1
|
Haddad FG, Sasaki K, Senapati J, Xiao L, Park G, Abuasab T, Venugopal S, Rivera D, Bazinet A, Babakhanlou R, Kim K, Ong F, Desikan S, Pemmaraju N, Loghavi S, Borthakur G, DiNardo C, Abbas HA, Short NJ, Daver N, Jabbour E, Garcia-Manero G, Ravandi F, Kantarjian H, Kadia T. Outcomes of Patients With Newly Diagnosed AML and Hyperleukocytosis. JCO Oncol Pract 2024; 20:1637-1644. [PMID: 39013130 DOI: 10.1200/op.24.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE AML presenting with hyperleukocytosis is associated with poor outcomes. We aim to understand the factors associated with early mortality and overall survival (OS) to help guide management and improve early mortality. METHODS We retrospectively reviewed data from 129 consecutive patients with newly diagnosed AML and a WBC count ≥100 × 109/L between January 2010 and April 2020. Logistic regression models estimated odds ratios for 4-week mortality. Cox proportional hazard models estimated hazard ratios for OS. RESULTS The median age was 65 years (range, 23-86); the median WBC was 146 × 109/L (range, 100-687). Seventy-five (58%) patients had clinical leukostasis (CL). FLT3, NPM1, and RAS pathway mutations were detected in 63%, 45%, and 27% of patients, respectively. Cytoreduction consisted of hydroxyurea in 124 (96%) patients, cytarabine in 69 (54%), and leukapheresis in 31 (24%). The cumulative 4-week and 8-week mortality rates were 9% and 13%, respectively, all in patients age 65 years and older. By multivariate analysis, older age, CL, and thrombocytopenia <40 × 109/L were independently associated with a higher 4-week mortality rate. After a median follow-up of 49.4 months, the median OS was 14.3 months (95% CI, 7 to 21.6), with 4-year OS of 29%. Age 65 years and older, CL, tumor lysis syndrome, elevated LDH ≥2,000 U/L, elevated lactate ≥2.2 mmol/L, and poor-risk cytogenetics were independent factors associated with worse OS. CONCLUSION Hyperleukocytosis is a life-threatening hematologic emergency. Early recognition and intervention including cytoreduction, blood product support, antibiotics, and renal replacement therapy may help mitigate the risk of morbidity and early mortality.
Collapse
Affiliation(s)
- Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jayastu Senapati
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Grace Park
- Department of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tareq Abuasab
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel Rivera
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrick Babakhanlou
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kunhwa Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faustine Ong
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Pawińska-Wąsikowska K, Czogała M, Bukowska-Strakova K, Surman M, Rygielska M, Książek T, Sadowska B, Pac A, Skalska-Sadowska J, Samborska M, Wachowiak J, Ciebiera M, Chaber R, Tomaszewska R, Szczepański T, Zielezińska K, Urasiński T, Rodziewicz-Konarska A, Kałwak K, Kozłowska M, Irga-Jaworska N, Sikorska-Fic B, Chyżyński B, Łaguna P, Muszyńska-Rosłan K, Krawczuk-Rybak M, Deleszkiewicz P, Drabko K, Bobeff K, Młynarski W, Chodała-Grzywacz A, Karolczyk G, Mycko K, Badowska W, Bartoszewicz N, Styczyński J, Machnik K, Stolpa W, Mizia-Malarz A, Balwierz W, Skoczeń S. Analysis of early and treatment related deaths among children and adolescents with acute myeloid leukemia in Poland: 2005-2023. Front Pediatr 2024; 12:1482720. [PMID: 39483533 PMCID: PMC11524810 DOI: 10.3389/fped.2024.1482720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background A personalised approach to the treatment of acute myeloid leukemia (AML) in children and adolescents, as well as the development of supportive therapies, has significantly improved survival. Despite this, some patients still die before starting treatment or in an early phase of therapy before achieving remission. The study analysed the frequency, clinical features and risk factors for early deaths (ED) and treatment related deaths (TRD) of children and adolescents with AML. Methods From January 2005 to November 2023, 646 children with AML treated in the centers of the Polish Pediatric Leukemia and Lymphoma Study Group according to three subsequent therapeutic protocols were evaluated: AML-BFM 2004 Interim (385 children), AML-BFM 2012 Registry (131 children) and AML-BFM 2019 (130 children). Results Out of 646 children, early death occurred in 30 children, including 15 girls. The median age was 10.7 years (1 day to 18 years). More than half of the patients (53%) were diagnosed with acute myelomonocytic leukemia (M5) and 13% with acute promyelocytic leukemia (M3). The ED rate for the three consecutive AML-BFM protocols was 4.9% vs. 5.3% vs. 3.1%, respectively. In 19 patients, death occurred before the 15th day of treatment, in 11 between the 15th and 42nd day. The most common cause of death before the 15th day (ED15) was leukostasis and bleeding, whereas between the 15th and 42nd day (ED15-42), infections, mainly bacterial sepsis. A significant association was found between ED15 and high leukocyte count (>10 × 109/L), M3 leukemia (p < 0.001), and ED15-42 and age <1 year (p = 0.029). In the univariate analysis only initial high leukocyte count >100 × 109/L, was a significant predictor of early death. The overall TRD for the entire study period was 3.4%. The main cause of death were infections, mainly bacterial sepsis (10 children out of 22, 45.4%). Conclusions Hyperleukocytosis remains significant factor of early mortality in patients with AML, despite the introduction of various cytoreductive methods. Infections are still the main cause of treatment related deaths. A more individualized approach by using new targeted drugs may be the therapeutic option of choice in the future.
