1
|
Gupta S, Jash M, Khan J, Garg S, Roy R, Arshi MU, Nayak P, Ghosh S. Discovery of potential Leonurine-based therapeutic lead MJ210 attenuates Parkinson's disease pathogenesis via NF-κB and MAPK pathways: Mechanistic insights from in vitro and in vivo rotenone models. Eur J Med Chem 2025; 289:117471. [PMID: 40090295 DOI: 10.1016/j.ejmech.2025.117471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting motor and non-motor functions, with no effective treatment yet discovered. Neuroprotective compounds, both natural and synthetic, show promise but face challenges such as crossing the blood-brain barrier, limited serum stability, and higher toxicity. To tackle these obstacles, we have devised an innovative design strategy inspired by the neuroprotective properties of Leonurine, widely utilized in managing neurological disorders. Through rigorous screening of our compound library, we have identified a potent therapeutic molecule (MJ210) that exhibited remarkable efficacy in bolstering neuroprotection against rotenone-induced PD models, both in vitro and in vivo. Our findings revealed that administering MJ210 significantly increased neuronal survival in the SH-SY5Y model of PD. This was achieved by preventing apoptosis, reducing reactive oxygen species, mitigating mitochondrial dysfunction, and dampening neuroinflammation via ERK1/2-P38-JNK and P65-NFκB signaling pathways. In addition, MJ210 demonstrated remarkable neuroprotective abilities in vivo by significantly enhancing dopamine biosynthesis, alleviating motor dysfunction, improving balance and coordination, and reversing depression in rotenone-induced PD rats, even outperforming L-DOPA, the current gold standard treatment for PD. Therefore, MJ210 emerges as a significantly promising therapeutic candidate for PD, offering the potential for managing both the severity and progression of this disease.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Mohammad Umar Arshi
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
2
|
Cai Y, Huang G, Ren M, Chai Y, Huang X, Yan T. Synthesizing network pharmacology, bioinformatics, and in vitro experimental verification to screen candidate targets of Salidroside for mitigating Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4539-4558. [PMID: 39503755 DOI: 10.1007/s00210-024-03555-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 04/10/2025]
Abstract
Alzheimer's disease (AD) is a neurological disorder leading to cognitive deficits. Salidroside (Sal), a primary bioactive ingredient extracted from the roots of Rhodiola rosea L., has potent neuroprotective effects in AD. However, studies on potential targets for Sal-anchored AD are limited. In this study, we combined network pharmacology, bioinformatics, and experimental validation to identify potential targets of Sal treating AD. First, we screened 10 pyroptosis-related genes (PRGs) in Sal and AD using public databases. Then, we used Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis to explore the biological functions of the shared PRGs (Sal and AD). This finding exhibited that pathways linked to inflammation, like the nucleotide oligomerization domain (NOD)-like receptors signaling pathway, are important for Sal to help fight AD. The GeneMANIA functional results subsequently revealed an association between AD and the processes of inflammasome complex and inflammatory response. Additionally, nine hub genes were identified in the protein-protein interaction network of these shared PRGs. Subsequent analysis of the genes and phenotypes confirmed that these nine hub genes were directly correlated with AD. Subsequently, an in vitro AD model was created using rat adrenal pheochromocytoma cell line (PC12) cells induced by amyloid β-peptide (Aβ) 25-35 (20 µM). Sal significantly reduced the pyroptosis caused by Aβ 25-35 in PC12 cells and decreased the expression levels of IL-1β, CASP1, IL-18, PYCARD, and NLRP3. Furthermore, molecular docking and molecular dynamics simulations confirmed that Sal could stably bind to NLRP3. Druggability analysis revealed that Sal had excellent druggability. These results demonstrated that Sal could alleviate AD by targeting IL-1β, CASP1, IL-18, PYCARD, and NLRP3 to regulate the NLRP3-mediated pyroptosis signaling pathway.
