1
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Morcillo-Martín-Romo P, Valverde-Pozo J, Ortiz-Bueno M, Arnone M, Espinar-Barranco L, Espinar-Barranco C, García-Rubiño ME. The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines 2025; 13:857. [PMID: 40299429 PMCID: PMC12024875 DOI: 10.3390/biomedicines13040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in tumor surveillance by exerting cytotoxic activity and modulating immune responses. However, tumors employ diverse evasion strategies that limit NK cell effectiveness. This review aims to explore the molecular mechanisms of NK cell activation and inhibition in cancer, the influence of the tumor microenvironment, and the latest advancements in NK cell-based immunotherapies, including adoptive NK cell transfer and Chimeric Antigen Receptor-Natural Killer (CAR-NK) cell therapies. Methods: A comprehensive literature review was conducted, prioritizing peer-reviewed studies from the last decade on NK cell biology, tumor immune evasion, and immunotherapeutic applications. The analysis includes data from preclinical models and clinical trials evaluating NK cell expansion strategies, cytokine-based stimulation, and CAR-NK cell therapy developments. Results: NK cells eliminate tumors through cytotoxic granule release, death receptor pathways, and cytokine secretion. However, tumor cells evade NK-mediated immunity by downregulating activating ligands, secreting immunosuppressive molecules, and altering the tumor microenvironment. Novel NK cell-based therapies, such as CAR-NK cells and combination approaches with immune checkpoint inhibitors, enhance NK cell persistence and therapeutic efficacy against both hematologic and solid malignancies. Clinical trials suggest improved safety profiles compared to CAR-T therapies, with reduced cytokine release syndrome and graft-versus-host disease. Conclusions: While NK cell-based immunotherapies hold great promise, challenges remain, including limited persistence and tumor-induced immunosuppression. Addressing these hurdles will be critical for optimizing NK cell therapies and advancing next-generation, off-the-shelf immunotherapeutics for broader clinical applications.
Collapse
Affiliation(s)
- Paula Morcillo-Martín-Romo
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Javier Valverde-Pozo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - María Ortiz-Bueno
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
| | - Maurizio Arnone
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Laura Espinar-Barranco
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celia Espinar-Barranco
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - María Eugenia García-Rubiño
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
| |
Collapse
|
3
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
4
|
Zeng L, Li Y, Xiang W, Xiao W, Long Z, Sun L. Advances in chimeric antigen receptor T cell therapy for autoimmune and autoinflammatory diseases and their complications. J Autoimmun 2025; 150:103350. [PMID: 39700677 DOI: 10.1016/j.jaut.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically engineered T cells expressing transmembrane chimeric antigen receptors with specific targeting abilities. As an emerging immunotherapy, the use of CAR-T cells has made significant breakthroughs in cancer treatment, particularly for hematological malignancies. The success of CAR-T cell therapy in blood cancers highlights its potential for other conditions in which the clearance of pathological cells is therapeutic, such as liver diseases, infectious diseases, heart failure, and diabetes. Given the limitations of current therapies for autoimmune diseases, researchers have actively explored the potential therapeutic value of CAR-T cells and their derivatives in the field of autoimmune diseases. This review focuses on the research progress and current challenges of CAR-T cells in autoimmune diseases with the aim of providing a theoretical basis for the precise treatment of autoimmune diseases. In the future, CAR-T cells may present new therapeutic modalities and ultimately provide hope for patients with autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Inflammation/therapy
- Inflammation/immunology
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Zhang X, You Y, Zhang P, Wang Y, Shen F. Cytokine release syndrome caused by immune checkpoint inhibitors: a case report and literature review. Future Sci OA 2024; 10:2422786. [PMID: 39575654 PMCID: PMC11587866 DOI: 10.1080/20565623.2024.2422786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have gained widespread application in the treatment of malignant tumors. Cytokine release syndrome (CRS) is a systemic inflammatory response triggered by various factors, including infections and immunotherapy. We present a case of CRS occurring in a gastric cancer patient after receiving combination therapy of tislelizumab, anlotinib and combination of capecitabine and oxaliplatin. Nineteen days after the third dose of tislelizumab, the patient experienced sudden unconsciousness, frothing at the mouth, convulsions and other clinical manifestations resembling epileptiform seizures. Elevated inflammatory markers, cytokine levels and ferritin were markedly increased. Given the absence of definite clinical evidence for metastasis and infection, the diagnosis of CRS was considered. Subsequent management with glucocorticoids and intravenous immunoglobulin resulted in the patient's improvement. However, antitumor therapy was halted, ultimately leading to death. The administration of ICIs can incite CRS, a severe, rapidly progressing condition with a poor prognosis, demanding clinical attention. Cytokines play a dual role in the pathophysiology of immune-related adverse events by mediating self-tolerance attenuation and enhancing the activation of cytotoxic T cells in the antitumor process of ICIs. The therapy of glucocorticoids combined with cytokine inhibitors may become an effective remedy.
Collapse
Affiliation(s)
- Xiuping Zhang
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yang You
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ren H, Jin Y, Huang H, Wu W, Dai X, Fang W, Qin J, Li H, Zhao P. In vivo engineering chimeric antigen receptor immune cells with emerging nanotechnologies. NANO TODAY 2024; 59:102517. [DOI: 10.1016/j.nantod.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Palacios-Berraquero ML, Rodriguez-Marquez P, Calleja-Cervantes ME, Berastegui N, Zabaleta A, Burgos L, Alignani D, San Martin-Uriz P, Vilas-Zornoza A, Rodriguez-Diaz S, Inoges S, Lopez-Diaz de Cerio A, Huerga S, Tamariz E, Rifon J, Alfonso-Pierola A, Lasarte JJ, Paiva B, Hernaez M, Rodriguez-Otero P, San-Miguel J, Ezponda T, Rodriguez-Madoz JR, Prosper F. Molecular mechanisms promoting long-term cytopenia after BCMA CAR-T therapy in multiple myeloma. Blood Adv 2024; 8:5479-5492. [PMID: 39058976 PMCID: PMC11532743 DOI: 10.1182/bloodadvances.2023012522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
ABSTRACT Hematologic toxicity is a common side effect of chimeric antigen receptor T-cell (CAR-T) therapies, being particularly severe among patients with relapsed or refractory multiple myeloma (MM). In this study, we characterized 48 patients treated with B-cell maturation antigen (BCMA) CAR-T cells to understand kinetics of cytopenia, identify predictive factors, and determine potential mechanisms underlying these toxicities. We observed that overall incidence of cytopenia was 95.7%, and grade >3 thrombocytopenia and neutropenia, 1 month after infusion, was observed in 57% and 53% of the patients, respectively, being still present after 1 year in 4 and 3 patients, respectively. Baseline cytopenia and high peak inflammatory markers were highly correlated with cytopenia that persisted up to 3 months. To determine potential mechanisms underlying cytopenias, we evaluated the paracrine effect of BCMA CAR-T cells on hematopoietic stem and progenitor cell (HSPC) differentiation using an ex vivo myeloid differentiation model. Phenotypic analysis showed that supernatants from activated CAR-T cells (spCAR) halted HSPC differentiation, promoting more immature phenotypes, which could be prevented with a combination of interferon γ, tumor necrosis factor α/β, transforming growth factor β, interleukin-6 (IL-6) and IL-17 inhibitors. Single-cell RNA sequencing demonstrated upregulation of transcription factors associated with early stages of hematopoietic differentiation in the presence of spCAR (GATA2, RUNX1, CEBPA) and a decrease in the activity of key regulons involved in neutrophil and monocytic maturation (ID2 and MAFB). These results suggest that CAR-T activation induces HSPC maturation arrest through paracrine effects and provides potential treatments to mitigate the severity of this toxicity.