Collapse
Affiliation(s)
- Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marta Surman
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Rygielska
- Department of Pediatric Oncology and Hematology, Hematology Laboratory, University Children’s Hospital, Krakow, Poland
| | - Teofila Książek
- Department of Molecular Genetics, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Sadowska
- Department of Pediatric Oncology and Hematology, Cytogenetics and Molecular Genetics Laboratory, University Children’s Hospital, Krakow, Poland
| | - Agnieszka Pac
- Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Ciebiera
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, Rzeszow, Poland
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Radosław Chaber
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, Rzeszow, Poland
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Zielezińska
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Urasiński
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Rodziewicz-Konarska
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kałwak
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kozłowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Sikorska-Fic
- Department of Oncology, Pediatric Hematology, Transplantology and Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Chyżyński
- Department of Oncology, Pediatric Hematology, Transplantology and Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Pediatric Hematology, Transplantology and Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | | | - Maryna Krawczuk-Rybak
- Departament of Pediatrics, Oncology and Hematology Medical University of Bialystok, Bialystok, Poland
| | - Paulina Deleszkiewicz
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Bobeff
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Grażyna Karolczyk
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, Kielce, Poland
| | - Katarzyna Mycko
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, Olsztyn, Poland
| | - Wanda Badowska
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, Olsztyn, Poland
| | - Natalia Bartoszewicz
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Katarzyna Machnik
- Department of Pediatrics, Hematology and Oncology, City Hospital, Chorzow, Poland
| | - Weronika Stolpa
- Department of Pediatrics, Upper Silesia Children’s Care Health Centre, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Mizia-Malarz
- Department of Pediatrics, Upper Silesia Children’s Care Health Centre, Medical University of Silesia, Katowice, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| |
Collapse
|
3
|
Ogana HA, Hurwitz S, Wei N, Lee E, Morris K, Parikh K, Kim YM. Targeting integrins in drug-resistant acute myeloid leukaemia. Br J Pharmacol 2024; 181:295-316. [PMID: 37258706 DOI: 10.1111/bph.16149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Acute myeloid leukaemia (AML) continues to have a poor prognosis, warranting new therapeutic strategies. The bone marrow (BM) microenvironment consists of niches that interact with not only normal haematopoietic stem cells (HSC) but also leukaemia cells like AML. There are many adhesion molecules in the BM microenvironment; therein, integrins have been of central interest. AML cells express integrins that bind to ligands in the microenvironment, enabling adhesion of leukaemia cells in the microenvironment, thereby initiating intracellular signalling pathways that are associated with cell migration, cell proliferation, survival, and drug resistance that has been described to mediate cell adhesion-mediated drug resistance (CAM-DR). Identifying and targeting integrins in AML to interrupt interactions with the microenvironment have been pursued as a strategy to overcome CAM-DR. Here, we focus on the BM microenvironment and review the role of integrins in CAM-DR of AML and discuss integrin-targeting strategies. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Heather A Ogana
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samantha Hurwitz
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nathan Wei
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eliana Lee
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kayla Morris
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Karina Parikh
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Hematology and Oncology, Cancer and Blood Disease Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Didi I, Alliot JM, Dumas PY, Vergez F, Tavitian S, Largeaud L, Bidet A, Rieu JB, Luquet I, Lechevalier N, Delabesse E, Sarry A, De Grande AC, Bérard E, Pigneux A, Récher C, Simoncini D, Bertoli S. Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study. Leuk Res 2024; 136:107437. [PMID: 38215555 DOI: 10.1016/j.leukres.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
We designed artificial intelligence-based prediction models (AIPM) using 52 diagnostic variables from 3687 patients included in the DATAML registry treated with intensive chemotherapy (IC, N = 3030) or azacitidine (AZA, N = 657) for an acute myeloid leukemia (AML). A neural network called multilayer perceptron (MLP) achieved a prediction accuracy for overall survival (OS) of 68.5% and 62.1% in the IC and AZA cohorts, respectively. The Boruta algorithm could select the most important variables for prediction without decreasing accuracy. Thirteen features were retained with this algorithm in the IC cohort: age, cytogenetic risk, white blood cells count, LDH, platelet count, albumin, MPO expression, mean corpuscular volume, CD117 expression, NPM1 mutation, AML status (de novo or secondary), multilineage dysplasia and ASXL1 mutation; and 7 variables in the AZA cohort: blood blasts, serum ferritin, CD56, LDH, hemoglobin, CD13 and disseminated intravascular coagulation (DIC). We believe that AIPM could help hematologists to deal with the huge amount of data available at diagnosis, enabling them to have an OS estimation and guide their treatment choice. Our registry-based AIPM could offer a large real-life dataset with original and exhaustive features and select a low number of diagnostic features with an equivalent accuracy of prediction, more appropriate to routine practice.
