression and inhibiting osteoclast differentiation via the RANKL/RANK/OPG pathway.
Collapse
Affiliation(s)
- 天阳 刘
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 学平 周
- 南京中医药大学第一临床学院,江苏 南京 210000First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - 传兵 黄
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 玲玲 周
- 南京中医药大学药学院,江苏 南京 210000School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - 曦 谌
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 磊 万
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 瑞凯 纵
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 海霞 范
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 玥 孙
- 安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology of First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 志超 俞
- 南京中医药大学第一临床学院,江苏 南京 210000First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - 忠富 汤
- 安徽中医药大学研究生院,安徽 合肥 230031Graduate School, Anhui University of Chinese Medicine, Hefei 230031, China
| | - 耿瑞 徐
- 南京中医药大学研究生院,江苏 南京 210000Graduate School, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - 子译 周
- 南京中医药大学研究生院,江苏 南京 210000Graduate School, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
10
|
Carstens PO, Müllar LM, Wrede A, Zechel S, Wachowski MM, Brandis A, Krause S, Zierz S, Schmidt J. Skeletal muscle fibers produce B-cell stimulatory factors in chronic myositis. Front Immunol 2023; 14:1177721. [PMID: 37731487 PMCID: PMC10508232 DOI: 10.3389/fimmu.2023.1177721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction We aimed to identify B-cell-mediated immunomechanisms in inclusion body myositis (IBM) and polymyositis (PM) as part of the complex pathophysiology. Materials and methods Human primary myotube cultures were derived from orthopedic surgery. Diagnostic biopsy specimens from patients with IBM (n=9) and PM (n=9) were analyzed for markers of B cell activation (BAFF and APRIL) and for chemokines that control the recruitment of B cells (CXCL-12 and CXCL-13). Results were compared to biopsy specimens without myopathic changes (n=9) and hereditary muscular dystrophy (n=9). Results The mRNA expression of BAFF, APRIL, and CXCL-13 was significantly higher in IBM and PM compared to controls. Patients with IBM displayed the highest number of double positive muscle fibers for BAFF and CXCL-12 (48%) compared to PM (25%), muscular dystrophy (3%), and non-myopathic controls (0%). In vitro, exposure of human myotubes to pro-inflammatory cytokines led to a significant upregulation of BAFF and CXCL-12, but APRIL and CXCL-13 remained unchanged. Conclusion The results substantiate the hypothesis of an involvement of B cell-associated mechanisms in the pathophysiology of IBM and PM. Muscle fibers themselves seem to contribute to the recruitment of B cells and sustain inflammation.
Collapse
Affiliation(s)
- Per-Ole Carstens
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa M. Müllar
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Arne Wrede
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Neuropathology, Saarland University Medical Center and Medical Faculty of Saarland University, Homburg, Germany
| | - Sabrina Zechel
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin M. Wachowski
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Almuth Brandis
- Department of Pathology, Klinikum Region Hannover, Hannover, Germany
- Institute of Pathology and Neuropathology, Medical University Hannover, Hannover, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of München, München, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle/Saale, Halle, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel Klinik Rüdersdorf, University Hospital of the Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei, Berlin, Germany
| |
Collapse
|
11
|
Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol 2023; 14:1232820. [PMID: 37680644 PMCID: PMC10481957 DOI: 10.3389/fimmu.2023.1232820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Autoimmune diseases are heterogeneous disorders believed to stem from the immune system's inability to distinguish between auto- and foreign- antigens. B lymphocytes serve a crucial role in humoral immunity as they generate antibodies and present antigens. Dysregulation of B cell function induce the onset of autoimmune disorders by generating autoantibodies and pro-inflammatory cytokines, resulting in an imbalance in immune regulation. New research in immunometabolism shows that cellular metabolism plays an essential role in controlling B lymphocytes immune reactions by providing the energy and substrates for B lymphocytes activation, differentiation, and function. However, dysregulated immunometabolism lead to autoimmune diseases by disrupting self-tolerance mechanisms. This review summarizes the latest research on metabolic reprogramming of B lymphocytes in autoimmune diseases, identifying crucial pathways and regulatory factors. Moreover, we consider the potential of metabolic interventions as a promising therapeutic strategy. Understanding the metabolic mechanisms of B cells brings us closer to developing novel therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Gao J, Zhang H, Yang Y, Tao J. Therapeutic Potential of Targeting the NLRP3 Inflammasome in Rheumatoid Arthritis. Inflammation 2023; 46:835-852. [PMID: 36897552 DOI: 10.1007/s10753-023-01795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic multiprotein complex