Collapse
Affiliation(s)
- Maria Luisa Palacios-Berraquero
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Paula Rodriguez-Marquez
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Maria Erendira Calleja-Cervantes
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Nerea Berastegui
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Aintzane Zabaleta
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Leire Burgos
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Diego Alignani
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Patxi San Martin-Uriz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Saray Rodriguez-Diaz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Susana Inoges
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Ascensión Lopez-Diaz de Cerio
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Immunology and Immunotherapy Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Sofia Huerga
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Esteban Tamariz
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Jose Rifon
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Ana Alfonso-Pierola
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Juan Jose Lasarte
- Immunology and Immunotherapy Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Flow Cytometry Core, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Mikel Hernaez
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
- Computational Biology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Data Science and Artificial Intelligence Institute, Universidad de Navarra, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Jesus San-Miguel
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Teresa Ezponda
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Juan Roberto Rodriguez-Madoz
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| | - Felipe Prosper
- Hematology and Cell Therapy Department, Cancer Center Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Hemato-Oncology Program, Cima Universidad de Navarra, IdiSNA, Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer, Madrid, Spain
| |
Collapse
|
8
|
Ploch W, Sadowski K, Olejarz W, Basak GW. Advancement and Challenges in Monitoring of CAR-T Cell Therapy: A Comprehensive Review of Parameters and Markers in Hematological Malignancies. Cancers (Basel) 2024; 16:3339. [PMID: 39409959 PMCID: PMC11475293 DOI: 10.3390/cancers16193339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment for relapsed/refractory B-cell lymphomas. Despite its success, this therapy is accompanied by a significant frequency of adverse events, including cytokine release syndrome (CRS), immune-effector-cell-associated neurotoxicity syndrome (ICANS), or cytopenias, reaching even up to 80% of patients following CAR-T cell therapy. CRS results from the uncontrolled overproduction of proinflammatory cytokines, which leads to symptoms such as fever, headache, hypoxia, or neurological complications. CAR-T cell detection is possible by the use of flow cytometry (FC) or quantitative polymerase chain reaction (qPCR) assays, the two primary techniques used for CAR-T evaluation in peripheral blood, bone marrow (BM), and cerebrospinal fluid (CSF). State-of-the-art imaging technologies play a crucial role in monitoring the distribution and persistence of CAR-T cells in clinical trials. Still, they can also be extended with the use of FC and digital PCR (dPCR). Monitoring the changes in cell populations during disease progression and treatment gives an important insight into how the response to CAR-T cell therapy develops on a cellular level. It can help improve the therapeutic design and optimize CAR-T cell therapy to make it more precise and personalized, which is crucial to overcoming the problem of tumor relapse.
Collapse
Affiliation(s)
- Weronika Ploch
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.P.); (K.S.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grzegorz W. Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
9
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
10
|
Katsin M, Shman T, Migas A, Lutskovich D, Serada Y, Khalankova Y, Kostina Y, Dubovik S. Case report: Rapid resolution of grade IV ICANS after first line intrathecal chemotherapy with methotrexate, cytarabine and dexamethasone. Front Immunol 2024; 15:1380451. [PMID: 38765003 PMCID: PMC11099209 DOI: 10.3389/fimmu.2024.1380451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Corticosteroid therapy is the mainstay of immune effector cell-associated neurotoxicity syndrome (ICANS) management, although its use has been associated with worse overall survival (OS) and progression-free survival (PFS) after chimeric antigen receptor T-cell (CAR-T cell) therapy. Many options are being investigated for prophylaxis and management. Accumulating evidence supports the use of intrathecal (IT) chemotherapy for the management of high-grade ICANS. Here, we describe a case of a patient with stage IV Primary mediastinal B-cell lymphoma (PMBCL) successfully treated with IT methotrexate, cytarabine, and dexamethasone as first-line therapy for CD19 CAR-T cell-associated grade IV ICANS. The stable and rapid resolution of ICANS to grade 0 allowed us to discontinue systemic corticosteroid use, avoiding CAR-T cells ablation and ensuring preservation of CAR-T cell function. The described patient achieved a complete radiologic and clinical response to CD19 CAR-T cell therapy and remains disease-free after 9 months. This case demonstrates a promising example of how IT chemotherapy could be used as first-line treatment for the management of high-grade ICANS.
Collapse
Affiliation(s)
- Mikalai Katsin
- Department of Hematology, Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| | - Tatsiana Shman
- Laboratory of Genetic Biotechnologies, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Alexandr Migas
- Laboratory of Genetic Biotechnologies, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Dzmitry Lutskovich
- Laboratory of Genetic Biotechnologies, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Yuliya Serada
- Department of Hematology, Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| | - Yauheniya Khalankova
- Department of Hematology, Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| | - Yuliya Kostina
- Department of Hematology, Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| | - Simon Dubovik
- Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
11
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
12
|
Yang N, Zhang C, Zhang Y, Fan Y, Zhang J, Lin X, Guo T, Gu Y, Wu J, Gao J, Zhao X, He Z. CD19/CD20 dual-targeted chimeric antigen receptor-engineered natural killer cells exhibit improved cytotoxicity against acute lymphoblastic leukemia. J Transl Med 2024; 22:274. [PMID: 38475814 PMCID: PMC10935961 DOI: 10.1186/s12967-024-04990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.
Collapse
Affiliation(s)
- Na Yang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Caili Zhang
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
| | - Yingchun Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jing Zhang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaojin Lin
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Guo
- Department of Gynecology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yangzuo Gu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Jieheng Wu
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Zhixu He
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University (GMU), Guiyang, Guizhou, China.
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences), Guiyang, China.
- Department of Pediatrics, the Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
13
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
14
|
Le Cacheux C, Couturier A, Sortais C, Houot R, Péré M, Gastinne T, Seguin A, Reignier J, Lascarrou JB, Tadié JM, Quelven Q, Canet E. Features and outcomes of patients admitted to the ICU for chimeric antigen receptor T cell-related toxicity: a French multicentre cohort. Ann Intensive Care 2024; 14:20. [PMID: 38291184 PMCID: PMC10828176 DOI: 10.1186/s13613-024-01247-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T-cell (CAR-T) therapy is increasingly used in patients with refractory haematological malignancies but can induce severe adverse events. We aimed to describe the clinical features and outcomes of patients admitted to the intensive care unit (ICU) after CAR-T therapy. METHODS This retrospective observational cohort study included consecutive adults admitted to either of two French ICUs in 2018-2022 within 3 months after CAR-T therapy. RESULTS Among 238 patients given CAR-T therapy, 84 (35.3%) required ICU admission and were included in the study, a median of 5 [0-7] days after CAR-T infusion. Median SOFA and SAPSII scores were 3 [2-6] and 39 [30-48], respectively. Criteria for cytokine release syndrome were met in 80/84 (95.2%) patients, including 18/80 (22.5%) with grade 3-4 toxicity. Immune effector cell-associated neurotoxicity syndrome (ICANS) occurred in 46/84 (54.8%) patients, including 29/46 (63%) with grade 3-4 toxicity. Haemophagocytic lymphohistiocytosis was diagnosed in 15/84 (17.9%) patients. Tocilizumab was used in 73/84 (86.9%) patients, with a median of 2 [1-4] doses. Steroids were given to 55/84 (65.5%) patients, including 21/55 (38.2%) given high-dose pulse therapy. Overall, 23/84 (27.4%) patients had bacterial infections, 3/84 (3.6%) had fungal infections (1 invasive pulmonary aspergillosis and 2 Mucorales), and 2 (2.4%) had cytomegalovirus infection. Vasopressors were required in 23/84 (27.4%), invasive mechanical ventilation in 12/84 (14.3%), and dialysis in 4/84 (4.8%) patients. Four patients died in the ICU (including 2 after ICU readmission, i.e., overall mortality was 4.8% of patients). One year after CAR-T therapy, 41/84 (48.9%) patients were alive and in complete remission, 14/84 (16.7%) were alive and in relapse, and 29/84 (34.5%) had died. These outcomes were similar to those of patients never admitted to the ICU. CONCLUSION ICU admission is common after CAR-T therapy and is usually performed to manage specific toxicities. Our experience is encouraging, with low ICU mortality despite a high rate of grade 3-4 toxicities, and half of patients being alive and in complete remission at one year.