Collapse
Affiliation(s)
| | | | - Pierre-Yves Dumas
- Centre Hospitalier Universitaire de Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, U1035 Bordeaux, France
| | - François Vergez
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d'hématologie, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Suzanne Tavitian
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Service d'hématologie, Toulouse, France
| | - Laëtitia Largeaud
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d'hématologie, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Audrey Bidet
- CHU Bordeaux, Laboratoire d'Hématologie Biologique, F-33000 Bordeaux, France
| | - Jean-Baptiste Rieu
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d'hématologie, Toulouse, France
| | - Isabelle Luquet
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d'hématologie, Toulouse, France
| | - Nicolas Lechevalier
- CHU Bordeaux, Laboratoire d'Hématologie Biologique, F-33000 Bordeaux, France
| | - Eric Delabesse
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer Toulouse-Oncopole, Laboratoire d'hématologie, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Audrey Sarry
- Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Service d'hématologie, Toulouse, France
| | - Anne-Charlotte De Grande
- Centre Hospitalier Universitaire de Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France
| | - Emilie Bérard
- Department of Epidemiology, Health Economics and Public Health, UMR 1295 CERPOP, University of Toulouse, INSERM, UPS, Toulouse University Hospital (CHU), Toulouse, France
| | - Arnaud Pigneux
- Centre Hospitalier Universitaire de Bordeaux, Service d'Hématologie Clinique et de Thérapie Cellulaire, Bordeaux, France; Université de Bordeaux, Bordeaux, France
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France; Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Service d'hématologie, Toulouse, France
| | - David Simoncini
- IRIT UMR 5505-CNRS, Université Toulouse I Capitole, Toulouse, France
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France; Centre Hospitalo-Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, Service d'hématologie, Toulouse, France.
| |
Collapse
|
5
|
Bello E, Liao H, Patel SA. Clinico-Radio-Pathologic Correlation of Leukostasis in Acute Myeloid Leukemia with FLT3 Mutation. Acta Haematol 2023; 147:388-390. [PMID: 37788644 DOI: 10.1159/000531832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 10/05/2023]
Abstract
The systemic complications of acute hematologic emergencies account for the high mortality rates seen during inpatient management. Perhaps the most challenging diagnostic entity among all hematologic emergencies is leukostasis. In acute myeloid leukemia (AML), myeloid blasts are often highly adherent to the endothelial vasculature, and high peripheral blood blast count in excess of 100,000 cells per microliter can predispose patients to pulmonary and neurologic complications, leading to rapid clinical deterioration even before a formal diagnosis of leukostasis is made. The mobilization of appropriate healthcare personnel in the inpatient setting at inopportune times sometimes poses a major barrier to the successful treatment of patients with leukostasis, and patients can pass away quickly. In this report, we describe clinico-radio-pathologic correlations of leukostasis using pre- and post-mortem analysis in a patient with AML with a FLT3-TKD mutation, and we describe the current literature on best management approaches based on recent evidence, including consideration of first-line FLT3 (CD135) inhibitors such as quizartinib.
