1
|
Mai H, Liu C, Fu B, Ji X, Chen M, Zhang Y, Lin Y, Chen J, Song Y, Gu S. Carnosic acid attenuates diabetic retinopathy via the SIRT1 signaling pathway: neuroprotection and endothelial cell preservation. Am J Transl Res 2025; 17:2293-2310. [PMID: 40225985 PMCID: PMC11982880 DOI: 10.62347/fknz9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE To explore the therapeutic effects of Carnosic acid (CA) on diabetic retinopathy (DR), a complication of diabetes mellitus (DM) characterized by retinal neuronal damage induced by oxidative stress. METHODS DR was induced in rodent models via streptozotocin (STZ) administration, while human retinal microvascular endothelial cells (HRMECs) were cultured in high-glucose (HG) conditions. The effects of CA on oxidative stress, inflammation, and apoptotic signaling were evaluated by quantifying relevant biomarkers. RESULTS CA treatment significantly increased the expression of sirtuin 1, which was reduced in both STZ-treated rats and HG-exposed HRMECs, as confirmed by polymerase chain reaction (PCR) analysis. CA alleviated oxidative stress, inflammation, and apoptosis in STZ-induced DR models. In vitro, CA exhibited a dose-dependent enhancement of SIRT1 expression, providing substantial protection against HG-induced damage in HRMECs. This protective effect involved the suppression of oxidative mediators, reduction of pro-inflammatory cytokine release, and inhibition of apoptotic pathways. Additionally, CA prevented retinal ferroptosis by activating the SIRT1/p53/solute carrier family 7 member 11 (SLC7A11) pathway both in vivo and in vitro. CONCLUSION This study suggests that CA alleviates DR by activating SIRT1, leading to decreased inflammation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Huade Mai
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Chenghong Liu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Biwei Fu
- Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Xinbo Ji
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Minghui Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunbo Zhang
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yunyun Lin
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Juming Chen
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Yanling Song
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Shenhong Gu
- Department of General Practice of The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| |
Collapse
|
2
|
Zhao H, Wang W, Yang Y, Feng C, Lin T, Gong L. Norepinephrine Attenuates Benzalkonium Chloride-Induced Dry Eye Disease by Regulating the PINK1/Parkin Mitophagy Pathway. Ocul Immunol Inflamm 2024:1-15. [PMID: 39731302 DOI: 10.1080/09273948.2024.2447816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye. PURPOSE This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease. METHODS BAC-pretreated human corneal epithelial cells (HCEpiC) were cultured with various concentrations of NE. A BAC-induced dry eye mice model was established to explore the role of NE. Alterations in mice corneal tissues, ROS levels, mitochondrial function, and mitophagy levels were analyzed. RESULTS In vitro, our results revealed that BAC-exposed HCEpiC led to mitochondrial malfunction, which involved excessive ROS production, decreased mitochondrial membrane potential (MMP), and promoted mitochondrial fragmentation through increased DRP1 and fission protein 1 (Fis1) expression and reduced mitofusin 2 (Mfn2) expression. Moreover, topical BAC application induced excessive mitophagy. These effects were reversed by NE. Additionally, the increased expression of LC3B, SQSTM1/p62, PINK1, and Parkin, which control mitophagy, in BAC-exposed HCEpiC was suppressed by NE. In BAC-induced C57BL/6J mice, NE resulted in lower fluorescein staining scores, decreased TUNEL-positive cells, and decreased mitochondrial fragmentation. CONCLUSIONS In conclusion, our findings showed that NE therapy prevented HCEpiC following BAC application by regulating mitochondrial quality control, which is controlled by PINK1/Parkin-dependent mitophagy. Our research suggests a potential targeted treatment for dry eye disease.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
3
|
Huang Z, Yao W, He W, Pan J, Chai W, Wang B, Jia Z, Fan X, Wang W, Zhang W. Moniezia benedeni drives the SNAP-25 expression of the enteric nerves in sheep's small intestine. BMC Vet Res 2024; 20:283. [PMID: 38956647 PMCID: PMC11218246 DOI: 10.1186/s12917-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.