Collapse
Affiliation(s)
- Corentin Le Cacheux
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Hôtel-Dieu, 30 Bd. Jean Monnet, 44093, Nantes Cedex 1, France.
| | - Audrey Couturier
- Clinical Haematology Department, Rennes University Hospital, Rennes University, INSERM U1236, Rennes, France
| | - Clara Sortais
- Haematology Department, Nantes University Hospital, Nantes University, Nantes, France
| | - Roch Houot
- Clinical Haematology Department, Rennes University Hospital, Rennes University, INSERM U1236, Rennes, France
| | - Morgane Péré
- Biostatistics Department, Nantes University Hospital, Nantes University, Nantes, France
| | - Thomas Gastinne
- Haematology Department, Nantes University Hospital, Nantes University, Nantes, France
| | - Amélie Seguin
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Hôtel-Dieu, 30 Bd. Jean Monnet, 44093, Nantes Cedex 1, France
| | - Jean Reignier
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Hôtel-Dieu, 30 Bd. Jean Monnet, 44093, Nantes Cedex 1, France
- ICU, Nantes University, Nantes University Hospital,-Interactions-Performance Research Unit (MIP, UR 4334), Nantes, France
| | - Jean-Baptiste Lascarrou
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Hôtel-Dieu, 30 Bd. Jean Monnet, 44093, Nantes Cedex 1, France
| | - Jean-Marc Tadié
- ICU, Rennes University Hospital, Rennes University, Rennes, France
| | - Quentin Quelven
- ICU, Rennes University Hospital, Rennes University, Rennes, France
| | - Emmanuel Canet
- Service de Médecine Intensive Réanimation, Centre Hospitalier Universitaire Hôtel-Dieu, 30 Bd. Jean Monnet, 44093, Nantes Cedex 1, France
| |
Collapse
|
15
|
Rosen RS, Yang JH, Peña JS, Schloss R, Yarmush ML. An in vitro model of the macrophage-endothelial interface to characterize CAR T-cell induced cytokine storm. Sci Rep 2023; 13:18835. [PMID: 37914765 PMCID: PMC10620221 DOI: 10.1038/s41598-023-46114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is a highly effective treatment for B-cell malignancies but limited in use due to clinically significant hyperinflammatory toxicities. Understanding the pathophysiologic mechanisms which mediate these toxicities can help identify novel management strategies. Here we report a novel in vitro model of the macrophage-endothelial interface to study the effects of CAR T-cell-induced cytokine storm. Using this model, we demonstrate that macrophage-mediated inflammation is regulated by endothelial cell activity. Furthermore, endothelial inflammation occurs independently of macrophages following exposure to CAR T-cell products and the induced endothelial inflammation potentiates macrophage-mediated inflammatory signaling, leading to a hyperinflammatory environment. While corticosteroids, the current gold standard of care, attenuate the resulting macrophage inflammatory signaling, the endothelial activity remains refractory to this treatment strategy. Utilizing a network model, coupled to in vitro secretion profiling, we identified STAT3 programming as critical in regulating this endothelial behavior. Lastly, we demonstrate how targeting STAT3 activity can abrogate endothelial inflammation and attenuate this otherwise hyperinflammatory environment. Our results demonstrate that endothelial cells play a central role in the pathophysiology of CAR T-cell toxicities and targeting the mechanisms driving the endothelial response can guide future clinical management.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jason H Yang
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
- Center for Emerging and Re-Emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Juan S Peña
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Constantinescu C, Moisoiu V, Tigu B, Kegyes D, Tomuleasa C. Outcomes of CAR-T Cell Therapy Recipients Admitted to the ICU: In Search for a Standard of Care-A Brief Overview and Meta-Analysis of Proportions. J Clin Med 2023; 12:6098. [PMID: 37763039 PMCID: PMC10531736 DOI: 10.3390/jcm12186098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Our primary objective was to describe the baseline characteristics, main reasons for intensive care unit (ICU) admission, and interventions required in the ICU across patients who received CAR-T cell immunotherapy. The secondary objectives were to evaluate different outcomes (ICU mortality) across patients admitted to the ICU after having received CAR-T cell therapy. MATERIALS AND METHODS We performed a medical literature review, which included MEDLINE, Embase, and Cochrane Library, of studies published from the inception of the databases until 2022. We conducted a systematic review with meta-analyses of proportions of several studies, including CAR-T cell-treated patients who required ICU admission. Outcomes in the meta-analysis were evaluated using the random-effects model. RESULTS We included four studies and analyzed several outcomes, including baseline characteristics and ICU-related findings. CAR-T cell recipients admitted to the ICU are predominantly males (62% CI-95% (57-66)). Of the total CAR-T cell recipients, 4% CI-95% (3-5) die in the hospital, and 6% CI-95% (4-9) of those admitted to the ICU subsequently die. One of the main reasons for ICU admission is acute kidney injury (AKI) in 15% CI-95% (10-19) of cases and acute respiratory failure in 10% CI-95% (6-13) of cases. Regarding the interventions initiated in the ICU, 18% CI-95% (13-22) of the CAR-T recipients required invasive mechanical ventilation during their ICU stay, 23% CI-95% (16-30) required infusion of vasoactive drugs, and 1% CI-95% (0.1-3) required renal replacement therapy (RRT). 18% CI-95% (13-22) of the initially discharged patients were readmitted to the ICU within 30 days, and the mean length of hospital stay is 22 days CI-95% (19-25). The results paint a current state of matter in CAR-T cell recipients admitted to the ICU. CONCLUSIONS To better understand immunotherapy-related complications from an ICU standpoint, acknowledge the deteriorating patient on the ward, reduce the ICU admission rate, advance ICU care, and improve the outcomes of these patients, a standard of care and research regarding CAR-T cell-based immunotherapies should be created. Studies that are looking from the perspective of intensive care are highly warranted because the available literature regarding this area is scarce.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.C.); (C.T.)