Collapse
Affiliation(s)
- Yawen Cai
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Pharmacy, Shanghai Changhai Hospital, Second Military University, Shanghai, 200433, China
| | - Xi Huang
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Komaki S, Amiri P, Safari S, Abbasi E, Ramezani-Aliakbari F, Golipoor M, Kourosh-Arami M, Rashno M, Komaki A. Investigation of protective effects of olanzapine on impaired learning and memory using behavioral tests in a rat model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1376074. [PMID: 40018516 PMCID: PMC11865076 DOI: 10.3389/fnagi.2025.1376074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Evidence suggests that oxidative stress plays a critical role in the pathogenesis and progression of Alzheimer's disease (AD). Consequently, antioxidants may mitigate neurotoxicity induced by beta-amyloid (Aβ) and potentially reduce cell death. Previous research has demonstrated that olanzapine (OLZ) possesses antioxidant and neuroprotective properties. In this study, we investigated the protective and therapeutic effects of OLZ on an animal model of AD induced by Aβ using behavioral assessments. Methods Rats were randomly assigned to one of five groups (n = 10 rats per group): a control group, a sham group that received an intracerebrovascular (ICV) injection of phosphate-buffered saline (the solvent for Aβ), an AD group that received an ICV injection of Aβ, an OLZ group that received OLZ via gavage for two months, and an AD + OLZ group that received OLZ for one month before and one month after AD induction. Results We used the Elevated Plus Maze (EPM), Novel Object Recognition Test (NORT), Barnes Maze (BM), Passive Avoidance Test (PAT), and Morris Water Maze (MWM) to assess behavioral performance in the experimental rats. Aβ administration impaired cognition and increased anxiety-like behavior. Treatment with OLZ improved cognitive decline and reduced anxiety-like behavior in Aβ-infused rats. Conclusion Our findings suggest that OLZ can restore cognitive performance and alleviate anxiety-like behavior following Aβ injection. Thus, OLZ may have both preventive and therapeutic potential for AD and could be considered a viable pharmacological option.
Collapse
Affiliation(s)
- Somayeh Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Amiri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Samaneh Safari
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mandana Golipoor
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Ramalingam M, Jang S, Kim S, Bai H, Jeong G, Kim BC, Jeong HS. Rotenone and Its Derivative, Rotenoisin A, Induce Neurodegeneration Differentially in SH-SY5Y Cells. Biomedicines 2024; 12:1703. [PMID: 39200166 PMCID: PMC11351421 DOI: 10.3390/biomedicines12081703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Rotenone (ROT), the most significant rotenoid, which has shown anticancer activity, has also been reported to be toxic to normal cells, inducing Parkinson's disease (PD)-like neuronal loss with aggregation of α-synuclein (α-syn). To reduce the adverse effects of ROT, its derivative, rotenoisin A (ROA), is obtained by directly irradiating a ROT solution in methanol using γ-rays, which has been reported for potential anticancer properties. However, its PD-inducing effects have not yet been researched or reported. This study sought to compare the activities of ROA and ROT on the aggregation of α-syn, apoptosis, and autophagy in SH-SY5Y cells. ROA decreased cell survival less when compared with ROT on SH-SY5Y cells at 48 h in a dose-dependent manner. ROT (0.5 and 1 μM) and ROA (4 and 5 μM) decreased the expression of tyrosine hydroxylase. Western blot analysis of the Triton X-100 insoluble fraction revealed that both ROT and ROA significantly increased the levels of oligomeric, dimeric, and monomeric phosphorylated Serine129 α-syn and total monomeric α-syn. Moreover, both compounds decreased the proportion of neuronal nuclei, the neurofilament-heavy chain, and β3-tubulin. The phosphorylation of ERK and SAPK were reduced, whereas ROA did not act on Akt. Additionally, the increased Bax/Bcl-2 ratio further activated the downstream caspases cascade. ROT promoted the LC3BII/I ratio and p62 levels; however, different ROA doses resulted in different effects on autophagy while inducing PD-like impairments in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Seongryul Kim
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| | - Hyoungwoo Bai
- Department of Radiation Science, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (H.B.); (G.J.)
- Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeonghan Jeong
- Department of Radiation Science, Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea; (H.B.); (G.J.)
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (S.K.)