composed of the innate immune receptor protein NLRP3, the adapter protein apoptosis-associate speck-like protein containing a caspase recruitment domain (ASC), and the inflammatory protease cysteine-1. Pathogen-associated molecular patterns (PAMPs) or other endogenous danger-associated molecular patterns (DAMPs) activate the NLRP3 inflammasome. As part of the innate immune response, activated NLRP3 promotes GSDMD-dependent pyroptosis, and IL-1β and IL-18 are released during inflammation. Aberrantly activated NLRP3 is deeply involved in various inflammatory diseases. Due to its interaction with adaptive immunity. NLRP3 inflammation has increasingly received attention in autoimmune diseases. Rheumatoid arthritis (RA) is a classic autoimmune disease, which mainly causes bone and cartilage damage. Elevated levels of NLRP3 can be detected in the synovium of RA patients. NLRP3 overactivation is strongly associated with RA activity. Mouse models of spontaneous arthritis has shown that NLRP3/IL-1β axis is implicated in periarticular inflammation in RA. In this review, we describe the current understanding of NLRP3 activation in RA pathogenesis and dissect its impact on innate and adaptive immunity. We also discuss the potential application of specific inhibitors of NLRP3 to provide new therapeutic strategies for treating RA.
Collapse
Affiliation(s)
- Jie Gao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Hongliang Zhang
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- College of Medicine and Health, Lishui University, Liandu District, No. 1 Xueyuan Road, Lishui, 323000, China
| | - Yanyan Yang
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| |
Collapse
|
13
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
14
|
Zhang LB, Yan Y, He J, Wang PP, Chen X, Lan TY, Guo YX, Wang JP, Luo J, Yan ZR, Xu Y, Tao QW. Epimedii Herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Front Chem 2022; 10:1023779. [PMID: 36465876 PMCID: PMC9712800 DOI: 10.3389/fchem.2022.1023779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive inflammatory and systemic autoimmune disease resulting in severe joint destruction, lifelong suffering and considerable disability. Diverse prescriptions of traditional Chinese medicine (TCM) containing Epimedii Herba (EH) achieve greatly curative effects against RA. The present review aims to systemically summarize the therapeutic effect, pharmacological mechanism, bioavailability and safety assessment of EH to provide a novel insight for subsequent studies. The search terms included were "Epimedii Herba", "yinyanghuo", "arthritis, rheumatoid" and "Rheumatoid Arthritis", and relevant literatures were collected on the database such as Google Scholar, Pubmed, Web of Science and CNKI. In this review, 15 compounds from EH for the treatment of RA were summarized from the aspects of anti-inflammatory, immunoregulatory, cartilage and bone protective, antiangiogenic and antioxidant activities. Although EH has been frequently used to treat RA in clinical practice, studies on mechanisms of these activities are still scarce. Various compounds of EH have the multifunctional traits in the treatment of RA, so EH may be a great complementary medicine option and it is necessary to pay more attention to further research and development.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Pei-Pei Wang
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Lan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xuan Guo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ping Wang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Luo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ze-Ran Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
15
|
Yang YP, Jian YQ, Liu YB, Xie QL, Yu HH, Wang B, Li B, Peng CY, Wang W. Heilaohuacid G, a new triterpenoid from Kadsura coccinea inhibits proliferation, induces apoptosis, and ameliorates inflammation in RA-FLS and RAW 264.7 cells via suppressing NF-𝜅B pathway. Phytother Res 2022; 36:3900-3910. [PMID: 36104304 DOI: 10.1002/ptr.7527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Heilaohu, the roots of Kadsura coccinea, has been used in Tujia ethnomedicine to treat rheumatic arthritis (RA). Heilaohuacid G (1), a new 3,4-seco-lanostane type triterpenoid isolated from the ethanol extract of Heilaohu, whose structure was determined using HR-ESI-MS data, NMR spectroscopic analyses, and ECD calculations. In this study, our purpose is to elucidate the mechanisms of Heilaohuacid G in the treatment of RA by inhibited proliferation of rheumatoid arthritis-fibroblastoid synovial (RA-FLS) cells and inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. The biological activity screening experiments indicated that Heilaohuacid G significantly inhibited proliferation of RA-FLS cells with IC50 value of 8.16 ± 0.47 μM. CCK-8 assay, ELISA, flow cytometry assay, and Western blot were used to measure the changes of cell viability, apoptosis, and the release of inflammatory cytokines. Heilaohuacid G was found not only induced RA-FLS cell apoptosis, but also inhibited the inflammatory reactions in LPS-induced RA-FLS and RAW 264.7 cell lines via inhibiting NF-κB pathway. Furthermore, Heilaohuacid G (p.o.) at doses of 3.0, 6.0, and 12.0 mg/kg and the ethanol extracts of Heilaohu (p.o.) at doses of 200, 400, and 800 mg/kg both were confirmed antiinflammatory effects on xylene-induced ear mice edema model.