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Intensive Care Unit, Emergency Hospital, 400006 Cluj-Napoca, Romania
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Vlad Moisoiu
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.C.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Khawar MB, Ge F, Afzal A, Sun H. From barriers to novel strategies: smarter CAR T therapy hits hard to tumors. Front Immunol 2023; 14:1203230. [PMID: 37520522 PMCID: PMC10375020 DOI: 10.3389/fimmu.2023.1203230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors shows promise, but several hurdles remain. Strategies to overcome barriers such as CAR T therapy-related toxicities (CTT), immunosuppression, and immune checkpoints through research and technology are needed to put the last nail to the coffin and offer hope for previously incurable malignancies. Herein we review current literature and infer novel strategies for the mitigation of CTT while impeding immune suppression, stromal barriers, tumor heterogeneity, on-target/off-tumor toxicities, and better transfection strategies with an emphasis on clinical research and prospects.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Fei Ge
- Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu, China
| | - Ali Afzal
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
18
|
Pensato U, Amore G, Muccioli L, Sammali S, Rondelli F, Rinaldi R, D'Angelo R, Nicodemo M, Mondini S, Sambati L, Asioli GM, Rossi S, Santoro R, Cretella L, Ferrari S, Spinardi L, Faccioli L, Fanti S, Paccagnella A, Pierucci E, Casadei B, Pellegrini C, Zinzani PL, Bonafè M, Cortelli P, Bonifazi F, Guarino M. CAR t-cell therapy in BOlogNa-NEUrotoxicity TReatment and Assessment in Lymphoma (CARBON-NEUTRAL): proposed protocol and results from an Italian study. J Neurol 2023; 270:2659-2673. [PMID: 36869888 DOI: 10.1007/s00415-023-11595-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE To investigate neurotoxicity clinical and instrumental features, incidence, risk factors, and early and long-term prognosis in lymphoma patients who received CAR T-cell therapy. METHODS In this prospective study, consecutive refractory B-cell non-Hodgkin lymphoma patients who received CAR T-cell therapy were included. Patients were comprehensively evaluated (neurological examination, EEG, brain MRI, and neuropsychological test) before and after (two and twelve months) CAR T-cells. From the day of CAR T-cells infusion, patients underwent daily neurological examinations to monitor the development of neurotoxicity. RESULTS Forty-six patients were included in the study. The median age was 56.5 years, and 13 (28%) were females. Seventeen patients (37%) developed neurotoxicity, characterized by encephalopathy frequently associated with language disturbances (65%) and frontal lobe dysfunction (65%). EEG and brain FDG-PET findings also supported a predominant frontal lobe involvement. The median time at onset and duration were five and eight days, respectively. Baseline EEG abnormalities predicted ICANS development in the multivariable analysis (OR 4.771; CI 1.081-21.048; p = 0.039). Notably, CRS was invariably present before or concomitant with neurotoxicity, and all patients who exhibited severe CRS (grade ≥ 3) developed neurotoxicity. Serum inflammatory markers were significantly higher in patients who developed neurotoxicity. A complete neurological resolution following corticosteroids and anti-cytokines monoclonal antibodies was reached in all patients treated, except for one patient developing a fatal fulminant cerebral edema. All surviving patients completed the 1-year follow-up, and no long-term neurotoxicity was observed. CONCLUSIONS In the first prospective Italian real-life study, we presented novel clinical and investigative insights into ICANS diagnosis, predictive factors, and prognosis.
Collapse
Affiliation(s)
- Umberto Pensato
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Lorenzo Muccioli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Susanna Sammali
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
| | - Francesca Rondelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Roberto D'Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Marianna Nicodemo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Susanna Mondini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Gian Maria Asioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Simone Rossi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Rossella Santoro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Lucia Cretella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Susy Ferrari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | - Luca Spinardi
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Faccioli
- Diagnostic and Interventional Neuroradiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Paccagnella
- Nuclear Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisabetta Pierucci
- Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Cinzia Pellegrini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia
| | | | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italia, Sant'Orsola Hospital, Via Giuseppe Massarenti 9, Bologna, Italia.
| |
Collapse
|
19
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
20
|
Peng L, Renauer PA, Ye L, Yang L, Park JJ, Chow RD, Zhang Y, Lin Q, Bai M, Sanchez A, Zhang Y, Lam SZ, Chen S. Perturbomics of tumor-infiltrating NK cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532653. [PMID: 36993337 PMCID: PMC10055047 DOI: 10.1101/2023.03.14.532653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Natural killer (NK) cells are an innate immune cell type that serves at the first level of defense against pathogens and cancer. NK cells have clinical potential, however, multiple current limitations exist that naturally hinder the successful implementation of NK cell therapy against cancer, including their effector function, persistence, and tumor infiltration. To unbiasedly reveal the functional genetic landscape underlying critical NK cell characteristics against cancer, we perform perturbomics mapping of tumor infiltrating NK cells by joint in vivo AAV-CRISPR screens and single cell sequencing. We establish a strategy with AAV-SleepingBeauty(SB)- CRISPR screening leveraging a custom high-density sgRNA library targeting cell surface genes, and perform four independent in vivo tumor infiltration screens in mouse models of melanoma, breast cancer, pancreatic cancer, and glioblastoma. In parallel, we characterize single-cell transcriptomic landscapes of tumor-infiltrating NK cells, which identifies previously unexplored sub-populations of NK cells with distinct expression profiles, a shift from immature to mature NK (mNK) cells in the tumor microenvironment (TME), and decreased expression of mature marker genes in mNK cells. CALHM2, a calcium homeostasis modulator that emerges from both screen and single cell analyses, shows both in vitro and in vivo efficacy enhancement when perturbed in chimeric antigen receptor (CAR)-NK cells. Differential gene expression analysis reveals that CALHM2 knockout reshapes cytokine production, cell adhesion, and signaling pathways in CAR- NKs. These data directly and systematically map out endogenous factors that naturally limit NK cell function in the TME to offer a broad range of cellular genetic checkpoints as candidates for future engineering to enhance NK cell-based immunotherapies.
Collapse
|
21
|
Metabolic hallmarks of natural killer cells in the tumor microenvironment and implications in cancer immunotherapy. Oncogene 2023; 42:1-10. [PMID: 36473909 DOI: 10.1038/s41388-022-02562-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells belong to the early responder group against cancerous cells and viral infection. Emerging evidence reveals that distinct metabolic reprogramming occurs concurrently with activation and memory formation of NK cells. However, metabolism of NK cells is disturbed in the tumor immune microenvironment, which may promote tumor progression while limiting immunotherapy responses. In this review, we highlight how cell metabolism influences NK cell activity, the key molecular regulators of NK cell metabolism, and emerging strategies to alter metabolism to improve cytotoxicity of NK cells to kill tumor cells for cancer patients.
Collapse
|
22
|
Cutting-Edge CAR Engineering: Beyond T Cells. Biomedicines 2022; 10:biomedicines10123035. [PMID: 36551788 PMCID: PMC9776293 DOI: 10.3390/biomedicines10123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
23
|
Dogan M, Karhan E, Kozhaya L, Placek L, Chen X, Yigit M, Unutmaz D. Engineering Human MAIT Cells with Chimeric Antigen Receptors for Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1523-1531. [PMID: 36165183 DOI: 10.4049/jimmunol.2100856] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Engineering immune cells with chimeric Ag receptors (CARs) is a promising technology in cancer immunotherapy. Besides classical cytotoxic CD8+ T cells, innate cell types such as NK cells have also been used to generate CAR-T or CAR-NK cells. In this study, we devised an approach to program a nonclassical cytotoxic T cell subset called mucosal-associated invariant T (MAIT) cells into effective CAR-T cells against B cell lymphoma and breast cancer cells. Accordingly, we expressed anti-CD19 and anti-Her2 CARs in activated primary human MAIT cells and CD8+ T cells, expanded them in vitro, and compared their cytotoxicity against tumor cell targets. We show upon activation through CARs that CAR-MAIT cells exhibit high levels of cytotoxicity toward target cells, comparable to CD8+ CAR-T cells, but interestingly expressed lower levels of IFN-γ than conventional CAR CD8+ T cells. Additionally, in the presence of vitamin B2 metabolite 5-ARU (5-amino-4-d-ribitylaminouracil dihydrochloride), which is a conserved compound that activates MAIT cells through MHC class I-related (MR1) protein, MAIT cells killed MR1-expressing target breast cancer and B cell lymphoma cell lines in a dose-dependent manner. Thus, MAIT cells can be genetically edited as CAR-T cells or mobilized and expanded by MR1 ligands as an off-the-shelf novel approach to cell-based cancer immunotherapy strategies while being comparable to conventional methods in effectivity.