| |
Collapse
|
6
|
Yu KK, Li K, Wang HY, Li XL, Wu SX, Xu WM, Liu YH, Wu CF, Yu XQ, Bao JK. Construction of Near-Infrared Probes with Remarkable Large Stokes Shift Based on a Novel Purine Platform for the Visualization of mtG4 Upregulation during Mitochondrial Disorder in Somatic Cells and Human Sperms. Anal Chem 2024; 96:11915-11922. [PMID: 39007441 DOI: 10.1021/acs.analchem.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hao-Yuan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Liang Li
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Si-Xian Wu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Wen-Ming Xu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin-Ku Bao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Olanzapine Ameliorates Ischemic Stroke-like Pathology in Gerbils and H2O2-Induced Neurotoxicity in SH-SY5Y Cells via Inhibiting the MAPK Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11091697. [PMID: 36139770 PMCID: PMC9495525 DOI: 10.3390/antiox11091697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Olanzapine (OLNZ) is used to treat psychotic disorders. To look into the neurological basis of this phenomenon, we investigated the neuroprotective effects of OLNZ in gerbils and SH-SY5Y cells. Gerbils were subjected to transient global cerebral ischemia (TGCI) by blocking both common carotid arteries, and OLNZ (10 mg/kg) was injected intraperitoneally. Hydrogen peroxide (H2O2) was used to induce oxidative-stress-mediated damage in the SH-SY5Y cells. The results indicated that OLNZ administration markedly reduced neuron damage and glial cell triggering within CA1 zone of the hippocampus. We used RNA sequencing to assess the numbers of up-and downregulated genes involved in TGCI. We found that OLNZ treatment downregulated the expression of complement-component-related genes and the expression of mitogen-activated protein kinases (MAPKs) in the hippocampus. In cells, OLNZ co-treatment significantly improved cell viability and reduced lactate dehydrogenase (LDH), and reactive oxygen species (ROS) generation. Expression of antioxidant superoxide dismutase-1,2 enzymes (SOD-1, SOD-2) was also intensely upregulated by OLNZ, while the expression of MAPKs and NF-κB were reduced. Co-incubation with OLNZ also regulated apoptosis-related proteins Bax/Bcl-2 expression. Finally, the results demonstrated that treatment with OLNZ showed neuroprotective effects and that the MAPK pathway could involve in the protective effects.
Collapse
|
8
|
Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol Res 2022; 183:106372. [PMID: 35908662 DOI: 10.1016/j.phrs.2022.106372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Depression is a common and severe mental disease that places a heavy burden on human society, which can lead to decreased cognitive function, energy loss, insomnia, and even suicide. Although medication plays an important role in improving the symptoms of depression, approximately one third of people with depression do not significantly benefit from medication and experience various adverse reactions. Recently, increasing evidence has shown that gut microbes play an important role in the occurrence and development of depression. There have been illuminating studies previously conducted on the relationship between antidepressant chemicals, traditional Chinese medicine, and the microbiota-gut-brain axis (MGBA). Therefore, in this review, we summarize the role of the MGBA in the occurrence and development of depression, especially the important role of the MGBA in the mechanism of action of antidepressants. Modulation of the MGBA is proposed to enhance the efficacy of antidepressant drugs and reduce their side effects and disease recurrence, so as to provide a new method for the treatment of depression.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijia Hu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical College, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
9
|
Shi J, Yang Y, Yin N, Liu C, Zhao Y, Cheng H, Zhou T, Zhang Z, Zhang K. Engineering CXCL12 Biomimetic Decoy-Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. SMALL METHODS 2022; 6:e2101158. [PMID: 35041278 DOI: 10.1002/smtd.202101158] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Following ischemic stroke, brain-resident activated microglia and peripherally infiltrated inflammatory cells create a complicated and overactivated brain immune microenvironment, which causes neuron death and dramatically hinders neurological functional recovery. Herein, an engineering CXCL12 biomimetic decoy-integrated versatile immunosuppressive nanoparticle (VIN) for management of the overactivated brain immune microenvironment is reported. The shell of VIN (membrane of CXCR4 overexpressed mesenchymal stem cells), can not only improve the homing of nanoparticles to the cerebral ischemic lesions, but also efficiently adsorb and neutralize CXCL12 to cut off infiltration of peripheral-neutrophils and mononuclear macrophages. The loaded A151 (cGAS inhibitor, telomerase repeat sequences) can inhibit cGAS-STING pathway in microglia, leading to microglia polarization toward an anti-inflammatory M2-like phenotype. Interestingly, A151 can be efficiently loaded onto the polydopamine nanospheres (PDA, the core of VIN) through the bridge of Zn2+ . In the inflammatory site, PDA is oxidized by reactive oxygen species (ROS), with the disappearance of Zn2+ complexation effect, and then A151 realizes a controlled release. In a model of rat ischemic stroke, VIN integrates inflammation tropism, peripherally inflammatory cells filtrate, brain-resident activated microglia polarization, as well as, ROS scavenging, exerting outstanding therapeutic effects on ameliorating the mortality, reducing the infarct volume, and protecting neurogenic functions of neurons.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tonghai Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