Collapse
Affiliation(s)
- Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yong-Bei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
16
|
王 杰, 刘 健, 文 建, 王 馨. [Triptolide inhibits inflammatory response and migration of fibroblast like synovial cells in rheumatoid arthritis through the circRNA 0003353/JAK2/STAT3 signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:367-374. [PMID: 35426800 PMCID: PMC9010992 DOI: 10.12122/j.issn.1673-4254.2022.03.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect. METHODS We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells. RESULTS The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01). CONCLUSION The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.
Collapse
Affiliation(s)
- 杰 王
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 健 刘
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 建庭 文
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - 馨 王
- />安徽中医药大学第一附属医院风湿科,安徽 合肥 230031Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| |
Collapse
|
17
|
Xing X, Xia Q, Gong B, Shen Z, Zhang Y. Identification of Tissue-Specific Expressed Hub Genes and Potential Drugs in Rheumatoid Arthritis Using Bioinformatics Analysis. Front Genet 2022; 13:855557. [PMID: 35368701 PMCID: PMC8971206 DOI: 10.3389/fgene.2022.855557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is a common autoimmune disease characterized by progressive, destructive polyarthritis. However, the cause and underlying molecular events of RA are not clear. Here, we applied integrated bioinformatics to identify tissue-specific expressed hub genes involved in RA and reveal potential targeted drugs. Methods: Three expression profiles of human microarray datasets involving fibroblast-like synoviocytes (FLS) were downloaded from the Gene Expression Omnibus (GEO) database, the differentially expressed mRNAs (DEGs), miRNAs (DEMs), and lncRNAs (DELs) between normal and RA synovial samples were screened using GEO2R tool. BioGPS was used to identified tissue-specific expressed genes. Functional and pathway enrichment analyses were performed for common DEGs using the DAVID database, and the protein-protein interaction (PPI) network of common DEGs was constructed to recognize hub genes by the STRING database. Based on receiver operating characteristic (ROC) curve, we further investigated the prognostic values of tissue-specific expressed hub genes in RA patients. Connectivity Map (CMap) was run to identify novel anti-RA potential drugs. The DEM–DEG pairs and ceRNA network containing key DEMs were established by Cytoscape. Results: We obtain a total of 418 DEGs, 23 DEMs and 49 DELs. 64 DEGs were verified as tissue-specific expressed genes, most derive from the hematologic/immune system (20/64, 31.25%). GO term and KEGG pathway enrichment analysis showed that DEGs focused primarily on immune-related biological process and NF-κB pathway. 10 hub genes were generated via using MCODE plugin. Among them, SPAG5, CUX2, and THEMIS2 were identified as tissue-specific expressed hub genes, these 3 tissue-specific expressed hub genes have superior diagnostic value in the RA samples compared with osteoarthritis (OA) samples. 5 compounds (troleandomycin, levodopa, trichostatin A, LY-294002, and levamisole) rank among the top five in connectivity score. In addition, 5 miRNAs were identified to be key DEMs, the lncRNA–miRNA–mRNA network with five key DEMs was formed. The networks containing tissue-specific expressed hub genes are as follows: ARAP1-AS2/miR-20b-3p/TRIM3, ARAP1-AS2/miR-30c-3p/FRZB. Conclusion: This study indicates that screening for identify tissue-specific expressed hub genes and ceRNA network in RA using integrated bioinformatics analyses could help us understand the mechanism of development of RA. Besides, SPAG5 and THEMIS2 might be candidate biomarkers for diagnosis of RA. LY-294002, trichostatin A, and troleandomycin may be potential drugs for RA.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Qun Xia
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
| | - Baoqi Gong
- Department of Rheumatology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongyang Shen