Collapse
Affiliation(s)
- Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Jia
- People's Government of Heisongyi Township, Wuwei, 733000, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Zhao T, Chang X, Biswas SK, Balsbaugh JL, Liddle J, Chen MH, Matson AP, Alder NN, Cong X. Pain/Stress, Mitochondrial Dysfunction, and Neurodevelopment in Preterm Infants. Dev Neurosci 2024; 46:341-352. [PMID: 38286121 PMCID: PMC11284246 DOI: 10.1159/000536509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Preterm infants experience tremendous early life pain/stress during their neonatal intensive care unit (NICU) hospitalization, which impacts their neurodevelopmental outcomes. Mitochondrial function/dysfunction may interface between perinatal stress events and neurodevelopment. Nevertheless, the specific proteins or pathways linking mitochondrial functions to pain-induced neurodevelopmental outcomes in infants remain unidentified. Our study aims to investigate the associations among pain/stress, proteins associated with mitochondrial function/dysfunction, and neurobehavioral responses in preterm infants. METHODS We conducted a prospective cohort study, enrolling 33 preterm infants between September 2017 and July 2022 at two affiliated NICUs located in Hartford and Farmington, CT. NICU Network Neurobehavioral Scale (NNNS) datasets were evaluated to explore potential association with neurobehavioral outcomes. The daily pain/stress experienced by infant's during their NICU stay was documented. At 36-38 weeks post-menstrual age (PMA), neurobehavioral outcomes were evaluated using the NNNS and buccal swabs were collected for further analysis. Mass spectrometry-based proteomics was conducted on epithelial cells obtained from buccal swabs to evaluate protein expression level. Lasso statistical methods were conducted to study the association between protein abundance and infants' NNNS summary scores. Multiple linear regression and Gene Ontology (GO) enrichment analyses were performed to examine how clinical characteristics and neurodevelopmental outcomes may be associated with protein levels and underlying molecular pathways. RESULTS During NICU hospitalization, preterm premature rupture of membrane (PPROM) was negatively associated with neurobehavioral outcomes. The protein functions including leptin receptor binding activity, glutathione disulfide oxidoreductase activity and response to oxidative stress, lipid metabolism, and phosphate and proton transmembrane transporter activity were negatively associated with neurobehavioral outcomes; in contrast, cytoskeletal regulation, epithelial barrier, and protection function were found to be associated with the optimal neurodevelopmental outcomes. In addition, mitochondrial function-associated proteins including SPRR2A, PAIP1, S100A3, MT-CO2, PiC, GLRX, PHB2, and BNIPL-2 demonstrated positive association with favorable neurodevelopmental outcomes, while proteins of ABLIM1, UNC45A, keratins, MUC1, and CYB5B showed positive association with adverse neurodevelopmental outcomes. CONCLUSION Mitochondrial function-related proteins were observed to be associated with early life pain/stress and neurodevelopmental outcomes in infants. Large-scale studies with longitudinal datasets are warranted. Buccal proteins could be used to predict potential neurobehavioral outcomes.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, Yale University, Orange, Connecticut, USA,
| | - Xiaolin Chang
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Subrata Kumar Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer Liddle
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Adam P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaomei Cong
- School of Nursing, Yale University, Orange, Connecticut, USA
| |
Collapse
|
5
|
Silvestro S, Raffaele I, Mazzon E. Modulating Stress Proteins in Response to Therapeutic Interventions for Parkinson's Disease. Int J Mol Sci 2023; 24:16233. [PMID: 38003423 PMCID: PMC10671288 DOI: 10.3390/ijms242216233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by the degeneration of dopaminergic neurons in the substantia nigra, resulting in motor symptoms and without debilitating motors. A hallmark of this condition is the accumulation of misfolded proteins, a phenomenon that drives disease progression. In this regard, heat shock proteins (HSPs) play a central role in the cellular response to stress, shielding cells from damage induced by protein aggregates and oxidative stress. As a result, researchers have become increasingly interested in modulating these proteins through pharmacological and non-pharmacological therapeutic interventions. This review aims to provide an overview of the preclinical experiments performed over the last decade in this research field. Specifically, it focuses on preclinical studies that center on the modulation of stress proteins for the treatment potential of PD. The findings display promise in targeting HSPs to ameliorate PD outcomes. Despite the complexity of HSPs and their co-chaperones, proteins such as HSP70, HSP27, HSP90, and glucose-regulated protein-78 (GRP78) may be efficacious in slowing or preventing disease progression. Nevertheless, clinical validation is essential to confirm the safety and effectiveness of these preclinical approaches.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (I.R.)