10
|
Wang Y, He M, Li X, Chai J, Jiang Q, Peng C, He G, Huang W. Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole-Based RalA Inhibitors Against Hepatocellular Carcinoma. Front Chem 2021; 9:700956. [PMID: 34869198 PMCID: PMC8634879 DOI: 10.3389/fchem.2021.700956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of Ras small GTPases, including RalA and RalB, plays an important role in carcinogenesis, tumor progress, and metastasis. In the current study, we report the discovery of a series of 6-sulfonylamide-pyrano [2,3-c]-pyrazole derivatives as novel RalA inhibitors. ELISA-based biochemical assay results indicated that compounds 4k–4r suppressed RalA/B binding capacities to their substrates. Cellular proliferation assays indicated that these RalA inhibitors potently inhibited the proliferation of HCC cell lines, including HepG2, SMMC-7721, Hep3B, and Huh-7 cells. Among the evaluated compounds, 4p displayed good inhibitory capacities on RalA (IC50 = 0.22 μM) and HepG2 cells (IC50 = 2.28 μM). Overall, our results suggested that a novel small-molecule RalA inhibitor with a 6-sulfonylamide-pyrano [2, 3-c]-pyrazole scaffold suppressed autophagy and cell proliferation in hepatocellular carcinoma, and that it has potential for HCC-targeted therapy.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyao He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Elsherbeny MH, Kim J, Gouda NA, Gotina L, Cho J, Pae AN, Lee K, Park KD, Elkamhawy A, Roh EJ. Highly Potent, Selective, and Competitive Indole-Based MAO-B Inhibitors Protect PC12 Cells against 6-Hydroxydopamine- and Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:1641. [PMID: 34679775 PMCID: PMC8533206 DOI: 10.3390/antiox10101641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is responsible for dopamine metabolism and plays a key role in oxidative stress by changing the redox state of neuronal and glial cells. To date, no disease-modifying therapy for Parkinson's disease (PD) has been identified. However, MAO-B inhibitors have emerged as a viable therapeutic strategy for PD patients. Herein, a novel series of indole-based small molecules was synthesized as new MAO-B inhibitors with the potential to counteract the induced oxidative stress in PC12 cells. At a single dose concentration of 10 µM, 10 compounds out of 30 were able to inhibit MAO-B with more than 50%. Among them, compounds 7b, 8a, 8b, and 8e showed 84.1, 99.3, 99.4, and 89.6% inhibition over MAO-B and IC50 values of 0.33, 0.02, 0.03, and 0.45 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 7b, 8a, 8b and 8e showed remarkable selectivity indices (SI > 305, 3649, 3278, and 220, respectively). A further kinetic study displayed a competitive mode of action for 8a and 8b over MAO-B with Ki values of 10.34 and 6.63 nM. Molecular docking studies of the enzyme-inhibitor binding complexes in MAO-B revealed that free NH and substituted indole derivatives share a common favorable binding mode: H-bonding with a crucial water "anchor" and Tyr326. Whereas in MAO-A the compounds failed to form favorable interactions, which explained their high selectivity. In addition, compounds 7b, 8a, 8b, and 8e exhibited safe neurotoxicity profiles in PC12 cells and partially reversed 6-hydroxydopamine- and rotenone-induced cell death. Accordingly, we report compounds 7b, 8a, 8b, and 8e as novel promising leads that could be further exploited for their multi-targeted role in the development of a new oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Mohamed H. Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ki Duk Park
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
| |
Collapse
|
12
|
Wang H, Dou S, Zhu J, Shao Z, Wang C, Xu X, Cheng B. Ghrelin protects against rotenone-induced cytotoxicity: Involvement of mitophagy and the AMPK/SIRT1/PGC1α pathway. Neuropeptides 2021; 87:102134. [PMID: 33639357 DOI: 10.1016/j.npep.2021.102134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and the deposition of Lewy bodies. Mitochondrial dysfunction, oxidative stress, and autophagy dysfunction are involved in the pathogenesis of PD. Ghrelin is a brain-gut peptide that has been reported that protected against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyran (MPTP)/MPP+-induced toxic effects. In the present work, human neuroblastoma SH-SY5Y cells were exposed to rotenone as a PD model to explore the underlying mechanism of ghrelin. We found that ghrelin inhibited rotenone-induced cytotoxicity, mitochondrial dysfunction, and apoptosis by improving cell viability, increasing the ratio of red/green of JC-1, inhibiting the production of reactive oxidative species (ROS), and regulating Bcl-2, Bax, Cytochrome c, caspase-9, and caspase-3 expression. Besides, ghrelin promoted mitophagy accompanied by up-regulating microtubule-associated protein 1 Light Chain 3B-II/I(LC3B-II/I) and Beclin1 but decreasing the expression of p62. Moreover, ghrelin promoted PINK1/Parkin mitochondrial translocation. Additionally, we investigated that ghrelin activated the AMPK/SIRT1/PGC1α pathway and pharmacological inhibition of AMPK and SIRT1 abolished the cytoprotection of ghrelin, decreased the level of mitophagy, and PINK1/Parkin mitochondrial translocation. Taken together, our findings suggested that mitophagy and AMPK/SIRT1/PGC1α pathways were related to the cytoprotection of ghrelin. These findings provided novel insights into the underlying mechanisms of ghrelin, further mechanistic studies on preclinical and clinical levels are required to be conducted with ghrelin to avail and foresee it as a potential agent in the treatment and management of PD.