Collapse
Affiliation(s)
- Mikail Dogan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Ece Karhan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Lindsey Placek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Xin Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Mesut Yigit
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT; and .,Department of Immunology, University of Connecticut School of Medicine, Farmington, CT
| |
Collapse
|
24
|
Zhang Z, Liu L, Ma C, Chen W. A Computational Model of Cytokine Release Syndrome during CAR T-cell Therapy. ADVANCED THERAPEUTICS 2022; 5:2200130. [PMID: 36590643 PMCID: PMC9797206 DOI: 10.1002/adtp.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 01/05/2023]
Abstract
Cytokine release syndrome (CRS) is a lethal adverse event in chimeric antigen receptor (CAR) T-cell therapy, hindering this promising therapy for cancers, such as B-cell acute lymphoblastic leukemia (B-ALL). Clinical management of CRS requires a better understanding of its underlying mechanisms. In this study, a computational model of CRS during CAR T-cell therapy is built to depict how the cellular interactions among CAR T-cells, B-ALL cells, and bystander monocytes, as well as the accompanying molecular interactions among various inflammatory cytokines, influence the severity of CRS. The model successfully defines the factors related to severe CRS and studied the effects of immunomodulatory therapy on CRS. The use of the model is also demonstrated as a precision medicine tool to optimize the treatment scheme, including personalized choice of CAR T-cell products and control of switchable CAR T-cell activity, for a more efficient and safer immunotherapy. This new computational oncology model can serve as a precision medicine tool to guide the clinical management of CRS during CAR T cell therapy.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
25
|
Clinical Strategies for Enhancing the Efficacy of CAR T-Cell Therapy for Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14184452. [PMID: 36139611 PMCID: PMC9496667 DOI: 10.3390/cancers14184452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used for hematological malignancies, especially for relapsed/refractory B-cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Patients who have undergone conventional chemo-immunotherapy and have relapsed can achieve complete remission for several months with the infusion of CAR T-cells. However, side effects and short duration of response are still major barriers to further CAR T-cell therapy. To improve the efficacy, multiple targets, the discovery of new target antigens, and CAR T-cell optimization have been extensively studied. Nevertheless, the fact that the determination of the efficacy of CAR T-cell therapy is inseparable from the discussion of clinical application strategies has rarely been discussed. In this review, we will discuss some clinical application strategies, including lymphodepletion regimens, dosing strategies, combination treatment, and side effect management, which are closely related to augmenting and maximizing the efficacy of CAR T-cell therapy.
Collapse
|
26
|
Good Z, Spiegel JY, Sahaf B, Malipatlolla MB, Ehlinger ZJ, Kurra S, Desai MH, Reynolds WD, Wong Lin A, Vandris P, Wu F, Prabhu S, Hamilton MP, Tamaresis JS, Hanson PJ, Patel S, Feldman SA, Frank MJ, Baird JH, Muffly L, Claire GK, Craig J, Kong KA, Wagh D, Coller J, Bendall SC, Tibshirani RJ, Plevritis SK, Miklos DB, Mackall CL. Post-infusion CAR T Reg cells identify patients resistant to CD19-CAR therapy. Nat Med 2022; 28:1860-1871. [PMID: 36097223 PMCID: PMC10917089 DOI: 10.1038/s41591-022-01960-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 12/28/2022]
Abstract
Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4+Helios+ CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (TReg) cells. Validation cohort analysis upheld the link between higher CAR TReg cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR TReg cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.
Collapse
Affiliation(s)
- Zinaida Good
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Jay Y Spiegel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Meena B Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zach J Ehlinger
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sreevidya Kurra
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, MI, USA
| | - Moksha H Desai
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren D Reynolds
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Anita Wong Lin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Research Lab, Flow Cytometry Core Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Panayiotis Vandris
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Fang Wu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Snehit Prabhu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark P Hamilton
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - John S Tamaresis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul J Hanson
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Shabnum Patel
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Syncopation Life Sciences, San Mateo, CA, USA
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew J Frank
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - John H Baird
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, Division of Lymphoma, City of Hope National Medical Center, Duarte, CA, USA
| | - Lori Muffly
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Gursharan K Claire
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Craig
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Katherine A Kong
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA
| | - John Coller
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean C Bendall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J Tibshirani
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David B Miklos
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA.
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Mazzarella L, Enblad G, Olweus J, Malmberg KJ, Jerkeman M. Advances in immune therapies in hematological malignancies. J Intern Med 2022; 292:205-220. [PMID: 34624160 DOI: 10.1111/joim.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immunotherapy in cancer takes advantage of the exquisite specificity, potency, and flexibility of the immune system to eliminate alien tumor cells. It involves strategies to activate the entire immune defense, by unlocking mechanisms developed by tumor cells to escape from surrounding immune cells, as well as engineered antibody and cellular therapies. What is important to note is that these are therapeutics with curative potential. The earliest example of immune therapy is allogeneic stem cell transplantation, introduced in 1957, which is still an important modality in hematology, most notably in myeloid malignancies. In this review, we discuss developmental trends of immunotherapy in hematological malignancies, focusing on some of the strategies that we believe will have the most impact on future clinical practice in this field. In particular, we delineate novel developments for therapies that have already been introduced into the clinic, such as immune checkpoint inhibition and chimeric antigen receptor T-cell therapies. Finally, we discuss the therapeutic potential of emerging strategies based on T-cell receptors and adoptive transfer of allogeneic natural killer cells.
Collapse
Affiliation(s)
- Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology, Uppsala University, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Tan JY, Low MH, Chen Y, Lim FLWI. CAR T Cell Therapy in Hematological Malignancies: Implications of the Tumor Microenvironment and Biomarkers on Efficacy and Toxicity. Int J Mol Sci 2022; 23:ijms23136931. [PMID: 35805933 PMCID: PMC9266637 DOI: 10.3390/ijms23136931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has ushered in a new era in cancer treatment. Remarkable outcomes have been demonstrated in patients with previously untreatable relapsed/refractory hematological malignancies. However, optimizing efficacy and reducing the risk of toxicities have posed major challenges, limiting the success of this therapy. The tumor microenvironment (TME) plays an important role in CAR T cell therapy’s effectiveness and the risk of toxicities. Increasing research studies have also identified various biomarkers that can predict its effectiveness and risk of toxicities. In this review, we discuss the various aspects of the TME and biomarkers that have been implicated thus far and discuss the role of creating scoring systems that can aid in further refining clinical applications of CAR T cell therapy and establishing a safe and efficacious personalised medicine for individuals.