| |
Collapse
|
6
|
Lee DS, Kim TH, Park H, Kim JE. PDI augments kainic acid-induced seizure activity and neuronal death by inhibiting PP2A-GluA2-PICK1-mediated AMPA receptor internalization in the mouse hippocampus. Sci Rep 2023; 13:13927. [PMID: 37626185 PMCID: PMC10457386 DOI: 10.1038/s41598-023-41014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Protein disulfide isomerase (PDI) is a redox-active enzyme and also serves as a nitric oxide donor causing S-nitrosylation of cysteine residues in various proteins. Although PDI knockdown reduces α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated neuronal activity, the underlying mechanisms are largely unknown. In the present study, we found that under physiological condition PDI knockdown increased CaMKII activity (phosphorylation) in the mouse hippocampus. However, PDI siRNA inhibited protein phosphatase (PP) 2A-mediated GluA2 S880 dephosphorylation by increasing PP2A oxidation, independent of S-nitrosylation. PDI siRNA also enhanced glutamate ionotropic receptor AMPA type subunit 1 (GluA1) S831 and GluA2 S880, but not GluA1 S845 and GluA2 Y869/Y873/Y876 phosphorylations, concomitant with the enhanced protein interacting with C kinase 1 (PICK1)-mediated AMPAR internalization. Furthermore, PDI knockdown attenuated seizure activity and neuronal damage in response to kainic acid (a non-desensitizing agonist of AMPAR). Therefore, these findings suggest that PDI may regulate surface AMPAR expression through PP2A-GluA2-PICK1 signaling pathway, and that PDI may be one of the therapeutic targets for epilepsy via AMPAR internalization without altering basal neurotransmission.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-do, 24252, South Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
7
|
Zhao H, Yin Y, Lin T, Wang W, Gong L. Administration of serotonin and norepinephrine reuptake inhibitors tends to have less ocular surface damage in a chronic stress-induced rat model of depression than selective serotonin reuptake inhibitors. Exp Eye Res 2023; 231:109486. [PMID: 37080380 DOI: 10.1016/j.exer.2023.109486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Depressed patients who medicate with selective serotonin reuptake inhibitors (SSRIs) often report ocular dryness. Epidemiological studies have found that serotonin and norepinephrine reuptake inhibitors (SNRIs) are not risk factors for dry eye in depressed patients. However, the effect of SNRIs on the ocular surface is unknown. A depression rat model was induced by chronic unpredictable mild stress (CUMS), and SNRIs or SSRIs were administered to the rats for 3 or 6 weeks. The levels of norepinephrine (NE) and serotonin in tear fluid were tested by ELISA. The corneal fluorescence and lissamine green staining were used to evaluate ocular surface damage. NE and/or serotonin were administered to human corneal epithelial cells in vitro. RNA sequencing (RNA-seq) analysis was performed to investigate the mRNA expression profiles. Tear NE levels were higher in the SNRIs group, and ocular surface inflammation and apoptosis were significantly reduced compared to the SSRIs group. RNA-Seq indicated that NE significantly activate MAPK signaling pathway. NE can inhibit serotonin-induced activation of the NF-κB signaling pathway through α-1 adrenergic receptors and promotes the proliferation of corneal epithelial cells through activation of the MAPK signaling pathway. SNRIs administration have less ocular surface damage than SSRIs. NE protects human corneal epithelial cells from damage, and reduce inflammation on the ocular surface via activating the MAPK signaling pathway. SNRIs might be used as an appropriate treatment for depression-related DED.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
8
|
Rakkhittawattana V, Panichayupakaranant P, Prasanth MI, Brimson JM, Tencomnao T. Rhinacanthin-C but Not -D Extracted from Rhinacanthus nasutus (L.) Kurz Offers Neuroprotection via ERK, CHOP, and LC3B Pathways. Pharmaceuticals (Basel) 2022; 15:627. [PMID: 35631453 PMCID: PMC9145051 DOI: 10.3390/ph15050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases present an increasing problem as the world's population ages; thus, the discovery of new drugs that prevent diseases such as Alzheimer's, and Parkinson's diseases are vital. In this study, Rhinacanthin-C and -D were isolated from Rhinacanthus nasustus, using ethyl acetate, followed by chromatography to isolate Rhinacanthin-C and -D. Both compounds were confirmed using NMR and ultra-performance-LCMS. Using glutamate toxicity in HT-22 cells, we measured cell viability and apoptosis, ROS build-up, and investigated signaling pathways. We show that Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone have neuroprotective effects against glutamate-induced apoptosis in HT-22 cells. Furthermore, we see that Rhinacanthin-C resulted in autophagy inhibition and increased ER stress. In contrast, low concentrations of Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone prevented ER stress and CHOP expression. All concentrations of Rhinacanthin-C prevented ROS production and ERK1/2 phosphorylation. We conclude that, while autophagy is present in HT-22 cells subjected to glutamate toxicity, its inhibition is not necessary for cryoprotection.
Collapse
Affiliation(s)
- Varaporn Rakkhittawattana
- Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Mani I. Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James M. Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|