- Department of Transplant Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yingze Zhang
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopaedic Surgery of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Chinese Academy of Engineering, Beijing, China
- *Correspondence: Yingze Zhang,
| |
Collapse
|
18
|
Circulating BAFF as novel biomarker in distinguishing chronic rhinosinusitis with nasal polyps endotypes and predicting postoperative recurrence. Int Immunopharmacol 2022; 104:108515. [PMID: 35008009 DOI: 10.1016/j.intimp.2021.108515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND B cell-activating factor (BAFF) is a proinflammatory cytokine involved in inflammatory and allergic diseases, but its role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unclear. This study aims to explore the predictive value of circulating BAFF in CRSwNP endotypes and postoperative recurrence. METHODS We recruited 120 CRSwNP patients, including 68 non-eosinophilic CRSwNP (neCRSwNP) patients, 52 eosinophilic CRSwNP (CRSwNP) patients, and 60 healthy controls (HCs). Circulating BAFF levels of all participants were measured by enzyme-linked immunosorbent assay (ELISA), and receiver-operating characteristic (ROC) and logistic regression analyses were applied to assess the predictive ability of BAFF levels in distinguishing CRSwNP endotypes. All CRSwNP patients were followed for more than 3 years, and the predictive value of circulating BAFF for postoperative recurrence was evaluated. RESULTS Serum BAFF levels were elevated in CRSwNP patients compared with the HCs (P < 0.01) and significantly higher in eCRSwNP patients. The increased serum BAFF concentrations positively correlated with blood eosinophil counts and percentages, tissue eosinophil counts, and serum total IgE (P < 0.05). The ROC curve showed that serum BAFF exhibited strong discriminative ability for eCRSwNP. Finally, 99 CRSwNP patients completed the follow-up schedule, 65 patients were classified into non-recurrence group and the other 34 patients were categorized into recurrence group. Serum BAFF levels were significantly higher in recurrence group than non-recurrence group (P < 0.001), and the ROC curve suggested a high predictive value of serum BAFF in predicting postoperative recurrence. Moreover, logistic regression and Kaplan-Meier curves showed that serum BAFF was an independent risk factor for postoperative recurrence (P < 0.05). CONCLUSION Our data suggested that serum BAFF levels were upregulated in CRSwNP patients and correlated with mucosal eosinophil infiltration severity. Serum BAFF seemed to be a novel biomarker for preoperatively distinguishing CRSwNP endotypes and predicting postoperative recurrence.
Collapse
|
19
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. B Cells in Rheumatoid Arthritis:Pathogenic Mechanisms and Treatment Prospects. Front Immunol 2021; 12:750753. [PMID: 34650569 PMCID: PMC8505880 DOI: 10.3389/fimmu.2021.750753] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common, chronic, systemic autoimmune disease, and its clinical features are the proliferation of joint synovial tissue, the formation of pannus and the destruction of cartilage. The global incidence of RA is about 1%, and it is more common in women. The basic feature of RA is the body’s immune system disorders, in which autoreactive CD4+T cells, pathogenic B cells, M1 macrophages, inflammatory cytokines, chemokines and autoantibodies abnormally increase in the body of RA patients B cell depletion therapy has well proved the important role of B cells in the pathogenesis of RA, and the treatment of RA with B cells as a target has also been paid more and more attention. Although the inflammatory indicators in RA patients receiving B-cell depletion therapy have been significantly improved, the risk of infection and cancer has also increased, which suggests that we need to deplete pathogenic B cells instead of all B cells. However, at present we cannot distinguish between pathogenic B cells and protective B cells in RA patients. In this review, we explore fresh perspectives upon the roles of B cells in the occurrence, development and treatment of RA.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|