1
|
Liu X, Feng Y, Song Z, Liu J, Luo Z, Yu G, Wang J. Novel and effective tandem CD38 and CD19 targeting CAR-T cells inhibit hematological tumor immune escape. Cell Immunol 2025; 411-412:104950. [PMID: 40239552 DOI: 10.1016/j.cellimm.2025.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Targeting CD19 with chimeric antigen receptor (CAR)-T cells is clinically effective, but tumor immune escape and tumor recurrence still occur. Designing CAR-T cells that target multiple antigens simultaneously is a viable approach for inhibiting tumor immune escape, and promising findings have been reported. In this study, we designed new CD19 and CD38 dual-target CAR-T cells that are strongly cytotoxic to target cells expressing CD19 or CD38. In vitro studies, compared with single-target CAR-T cells or CD19/CD38 tandem (Tan) CAR-T cells, CD38/CD19 Tan CAR-T cells presented similar CAR expression, superior cytotoxicity and antigen-stimulated T-cell proliferation. In vivo studies, CD38/CD19 Tan CAR-T cells demonstrated the same efficacy and safety as single-target CAR-T. These CD19/CD38 Tan CAR-T cells are fully compatible with existing clinical-grade T-cell manufacturing procedures and can be implemented using current clinical protocols. In summary, our findings provide an effective solution to the challenge of tumor immune escape in anti-CD19 CAR-T-cell therapy.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yaru Feng
- Junjo Biopharmaceutical Co., Ltd., Zhongshan 528437, China
| | - Zhiru Song
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingjing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen 518118, China.
| |
Collapse
|
2
|
Zhang B, Wu J, Jiang H, Zhou M. Strategies to Overcome Antigen Heterogeneity in CAR-T Cell Therapy. Cells 2025; 14:320. [PMID: 40072049 PMCID: PMC11899321 DOI: 10.3390/cells14050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Chimeric antigen receptor (CAR) gene-modified T-cell therapy has achieved significant success in the treatment of hematological malignancies. However, this therapy has not yet made breakthroughs in the treatment of solid tumors and still faces issues of resistance and relapse in hematological cancers. A major reason for these problems is the antigenic heterogeneity of tumor tissues. This review outlines the antigenic heterogeneity encountered in CAR-T cell therapy and the corresponding strategies to address it. These strategies include using combination therapy to increase the abundance of target antigens, optimizing the structure of CARs to enhance sensitivity to low-density antigens, developing multi-targeted CAR-T cells, and reprogramming the TME to activate endogenous immunity. These approaches offer new directions for overcoming tumor antigenic heterogeneity in CAR-T cell therapy.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Jiawen Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
- CARsgen Therapeutics, Shanghai 200231, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; (B.Z.); (J.W.)
| |
Collapse
|
3
|
Wen XM, Xu ZJ, Ma JC, Zhang MJ, Jin Y, Lin J, Qian J, Fang YY, Luo SY, Mao ZW. Bioinformatic characterization of STING expression in hematological malignancies reveals association with prognosis and anti-tumor immunity. Front Immunol 2025; 16:1477100. [PMID: 39975558 PMCID: PMC11835856 DOI: 10.3389/fimmu.2025.1477100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction Stimulator of interferon response cGAMP interactor (STING) is essential for both innate and adaptive immunity. However, a comprehensive molecular characterization of STING expression across hematological malignancies is lacking. Methods In this study, the pan-blood-cancer landscape related to STING expression was identified using the GTEx, CCLE, Hemap, and TCGA databases, and the potential value for predicting prognosis was investigated. The relationship between STING expression and immune cell enrichment was assessed in the Hemap database. Moreover, the value of STING in predicting the efficacy of immunotherapy was validated using tumor immune dysfunction and exclusion (TIDE) biomarkers and real-world immunotherapy datasets. Results and Discussion STING was found to be relatively highly expressed in acute myeloid leukemia (AML) and chronic myeloid leukemia, with higher STING expression correlated with poorer prognosis in AML. STING expression was positively correlated with immune-related pathways such as IFN-gamma response, IFN-alpha response, and inflammatory response. Cytolytic score and STING expression were positively correlated in some hematological tumors, especially chronic lymphocytic leukemia and mantle cell lymphoma. Interestingly, STING expression was negatively correlated with TIDE biomarkers in AML, suggesting that AML patients with a high STING expression level may benefit from immunologic treatment. Our findings contribute a molecular characterization of STING across hematological malignancies, facilitating the development of individualized prognosis and treatment strategies.