Collapse
|
29
|
Cao H, Sugimura R. Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells. Cancer Treat Res 2022; 183:255-274. [PMID: 35551663 DOI: 10.1007/978-3-030-96376-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have expanded the scope and therapeutic potential of anti-cancer therapy. Nevertheless, autologous CAR-T therapy has been challenging due to labor some manufacturing processes for every patient, and the cost due to the complexity of the process. Moreover, T cell dysfunction results from the immunosuppressive tumor microenvironment in certain patients. Considering technical challenges in autologous donors, the development of safe and efficient allogeneic CAR-T therapy will address these issues. Since the advent of the generation of immune cells from pluripotent stem cells (PSCs), numerous studies focus on the off-the-shelf generation of CAR-immune cells derived from the universal donor PSCs, which simplifies the manufacturing process and standardizes CAR-T products. In this review, we will discuss advances in the generation of immune cells from PSCs, together with the potential and perspectives of CAR-T, CAR-macrophages, and CAR-natural killer (NK) cells in cancer treatment. The combination of PSC-derived immune cells and CAR engineering will pave the way for developing next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Handi Cao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
31
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
32
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
33
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
34
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
35
|
Mi J, Xu J, Zhou J, Zhao W, Chen Z, Melenhorst JJ, Chen S. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15:783-804. [DOI: 10.1007/s11684-021-0904-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
|
36
|
Sun M, Xu P, Wang E, Zhou M, Xu T, Wang J, Wang Q, Wang B, Lu K, Wang C, Chen B. Novel two-chain structure utilizing KIRS2/DAP12 domain improves the safety and efficacy of CAR-T cells in adults with r/r B-ALL. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:96-106. [PMID: 34703879 PMCID: PMC8517091 DOI: 10.1016/j.omto.2021.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have been a promising therapy for hematologic malignancies. The optimization of CAR structure using different signaling domains can alter a wide range of CAR-T cell properties, including anti-tumor activity, long-term persistence, and safety. In this study, we developed a novel CAR structure based on KIRS2/Dap12 for B cell acute lymphoblastic leukemia (B-ALL) antigen CD19 and compared the anti-tumor efficacy and safety of this construct in transduced T cells with standard second-generation CAR-T cells targeting CD19 for B-ALL in vitro and in vivo and in adult relapsed/refractory (r/r) B-ALL patients. We discovered that KIRS2/Dap12 receptor infused with 4-1BB co-stimulation domain could enhance anti-tumor efficacy by remarkably increasing the production of pro-inflammatory interleukin-2 (IL-2), especially when co-cultured with antigen-positive tumor cells. In addition, CD19-KIRS2/Dap12-BB CAR-T cells showed the inspiring outcome that complete responses were seen in 4 of 4 (100%) patients without neurotoxicity and a high rate of severe cytokine release syndrome (CRS) after CAR-T infusion in a phase I clinical trial. Given these encouraging findings, CD19-KIRS2/Dap12-BB CAR-T cells are safe and can lead to clinical responses in adult patients with r/r B-ALL, indicating that further assessment of this therapy is warranted.
Collapse
Affiliation(s)
- Ming Sun
- Department of Oncology Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, PR China.,Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China.,Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nnajing 210008, PR China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, PR China.,Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise 533000, PR China.,The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, PR China
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jing Wang
- Jiangsu Runtian Pharmaceutical Chain Pharmacy Co., Ltd., Nanjing 210000, PR China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Kaihua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Research and Development, Nanjing Aide Institute of Immunotherapy, Nanjing 211808, PR China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| |
Collapse
|
37
|
Cienfuegos-Jimenez O, Vazquez-Garza E, Rojas-Martinez A. CAR-NK Cells for Cancer Therapy: Molecular Redesign of the Innate Antineoplastic Response. Curr Gene Ther 2021; 22:303-318. [PMID: 34923939 DOI: 10.2174/1566523222666211217091724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
The Chimeric Antigen Receptor (CAR) has arisen as a powerful synthetic biology-based technology with demonstrated versatility for implementation in T and NK cells. Despite CAR T cell successes in clinical trials, several challenges remain to be addressed regarding adverse events and long-term efficacy. NK cells present an attractive alternative with intrinsic advantages over T cells for treating solid and liquid tumors. Early preclinical and clinical trials suggest at least two major advantages: improved safety and an off-the-shelf application in patients due to its HLA independence. Due to the early stages of CAR NK translation to clinical trials, limited data is currently available. By analyzing these results, it seems that CAR NK cells could offer a reduced probability of Cytokine Release Syndrome (CRS) or Graft versus Host Disease (GvHD) in cancer patients, reducing safety concerns. Furthermore, NK cell therapy approaches may be boosted by combining it with immunological checkpoint inhibitors and by implementing genetic circuits to direct CAR-bearing cell behavior. This review provides a description of the CAR technology for modifying NK cells and the translation from preclinical studies to early clinical trials in this new field of immunotherapy.
Collapse
Affiliation(s)
- Oscar Cienfuegos-Jimenez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Eduardo Vazquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud. Monterrey, CP64710, Mexico
| |
Collapse
|
38
|
Lu YJ, Wheeler LW, Chu H, Kleindl PJ, Pugh M, You F, Rao S, Garcia G, Wu HY, da Cunha AP, Johnson R, Westrick E, Cross V, Lloyd A, Dircksen C, Klein PJ, Vlahov IR, Low PS, Leamon CP. Targeting folate receptor beta on monocytes/macrophages renders rapid inflammation resolution independent of root causes. CELL REPORTS MEDICINE 2021; 2:100422. [PMID: 34755134 PMCID: PMC8561236 DOI: 10.1016/j.xcrm.2021.100422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/18/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Provoked by sterile/nonsterile insults, prolonged monocyte mobilization and uncontrolled monocyte/macrophage activation can pose imminent or impending harm to the affected organs. Curiously, folate receptor beta (FRβ), with subnanomolar affinity for the vitamin folic acid (FA), is upregulated during immune activation in hematopoietic cells of the myeloid lineage. This phenomenon has inspired a strong interest in exploring FRβ-directed diagnostics/therapeutics. Previously, we have reported that FA-targeted aminopterin (AMT) therapy can modulate macrophage function and effectively treat animal models of inflammation. Our current investigation of a lead compound (EC2319) leads to discovery of a highly FR-specific mechanism of action independent of the root causes against inflammatory monocytes. We further show that EC2319 suppresses interleukin-6/interleukin-1β release by FRβ+ monocytes in a triple co-culture leukemic model of cytokine release syndrome with anti-CD19 chimeric antigen receptor T cells. Because of its chemical stability and metabolically activated linker, EC2319 demonstrates favorable pharmacokinetic characteristics and cross-species translatability to support future pre-clinical and clinical development. Functional folate receptor beta is transiently expressed on inflammatory monocytes EC2319 is an enhancement of traditional dihydrofolate reductase inhibitors EC2319 anti-monocyte activity correlates with local/systemic therapeutic benefit EC2319 inhibition of cytokine release suggests emergency use for hyperinflammation
Collapse
Affiliation(s)
- Yingjuan J Lu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Leroy W Wheeler
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Haiyan Chu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Paul J Kleindl
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Michael Pugh
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fei You
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Satish Rao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Gabriela Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Henry Y Wu
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Andre P da Cunha
- Department of Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Richard Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Elaine Westrick
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Vicky Cross
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Alex Lloyd
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Patrick J Klein
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Iontcho R Vlahov
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Philip S Low
- Department of Chemistry, Purdue Institute for Drug Discovery, and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
39
|
Chimeric antigen receptor T-cell therapy: An emergency medicine focused review. Am J Emerg Med 2021; 50:369-375. [PMID: 34461398 DOI: 10.1016/j.ajem.2021.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Several novel cancer therapies have been recently introduced, each with complications that differ from chemotherapy and radiation. OBJECTIVE This narrative review discusses complications associated with chimeric antigen receptor (CAR) T-cell therapy for emergency clinicians. DISCUSSION Novel immune-based cancer therapies including CAR T-cell therapy have improved the care of patients with malignancy, primarily lymphoma and leukemia. However, severe complications may arise, including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). CRS is associated with excessive cytokine release that results in severe end organ injury. Patients present with fever and a range of symptoms based on the affected organs. Grading is determined by the need for cardiopulmonary intervention, while management focuses on resuscitation, evaluation for other concomitant conditions, and treatment with tocilizumab or steroids. ICANS is also associated with cytokine release, causing patients to present with a variety of neurologic features. A grading system is available for ICANS based on feature severity. Management is supportive with steroids. Other complications of CAR T-cell therapy include infusion reactions, hypogammaglobulinemia, tumor lysis syndrome, cytopenias, cardiac toxicity, and graft-versus-host disease. CONCLUSIONS Knowledge of this novel cancer therapy class and the potential complications can improve the care of these patients in the emergency department setting.