Collapse
Affiliation(s)
- Huiqing Wang
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Ziqi Shao
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Xudong Xu
- College of Basic Medicine, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
13
|
Huang Y, Jin G, Zhan QL, Tian Y, Shen L. Adult-onset neuronal intranuclear inclusion disease, with both stroke-like onset and encephalitic attacks: a case report. BMC Neurol 2021; 21:142. [PMID: 33789591 PMCID: PMC8011180 DOI: 10.1186/s12883-021-02164-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease, the clinical manifestations of which are complex and easily misdiagnosed. NIID clinical characteristics are varied, affecting the central and peripheral nervous systems and autonomic nerves. In this study, we present an NIID case with both stroke-like onset and encephalitic attacks, which is a rare case report. Case presentation A 68-year-old Chinese female presented with sudden aphasia and limb hemiplegia as the first symptoms, as well as fever, cognitive impairment and mental irritability from encephalitic attacks. During hospitalization, a brain magnetic resonance imaging (MRI) examination detected high signal intensity from diffusion-weighted imaging (DWI) of the bilateral frontal grey matter-white matter junction. Electrophysiological tests revealed the main site of injury was at the myelin sheath in the motor nerves. A skin biopsy revealed eosinophilic spherical inclusion bodies in the nuclei of small sweat gland cells, fibroblasts and fat cells, whilst immunohistochemistry revealed that p62 and ubiquitin antibodies were positive. From genetic analyses, the patient was not a carrier of the fragile X mental retardation 1 (FMR1) permutation, but repeated GGC sequences in the NOTCH2NLC gene confirmed an NIID diagnosis. Through antipsychotic and nutritional support therapy, the patient’s symptoms were completely relieved within 3 weeks. Conclusions This report of an NIID case with both stroke-like onset and encephalitic attacks provides new information for NIID diagnoses, and a comprehensive classification of clinical characteristics.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China.
| | - Ge Jin
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Qun-Ling Zhan
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
14
|
Ramalingam M, Jang S, Jeong HS. Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2021; 22:2322. [PMID: 33652595 PMCID: PMC7956615 DOI: 10.3390/ijms22052322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| |
Collapse
|
15
|
Drug Repurposing in Dentistry; towards Application of Small Molecules in Dentin Repair. Int J Mol Sci 2020; 21:ijms21176394. [PMID: 32887519 PMCID: PMC7503843 DOI: 10.3390/ijms21176394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
One of the main goals of dentistry is the natural preservation of the tooth structure following damage. This is particularly implicated in deep dental cavities affecting dentin and pulp, where odontoblast survival is jeopardized. This activates pulp stem cells and differentiation of new odontoblast-like cells, accompanied by increased Wnt signaling. Our group has shown that delivery of small molecule inhibitors of GSK3 stimulates Wnt/β-catenin signaling in the tooth cavity with pulp exposure and results in effective promotion of dentin repair. Small molecules are a good therapeutic option due to their ability to pass across cell membranes and reach target. Here, we investigate a range of non-GSK3 target small molecules that are currently used for treatment of various medical conditions based on other kinase inhibitory properties. We analyzed the ability of these drugs to stimulate Wnt signaling activity by off-target inhibition of GSK3. Our results show that a c-Met inhibitor, has the ability to stimulate Wnt/β-catenin pathway in dental pulp cells in vitro at low concentrations. This work is an example of drug repurposing for dentistry and suggests a candidate drug to be tested in vivo for natural dentin repair. This approach bypasses the high level of economical and time investment that are usually required in novel drug discoveries.
Collapse
|
16
|
Emerging novel approaches to drug research and diagnosis of Parkinson's disease. Acta Pharmacol Sin 2020; 41:439-441. [PMID: 32203079 PMCID: PMC7471400 DOI: 10.1038/s41401-020-0369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
|