Collapse
Affiliation(s)
- Xiang-mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zi-jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ji-chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min-jie Zhang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuan-yuan Fang
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shu-yu Luo
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhejiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen-wei Mao
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Zhang C, Liu H. Advancements and Future Directions of Dual-Target Chimeric Antigen Receptor T-Cell Therapy in Preclinical and Clinical Studies. J Immunol Res 2025; 2025:5845167. [PMID: 39844819 PMCID: PMC11753851 DOI: 10.1155/jimr/5845167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer. These advantages highlight the potential future prospects in this field, showing varying degrees of advancement in preclinical and clinical studies. Herein, we aimed to review different dual-target CAR-T studies conducted on a wide range of tumor models, summarizing the selection of target combinations, the efficacy and safety demonstrated in preclinical and clinical settings, the existing limitations, and the potential future directions of this promising therapeutic strategy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- Clinical Trials as Topic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Clinical Studies as Topic
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Medicine, University of Tsinghua, Beijing, China
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haizhou Liu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Yang T, Dong Y, Zhang M, Feng J, Fu S, Xiao P, Hong R, Xu H, Cui J, Huang S, Wei G, Kong D, Geng J, Chang AH, Huang H, Hu Y. Prominent efficacy and good safety of sequential CD19 and CD22 CAR-T therapy in relapsed/refractory adult B-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2025; 14:2. [PMID: 39754190 PMCID: PMC11697943 DOI: 10.1186/s40164-024-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited. METHODS This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS). RESULTS Twenty-three patients with a median age of 58.1 years (range 25.9-75.0) were enrolled. High-risk cytogenetic and genomic aberrations were identified in 43.5% of patients, and five patients had baseline extramedullary disease (EMD). The median interval between the two infusions was 3.8 months. Grade ≥ 3 hematological adverse events occurred at comparable rates after both infusions. Cytokine release syndrome was observed in 78.3% and 39.1% of patients after CD19 and CD22 CAR-T therapy, respectively. Two patients experienced grade 2 immune effector cell-associated neurotoxicity syndrome (ICANS) during CD19 CAR-T, and no ICANS was reported during CD22 CAR-T. The median OS was not reached with a median follow-up of 19.4 months (range 8.7-45.6), while the median LFS was 20.8 months. OS and LFS rates were 91.3% and 67.1% at 1 year and 58.6% and 47.0% at 2 years, respectively. Eight patients experienced relapse, with the cumulative incidence of relapse being 28.6% at 1 year and 42.5% at 2 years. Higher baseline leukemia burden (≥ 64% bone marrow blasts) and the presence of EMD were significant risk factors for inferior OS and LFS, respectively. CONCLUSIONS Sequential CAR-T cell therapy demonstrated durable efficacy and a manageable safety profile in R/R B-ALL, providing a viable option to address antigen-loss relapse and improve long-term outcomes in high-risk adult patients.
Collapse
Affiliation(s)
- Tingting Yang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Yetian Dong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Pingnan Xiao
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Huijun Xu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Simao Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Delin Kong
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Jia Geng
- Department of Radiology of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Alex H Chang
- Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai YaKe Biotechnology Ltd., Shanghai, China.
