1
|
Li Y, Chen L, Xue S, Song Z, Liu H, Li H, Shen W, Zhang C, Wu H. Alternative spliceosomal protein Eftud2 mediated Kif3a exon skipping promotes SHH-subgroup medulloblastoma progression. Cell Death Differ 2025:10.1038/s41418-025-01512-9. [PMID: 40275081 DOI: 10.1038/s41418-025-01512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Alternative splicing plays a pivotal role in various facets of organogenesis, immune response, and tumorigenesis. Medulloblastoma represents a prevalent childhood brain tumor, with approximately one-third classified as the Sonic Hedgehog (SHH) subgroup. Nevertheless, the contribution of alternative splicing to medulloblastoma oncogenesis remains elusive. This investigation delineated an upregulation of the spliceosomal protein Eftud2 in the SHH-subgroup medulloblastoma mouse model and human medulloblastoma patients. Targeted ablation of Eftud2 in granule precursor cells (GNPs) within the cerebellum prolonged the survival of SHH-subgroup medulloblastoma mice, indicating a putative association between Eftud2 expression and medulloblastoma prognosis. Functional assays unveiled that EFTUD2 depletion in human medulloblastoma cells significantly curtailed cellular proliferation by impeding the activation of the SHH signaling pathway. Through multi-omics sequencing analysis, it was discerned that Eftud2 influences exons 10-11 skipping of Kif3a, a kinesin motor critical for primary cilia formation. Notably, exons 10-11 skipping in Kif3a augmented human medulloblastoma cell proliferation by potentiating the transcriptional activity of Gli2. These findings underscore a robust correlation between Eftud2 and SHH-subgroup medulloblastoma, emphasizing its regulatory role in modulating downstream transcription factors through the alternative splicing of pivotal genes within the SHH signaling pathway, thereby propelling the aggressive proliferation of SHH-subgroup medulloblastoma.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
2
|
Szelest M, Giannopoulos K. Targeting splicing for hematological malignancies therapy. BMC Genomics 2024; 25:1067. [PMID: 39528914 PMCID: PMC11552377 DOI: 10.1186/s12864-024-10975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy. We introduce the functional consequences of mis-spliced variants (CD19-∆ex2, CD22-∆ex2, CD22-∆ex5-6, CD33-∆ex2, PIK3CD-S, BCR-ABL35INS, BIM-γ, FPGS-8PR, dCK-∆ex2-3, and SLC29A1-∆ex13) production in leukemic cells. Of therapeutic relevance, we summarize novel strategies focused on pharmacological correction of aberrant splicing, including small-molecule splicing modulators and splice-switching oligonucleotides. We also include the findings of recent preclinical investigation of the antisense strategies based on modified oligonucleotides. Finally, we discuss the potential of emerging combination therapies for the treatment of hematological disorders with disrupted splicing.
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland
| |
Collapse
|
3
|
Shi W, Tang J, Xiang J. Therapeutic strategies for aberrant splicing in cancer and genetic disorders. Clin Genet 2024; 105:345-354. [PMID: 38165092 DOI: 10.1111/cge.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Accurate pre-mRNA splicing is essential for proper protein translation; however, aberrant splicing is commonly observed in the context of cancer and genetic disorders. Notably, in genetic diseases, these splicing abnormalities often play a pivotal role. Substantial challenges persist in accurately identifying and classifying disease-induced aberrant splicing, as well as in development of targeted therapeutic strategies. In this review, we examine prevalent forms of aberrant splicing and explore potential therapeutic approaches aimed at addressing these splicing-related diseases. This summary contributes to a deeper understanding of the complexities about aberrant splicing and provide a foundation for the development of effective therapeutic interventions in the field of genetic disorders and cancer.
Collapse
Affiliation(s)
- Wenhua Shi
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Miglierina E, Ordanoska D, Le Noir S, Laffleur B. RNA processing mechanisms contribute to genome organization and stability in B cells. Oncogene 2024; 43:615-623. [PMID: 38287115 PMCID: PMC10890934 DOI: 10.1038/s41388-024-02952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis. Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions, and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore, RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.
Collapse
Affiliation(s)
- Emma Miglierina
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Delfina Ordanoska
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France
| | - Sandrine Le Noir
- UMR CNRS 7276, Inserm 1262, Université de Limoges: Contrôle de la Réponse Immune B et des Lymphoproliférations, Team 2, B-NATION: B cell Nuclear Architecture, Immunoglobulin genes and Oncogenes, Limoges, France
| | - Brice Laffleur
- University of Rennes, Inserm, EFS Bretagne, CHU Rennes, UMR, 1236, Rennes, France.
| |
Collapse
|
5
|
Gong L, Qiu L, Hao M. Novel Insights into the Initiation, Evolution, and Progression of Multiple Myeloma by Multi-Omics Investigation. Cancers (Basel) 2024; 16:498. [PMID: 38339250 PMCID: PMC10854875 DOI: 10.3390/cancers16030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
The evolutionary history of multiple myeloma (MM) includes malignant transformation, followed by progression to pre-malignant stages and overt malignancy, ultimately leading to more aggressive and resistant forms. Over the past decade, large effort has been made to identify the potential therapeutic targets in MM. However, MM remains largely incurable. Most patients experience multiple relapses and inevitably become refractory to treatment. Tumor-initiating cell populations are the postulated population, leading to the recurrent relapses in many hematological malignancies. Clonal evolution of tumor cells in MM has been identified along with the disease progression. As a consequence of different responses to the treatment of heterogeneous MM cell clones, the more aggressive populations survive and evolve. In addition, the tumor microenvironment is a complex ecosystem which plays multifaceted roles in supporting tumor cell evolution. Emerging multi-omics research at single-cell resolution permits an integrative and comprehensive profiling of the tumor cells and microenvironment, deepening the understanding of biological features of MM. In this review, we intend to discuss the novel insights into tumor cell initiation, clonal evolution, drug resistance, and tumor microenvironment in MM, as revealed by emerging multi-omics investigations. These data suggest a promising strategy to unravel the pivotal mechanisms of MM progression and enable the improvement in treatment, both holistically and precisely.
Collapse
Affiliation(s)
- Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
- Gobroad Healthcare Group, Beijing 100072, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Tianjin 300020, China;
- Tianjin Institutes of Health Science, Tianjin 300020, China
| |
Collapse
|