Collapse
|
40
|
Zheng Y, Li Y, Feng J, Li J, Ji J, Wu L, Yu Q, Dai W, Wu J, Zhou Y, Guo C. Cellular based immunotherapy for primary liver cancer. J Exp Clin Cancer Res 2021; 40:250. [PMID: 34372912 PMCID: PMC8351445 DOI: 10.1186/s13046-021-02030-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer (PLC) is a common malignancy with high morbidity and mortality. Poor prognosis and easy recurrence on PLC patients calls for optimizations of the current conventional treatments and the exploration of novel therapeutic strategies. For most malignancies, including PLC, immune cells play crucial roles in regulating tumor microenvironments and specifically recognizing tumor cells. Therefore, cellular based immunotherapy has its instinctive advantages in PLC therapy as a novel therapeutic strategy. From the active and passive immune perspectives, we introduced the cellular based immunotherapies for PLC in this review, covering both the lymphoid and myeloid cells. Then we briefly review the combined cellular immunotherapeutic approaches and the existing obstacles for PLC treatment.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai, 200060, China.
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
41
|
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell Oncol (Dordr) 2021; 44:495-523. [PMID: 33759063 DOI: 10.1007/s13402-021-00593-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cell therapy has shown great potential in the immunotherapy of patients with hematologic malignancies. In spite of this striking achievement, there are still major challenges to overcome in CAR T cell therapy of solid tumors, including treatment-related toxicity and specificity. Also, other obstacles may be encountered in tackling solid tumors, such as their immunosuppressive microenvironment, the heterogeneous expression of cell surface markers, and the cumbersome arrival of T cells at the tumor site. Although several strategies have been developed to overcome these challenges, aditional research aimed at enhancing its efficacy with minimum side effects, the design of precise yet simplified work flows and the possibility to scale-up production with reduced costs and related risks is still warranted. CONCLUSIONS Here, we review main strategies to establish a balance between the toxicity and activity of CAR T cells in order to enhance their specificity and surpass immunosuppression. In recent years, many clinical studies have been conducted that eventually led to approved products. To date, the FDA has approved two anti-CD19 CAR T cell products for non-Hodgkin lymphoma therapy, i.e., axicbtagene ciloleucel and tisagenlecleucel. With all the advances that have been made in the field of CAR T cell therapy for hematologic malignancies therapy, ongoing studies are focused on optimizing its efficacy and specificity, as well as reducing the side effects. Also, the efforts are poised to broaden CAR T cell therapeutics for other cancers, especially solid tumors.
Collapse
Affiliation(s)
- Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv 2021; 4:4898-4911. [PMID: 33035333 DOI: 10.1182/bloodadvances.2020002394] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
ZUMA-1 demonstrated a high rate of durable response and a manageable safety profile with axicabtagene ciloleucel (axi-cel), an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in patients with refractory large B-cell lymphoma. As previously reported, prespecified clinical covariates for secondary end point analysis were not clearly predictive of efficacy; these included Eastern Cooperative Oncology Group performance status (0 vs 1), age, disease subtype, disease stage, and International Prognostic Index score. We interrogated covariates included in the statistical analysis plan and an extensive panel of biomarkers according to an expanded translational biomarker plan. Univariable and multivariable analyses indicated that rapid CAR T-cell expansion commensurate with pretreatment tumor burden (influenced by product T-cell fitness), the number of CD8 and CCR7+CD45RA+ T cells infused, and host systemic inflammation, were the most significant determining factors for durable response. Key parameters differentially associated with clinical efficacy and toxicities, with both theoretical and practical implications for optimizing CAR T-cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT02348216.
Collapse
|
43
|
Blache U, Weiss R, Boldt A, Kapinsky M, Blaudszun AR, Quaiser A, Pohl A, Miloud T, Burgaud M, Vucinic V, Platzbecker U, Sack U, Fricke S, Koehl U. Advanced Flow Cytometry Assays for Immune Monitoring of CAR-T Cell Applications. Front Immunol 2021; 12:658314. [PMID: 34012442 PMCID: PMC8127837 DOI: 10.3389/fimmu.2021.658314] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR)-T cells has achieved successful remissions in refractory B-cell leukemia and B-cell lymphomas. In order to estimate both success and severe side effects of CAR-T cell therapies, longitudinal monitoring of the patient's immune system including CAR-T cells is desirable to accompany clinical staging. To conduct research on the fate and immunological impact of infused CAR-T cells, we established standardized 13-colour/15-parameter flow cytometry assays that are suitable to characterize immune cell subpopulations in the peripheral blood during CAR-T cell treatment. The respective staining technology is based on pre-formulated dry antibody panels in a uniform format. Additionally, further antibodies of choice can be added to address specific clinical or research questions. We designed panels for the anti-CD19 CAR-T therapy and, as a proof of concept, we assessed a healthy individual and three B-cell lymphoma patients treated with anti-CD19 CAR-T cells. We analyzed the presence of anti-CD19 CAR-T cells as well as residual CD19+ B cells, the activation status of the T-cell compartment, the expression of co-stimulatory signaling molecules and cytotoxic agents such as perforin and granzyme B. In summary, this work introduces standardized and modular flow cytometry assays for CAR-T cell clinical research, which could also be adapted in the future as quality controls during the CAR-T cell manufacturing process.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ronald Weiss
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Michael Kapinsky
- Beckman Coulter Life Sciences GmbH, Flow Cytometry Business Unit, Krefeld, Germany
| | | | - Andrea Quaiser
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Annabelle Pohl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Tewfik Miloud
- Beckman Coulter Life Sciences, Flow Cytometry R&D, Marseille, France
| | - Mégane Burgaud
- Beckman Coulter Life Sciences, Flow Cytometry R&D, Marseille, France
| | - Vladan Vucinic
- Medical Faculty, Department of Hematology and Cell Therapy, University of Leipzig, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Faculty, Department of Hematology and Cell Therapy, University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Azoulay É, Castro P, Maamar A, Metaxa V, de Moraes AG, Voigt L, Wallet F, Klouche K, Picard M, Moreau AS, Van De Louw A, Seguin A, Mokart D, Chawla S, Leroy J, Böll B, Issa N, Levy B, Hemelaar P, Fernandez S, Munshi L, Bauer P, Schellongowski P, Joannidis M, Moreno-Gonzalez G, Galstian G, Darmon M, Valade S. Outcomes in patients treated with chimeric antigen receptor T-cell therapy who were admitted to intensive care (CARTTAS): an international, multicentre, observational cohort study. LANCET HAEMATOLOGY 2021; 8:e355-e364. [PMID: 33894170 DOI: 10.1016/s2352-3026(21)00060-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy can induce side-effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS), which often require intensive care unit admission. The aim of this study was to describe management of critically ill CAR T-cell recipients in intensive care. METHODS This international, multicentre, observational cohort study was done in 21 intensive care units in France, Spain, the USA, the UK, Russia, Canada, Germany, and Austria. Eligible patients were aged 18 years or older; had received CAR T-cell therapy in the past 30 days; and had been admitted to intensive care for any reason. Investigators retrospectively included patients admitted between Feb 1, 2018, and Feb 1, 2019, and prospectively included patients admitted between March 1, 2019, and Feb 1, 2020. Demographic, clinical, laboratory, treatment, and outcome data were extracted from medical records. The primary endpoint was 90-day mortality. Factors associated with mortality were identified using a Cox proportional hazard model. FINDINGS 942 patients received CAR T-cell therapy, of whom 258 (27%) required admission to intensive care and 241 (26%) were included in the analysis. Admission to intensive care was needed within median 4·5 days (IQR 2·0-7·0) of CAR T-cell infusion. 90-day mortality was 22·4% (95% CI 17·1-27·7; 54 deaths). At initial evaluation on admission, isolated cytokine release syndrome was identified in 101 patients (42%), cytokine release syndrome and ICANS in 93 (39%), and isolated ICANS in seven (3%) patients. Grade 3-4 cytokine release syndrome within 1 day of admission to intensive care was found in 50 (25%) of 200 patients and grade 3-4 ICANS in 38 (35%) of 108 patients. Bacterial infection developed in 30 (12%) patients. Life-saving treatments were used in 75 (31%) patients within 24 h of admission to intensive care, primarily vasoactive drugs in 65 (27%) patients. Factors independently associated with 90-day mortality by multivariable analysis were frailty (hazard ratio 2·51 [95% CI 1·37-4·57]), bacterial infection (2·12 [1·11-4·08]), and lifesaving therapy within 24 h of admission (1·80 [1·05-3·10]). INTERPRETATION Critical care management is an integral part of CAR T-cell therapy and should be standardised. Studies to improve infection prevention and treatment in these high-risk patients are warranted. FUNDING Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique.