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Liu Y, Xiao G, Liu Y, Tu S, Xue B, Zhong Y, Zhang C, Zhou L, Ye S, Lu Y, Xiu B, Zhang W, Ding Y, Fu J, Li P, Huang L, Luo X, Liang A. CAR T-cell therapy combined with autologous hematopoietic cell transplantation in patients with refractory/relapsed Burkitt Lymphoma. Curr Res Transl Med 2025; 73:103477. [PMID: 39481140 DOI: 10.1016/j.retram.2024.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Burkitt lymphoma (BL) is a highly aggressive type of non-Hodgkin lymphomas that have a high likelihood of relapse and are highly refractory to initial treatment. While high-intensity chemotherapy has improved the outcomes, many adult patients still experience treatment failure, and effective salvage therapies are limited. This study retrospectively analyzed the outcomes of 21 relapsed or refractory (R/R) adult BL patients treated with chimeric antigen receptor T-cell (CAR-T) therapy, combined or not with hematopoietic cell transplantation (HCT), across four Chinese hospitals. Patients were grouped based on treatment strategies: autologous HCT followed by CAR T-cell therapy (auto-HCT+CART group, n = 8), and CAR T-cell therapy alone (CART group, n = 13). The auto-HCT+CART group demonstrated superior outcomes, with an overall response rate (ORR) of 87.5 % and significantly higher 1-year overall survival (OS) and progression-free survival (PFS) rates compared to the CART group (p = 0.014 and p = 0.045, respectively). These findings suggest that combining auto-HCT with CAR-T therapy may enhance long-term disease control in R/R BL patients. These encouraging results highlight the need for further prospective studies to validate our data.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China
| | - Gangfeng Xiao
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Hematology, Ningbo NO.2 Hospital, Ningbo 315010, China
| | - Yang Liu
- Department of Bio-Therapeutic, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Xue
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yadi Zhong
- Department of Bio-Therapeutic, The First Medical Centre, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Cailu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Lili Zhou
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiguang Ye
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Ding
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianfei Fu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Li
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiu Luo
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
9
|
Li T, Cui Q, Liu S, Li Z, Cui W, Li M, Ma Y, Cao X, Zhu X, Kang L, Yu L, Wu D, Tang X. Decitabine consolidation after CD19/CD22 CAR-T therapy as a novel maintenance treatment significantly improves survival outcomes in relapsed/refractory B-ALL patients. Leuk Res 2024; 145:107569. [PMID: 39208598 DOI: 10.1016/j.leukres.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE We aimed to evaluate the efficacy of decitabine consolidation after treatment with CD19/CD22 chimeric antigen receptor T-cell (CAR-T) for patients with relapsed/refractory B-cell acute lymphoblastic leukaemia (r/r B-ALL). METHODS We retrospectively analysed 48 patients with r/r B-ALL who received CD19/CD22 CAR-T therapy between September 2017 and May 2021. Sixteen patients received decitabine consolidation (20 mg/m2/day for 5 days at 3-month intervals) after CAR-T therapy (DAC group), while 32 patients did not receive decitabine consolidation (CON group). Overall survival (OS), leukaemia-free survival (LFS), and cumulative incidence of relapse (CIR) were evaluated in both groups. Time-to-event analysis was performed using the Kaplan-Meier method. RESULTS The median follow-up periods in the DAC and CON groups were 41.2 months and 28.6 months, respectively. The 4-year OS and 4-year LFS rates in both groups were 93.3 % and 64.3 % (P=0.029) and 87.5 % and 55.9 % (P=0.059), respectively. The 1-year CIR was 6.25 % and 28.6 %, respectively. Univariate and multivariate Cox regression analyses showed that decitabine consolidation after CAR-T therapy was significantly associated with superior OS (hazard ratio [HR]: 0.121, 95 % confidence interval [CI]: 0.015-0.947, P=0.044), and bridging to haematopoietic stem cell transplantation after CAR-T therapy was significantly associated with superior LFS (HR: 0.279, 95 %CI: 0.093-0.840, P=0.023). CONCLUSIONS Our study recommends decitabine consolidation after CD19/CD22 CAR-T therapy as a novel maintenance strategy to improve the survival outcomes of patients with r/r B-ALL.