Collapse
Affiliation(s)
- Elisa Bello
- Deptartment of Medicine - Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Haihui Liao
- Deptartment of Pathology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Shyam A Patel
- Deptartment of Medicine - Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Wang Y, Huang D, Liu L, Wang A, Gao Y, Lin H. Research Progress of B-Cell Lymphoma/Leukemia-2 Inhibitor Combined with Azacytidine in the Targeted Therapy of Acute Myeloid Leukemia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3992224. [PMID: 36254240 PMCID: PMC9569197 DOI: 10.1155/2022/3992224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Objective To investigate the efficacy and safety of azacytidine and B-cell lymphoma/leukemia-2 inhibitors in the treatment of patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Methods The clinical data of 31 patients with AML/MDS who were clearly diagnosed with AML/MDS were analyzed from 2018.10 to 2021.02, and the total amount of azacyclonol and B-cell lymphoma/leukemia-2 inhibitor was used for single or combined chemotherapy, with a total amount of 75 mg/m2 ∗7 d, divided into 7-10 days of continuous subcutaneous injection, every 28-30 days for a course of treatment. Overall response rate (ORR), median survival, poor response, and genetic mutations were observed. Results A total of 104 courses of treatment were completed in 31 patients, the median course was 3 (1-12), and 6 patients who did not complete 2 courses of treatment were not counted in the statistics. After 2 courses, ORR was 72.0%, CRES was 2 (8.0%), mCR was 16 (64.0%), disease stable was 5 (20.0%), treatment failures were 2 (8.0%), mortality was 40.0%, and median survival time was >5 months. Single-agent and combined ORR was 64.3% and 81.8%, respectively, with median survival of 7.25 and 9 months; ORR for MDS and AML was 66.7% and 76.9%, respectively, median survival of 8 and 11 months was 66.7% and 80.0% of ORRs at 260 and V60 years, respectively, and median survival of 7 and 11.5 months; MDS-EB-1. The ORR of MDS-EB-2 was 75.0% and 62.5%, respectively, with median survival times of 11.5 and 6.5 months. During 2 courses and 4 courses, the rate of transfusion dependence was 64.0% and 55.5%, respectively. Fifteen cases were detected by second-generation sequencing, and the results were 14 cases of combined gene mutations. Conclusion Azacytidine and B-cell lymphoma/leukemia-2 inhibitors have good efficacy and high safety in the treatment of AML and MDS, and the combined treatment is better than that of monotherapy, but the side effects of combination therapy are large.
Collapse
Affiliation(s)
- Yanyu Wang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Dan Huang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Lejia Liu
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Aixin Wang
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Yuan Gao
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| | - Huan Lin
- Department of Oncology and Hematology, People's Hospital of Leshan, Leshan 614000, Sichuan Province, China
| |
Collapse
|
7
|
Li Y, Gao F, Liu S. Editorial: Mechanisms of Epigenetics and Genetics in Leukemogenesis. Front Oncol 2022; 12:896094. [PMID: 35463342 PMCID: PMC9022786 DOI: 10.3389/fonc.2022.896094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yonghui Li
- Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| |
Collapse
|
8
|
Schmidt F, Erlacher M, Niemeyer C, Reinhardt D, Klusmann JH. Leukoreductive response to the combination of sorafenib and chemotherapy in hyperleukocytosis of FLT3-ITD mutated pediatric AML. Front Pediatr 2022; 10:1046586. [PMID: 36440328 PMCID: PMC9681922 DOI: 10.3389/fped.2022.1046586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Twelve to 22% of pediatric acute myeloid leukemia (AML) patients present with hyperleukocytosis, which is one of the main risk factors of early death due to its clinical complications: leukostasis, causing pulmonary or central nervous system injuries, tumor lysis syndrome, and disseminated intravascular coagulation. Sorafenib is a multi-kinase inhibitor that blocks the Fms-Related Tyrosine Kinase 3 receptor (FLT3) in AML patients with a FLT3-internal tandem duplication (FLT3-ITD), leading to a reduction of proliferation. Here we report four de novo diagnosed or relapsed pediatric FLT3-ITD-positive AML patients with hyperleukocytosis, which were treated with sorafenib in combination with cytoreductive chemotherapy prior to the start of the induction phase. We observed a fast reduction of white blood cells in peripheral blood and bone marrow. This resulted in a rapid clinical stabilization of the patients. Adverse side effects-such as dermatologic toxicity, elevation of transaminases and hypertension-occurred but were mild and inductive chemotherapy could be started in parallel or subsequently. This implies sorafenib as a safe and effective treatment option in combination with chemotherapy during cytoreductive prephase for children with this life-threatening condition.
Collapse
Affiliation(s)
- Franziska Schmidt
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, Essen, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|