Collapse
Affiliation(s)
- Tingting Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Qingya Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Sining Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Wei Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Mengyun Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Yunju Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xuanqi Cao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaming Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Liqing Kang
- East China Normal University, Shanghai 200062, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai 201203, China
| | - Lei Yu
- East China Normal University, Shanghai 200062, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai 201203, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
10
|
Nasrullah M, Kc R, Nickel K, Parent K, Kucharski C, Meenakshi Sundaram DN, Rajendran AP, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia. ACS Pharmacol Transl Sci 2024; 7:2840-2855. [PMID: 39296267 PMCID: PMC11406681 DOI: 10.1021/acsptsci.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) in gene-targeted treatments is substantial, but their suboptimal delivery impedes widespread clinical applications. Critical among these is the inability of siRNAs to traverse the cell membranes due to their anionic nature and high molecular weight. This limitation is particularly pronounced in lymphocytes, which pose additional barriers due to their smaller size and scant cytoplasm. Addressing this, we introduce an innovative lipid-conjugated polyethylenimine lipopolymer platform, engineered for delivery of therapeutic siRNAs into lymphocytes. This system utilizes the cationic nature of the polyethylenimine for forming stable complexes with anionic siRNAs, while the lipid component facilitates cellular entry of siRNA. The resulting lipopolymer/siRNA complexes are termed lipopolymer nanoparticles (LPNPs). We comprehensively profiled the efficacy of this platform in human peripheral blood mononuclear cells (PBMCs) as well as in vitro and in vivo models of acute lymphoblastic leukemia (ALL), emphasizing the inhibition of the oncogenic signal transducer and activator of transcription 5A (STAT5A) gene. The lipopolymers demonstrated high efficiency in delivering siRNA to ALL cell lines (RS4;11 and SUP-B15) and primary patient cells, effectively silencing the STAT5A gene. The resultant gene silencing induced apoptosis and significantly reduced colony formation in vitro. Furthermore, in vivo studies showed a significant decrease in tumor volumes without causing substantial toxicity. The lipopolymers did not induce the secretion of proinflammatory cytokines (IL-6, TNF-α, and INF-γ) in PBMCs from healthy volunteers, underscoring their immune safety profile. Our observations indicate that LPNP-based siRNA delivery systems offer a promising therapeutic approach for ALL in terms of both safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kyle Nickel
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | | | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Colombia Cancer Research Institute and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| |
Collapse
|
11
|
Yao Y, Zhou J, Li Y, Shi S, Yu L, Wu D, Wang Y. CD19 CAR T-cell therapy in relapsed TCF3-HLF-positive B-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05945-z. [PMID: 39145779 DOI: 10.1007/s00277-024-05945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Yao Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jin Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sensen Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Brillembourg H, Martínez-Cibrián N, Bachiller M, Alserawan L, Ortiz-Maldonado V, Guedan S, Delgado J. The role of chimeric antigen receptor T cells targeting more than one antigen in the treatment of B-cell malignancies. Br J Haematol 2024; 204:1649-1659. [PMID: 38362778 DOI: 10.1111/bjh.19348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.
Collapse
Affiliation(s)
| | - Núria Martínez-Cibrián
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Mireia Bachiller
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Clínic, Barcelona, Spain
| | | | - Valentín Ortiz-Maldonado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sònia Guedan
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Department of Haematology, Hospital Clínic, Barcelona, Spain
- Oncology and Haematology Area, FRCB-IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
13
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
14
|
Dai HP, Shen HJ, Li Z, Cui W, Cui QY, Li MY, Chen SF, Zhu MQ, Wu DP, Tang XW. [Efficacy and safety of chimeric antigen receptor T-cell therapy followed by allogeneic hematopoietic stem cell transplantation in 21 patients with Ph-like acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:35-40. [PMID: 38527836 PMCID: PMC10951118 DOI: 10.3760/cma.j.cn121090-20230929-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 03/27/2024]
Abstract
Objective: To evaluate the efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with Ph-like acute lymphoblastic leukemia (Ph-ALL) . Methods: Patients with Ph-ALL who underwent CAR-T therapy followed by allo-HSCT from March 2018 to August 2023 at the First Affiliated Hospital of Soochow University were included, and their clinical data were retrospectively analyzed. Results: Of the 21 patients, 14 were male and 7 were female. The median age at the time of CAR-T therapy was 22 (6-50) years. Seven patients had ABL1-like rearrangements, and 14 had JAK-STAT rearrangements. Prior to CAR-T therapy, 12 patients experienced hematologic relapse; 7 were multiparameter flow cytometry minimal residual disease (MFC-MRD) -positive and 2 were MFC-MRD-negative. CAR-T cells were derived from patients' autologous lymphocytes. Nine patients were treated with CD19 CAR-T cells, and 12 were treated with CD19/CD22 CAR-T cells. After assessment on day 28 after CAR-T therapy, 95.2% of the patients achieved complete remission, with an MRD-negative remission rate of 75%. Nineteen patients developed grade 0-2 cytokine release syndrome (CRS) and 2 patients suffered grade 3 CRS, all cases of which resolved after treatment. All patients underwent allo-HSCT after CAR-T therapy. The median time from CAR-T therapy to allo-HSCT was 63 (38-114) days. Five patients experienced relapse after CAR-T therapy, including four with hematologic relapse and one with molecular relapse. The 3-year overall survival (OS) rates in the ABL1 and JAK-STAT groups were (83.3±15.2) % and (66.6±17.2) %, respectively (P=0.68) . The 3-year relapse-free survival (RFS) rates were (50.0±20.4) % and (55.6±15.4) % in the ABL1 and JAK-STAT groups, respectively. There was no significant difference in 3-year OS or RFS between the two groups. Conclusions: CAR-T therapy followed by allo-HSCT leads to rapid remission in most patients with Ph-ALL and prolongs leukemia-free survival.
Collapse
Affiliation(s)
- H P Dai
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - H J Shen
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Z Li
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - W Cui
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Q Y Cui
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - M Y Li
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - S F Chen
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - M Q Zhu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - X W Tang
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| |
Collapse
|
15
|
Kalim M, Jing R, Li X, Jiang Z, Zheng N, Wang Z, Wei G, Lu Y. Essentials of CAR-T Therapy and Associated Microbial Challenges in Long Run Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2024; 6:22-50. [PMID: 38883270 PMCID: PMC11172397 DOI: 10.33696/immunology.6.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown potential in improving outcomes for individuals with hematological malignancies. However, achieving long-term full remission for blood cancer remains challenging due to severe life-threatening toxicities such as limited anti-tumor efficacy, antigen escape, trafficking restrictions, and limited tumor invasion. Furthermore, the interactions between CAR-T cells and their host tumor microenvironments have a significant impact on CAR-T function. To overcome these considerable hurdles, fresh methodologies and approaches are needed to produce more powerful CAR-T cells with greater anti-tumor activity and less toxicity. Despite advances in CAR-T research, microbial resistance remains a significant obstacle. In this review, we discuss and describe the basics of CAR-T structures, generations, challenges, and potential risks of infections in CAR-T cell therapy.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Guo Wei
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Testa U, Sica S, Pelosi E, Castelli G, Leone G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis 2024; 16:e2024010. [PMID: 38223477 PMCID: PMC10786140 DOI: 10.4084/mjhid.2024.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.
Collapse
Affiliation(s)
| | - Simona Sica
- Dipartimento Di Diagnostica per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy. Sezione Di Ematologia
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | | | - Giuseppe Leone
- Dipartimento Di Scienze Radiologiche Ed Ematologiche, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|