Collapse
Affiliation(s)
- Élie Azoulay
- Critical Care Department, APHP, Hôpital Saint-Louis, University of Paris, Paris, France.
| | - Pedro Castro
- Medical Intensive Care Unit, Hospital Clínic of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Adel Maamar
- Critical Care and Infectious Diseases Department, Rennes University Hospital, Rennes, France; INSERM CIC-1414, Faculté de Médecine, Université Rennes 1, Rennes, France
| | - Victoria Metaxa
- Department of Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Louis Voigt
- Department of Anesthesiology, Pain, and Critical Care Medicine, Memorial Sloan Kettering Cancer Centre, New York City, NY, USA; Department of Anesthesiology, Weill Cornell Medical College, New York City, NY, USA
| | - Florent Wallet
- Critical Care Department, HCL, Hôpital Lyon Sud, University of Lyon, Lyon, France
| | - Kada Klouche
- Critical Care Department, Hôpital Lapeyronie, University of Montpellier, Montpellier, France
| | - Muriel Picard
- Critical Care Department, Institut Universitaire du Cancer de Toulouse-Oncopole, University Teaching Hospital of Toulouse, Toulouse, France
| | - Anne-Sophie Moreau
- Critical Care Department, Lille University Salengro Hospital, Lille, France
| | - Andry Van De Louw
- Division of Pulmonary and Critical Care Medicine, Penn State Health Milton S Hershey Medical Centre, Hershey, PA, USA
| | - Amélie Seguin
- Critical Care Department, Nantes University Hospital, Nantes, France
| | - Djamel Mokart
- Critical Care Department, Institut Paoli-Calmettes, Marseille, France
| | - Sanjay Chawla
- Department of Anesthesiology, Pain, and Critical Care Medicine, Memorial Sloan Kettering Cancer Centre, New York City, NY, USA; Department of Anesthesiology, Weill Cornell Medical College, New York City, NY, USA
| | - Julien Leroy
- Critical Care Department, APHP, Hôpital Saint-Louis, University of Paris, Paris, France
| | - Boris Böll
- Department I of Internal Medicine, Haematology and Oncology, Intensive Care Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Dusseldorf, University of Cologne, Cologne, Germany
| | - Nahema Issa
- Critical Care Department, Hôpital Saint-André, University of Bordeaux, Bordeaux, France
| | - Bruno Levy
- Service de Médecine Intensive et Réanimation Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, Vandoeuvre-les-Nancy, INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, France
| | - Pleun Hemelaar
- Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - Philippe Bauer
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter Schellongowski
- Intensive Care Unit 13i2, Department of Medicine I, Medical University of Vienna, Centre of Excellence of Medical Intensive Care (CEMIC), Vienna, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Gabriel Moreno-Gonzalez
- Intensive Care Unit, Bellvitge University Hospital, Catalan Institute of Oncology L'Hospitalet, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Gennadii Galstian
- Department of Intensive Care of the National Research Centre for Haematology, Moscow Russia
| | - Michael Darmon
- Critical Care Department, APHP, Hôpital Saint-Louis, University of Paris, Paris, France
| | - Sandrine Valade
- Critical Care Department, APHP, Hôpital Saint-Louis, University of Paris, Paris, France
| | | |
Collapse
|
45
|
Hossain NM, Stiff PJ. Expanding the Toolbox of Adoptive Cell Immunotherapy. J Clin Oncol 2021; 39:1479-1482. [PMID: 33764792 DOI: 10.1200/jco.21.00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nasheed M Hossain
- Division of Hematology-Oncology, Department of Medicine, Loyola University Stritch School of Medicine, Maywood, IL
| | - Patrick J Stiff
- Division of Hematology-Oncology, Department of Medicine, Loyola University Stritch School of Medicine, Maywood, IL
| |
Collapse
|
46
|
Sarivalasis A, Morotti M, Mulvey A, Imbimbo M, Coukos G. Cell therapies in ovarian cancer. Ther Adv Med Oncol 2021; 13:17588359211008399. [PMID: 33995591 PMCID: PMC8072818 DOI: 10.1177/17588359211008399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most important cause of gynecological cancer-related mortality. Despite improvements in medical therapies, particularly with the incorporation of drugs targeting homologous recombination deficiency, EOC survival rates remain low. Adoptive cell therapy (ACT) is a personalized form of immunotherapy in which autologous lymphocytes are expanded, manipulated ex vivo, and re-infused into patients to mediate cancer rejection. This highly promising novel approach with curative potential encompasses multiple strategies, including the adoptive transfer of tumor-infiltrating lymphocytes, natural killer cells, or engineered immune components such as chimeric antigen receptor (CAR) constructs and engineered T-cell receptors. Technical advances in genomics and immuno-engineering have made possible neoantigen-based ACT strategies, as well as CAR-T cells with increased cell persistence and intratumoral trafficking, which have the potential to broaden the opportunity for patients with EOC. Furthermore, dendritic cell-based immunotherapies have been tested in patients with EOC with modest but encouraging results, while the combination of DC-based vaccination as a priming modality for other cancer therapies has shown encouraging results. In this manuscript, we provide a clinically oriented historical overview of various forms of cell therapies for the treatment of EOC, with an emphasis on T-cell therapy.
Collapse
Affiliation(s)
- Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Arthur Mulvey
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Martina Imbimbo
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- CHUV, Rue du Bugnon 46, Lausanne BH09-701, Switzerland
| |
Collapse
|
47
|
CAR-T in Cancer Treatment: Develop in Self-Optimization, Win-Win in Cooperation. Cancers (Basel) 2021; 13:cancers13081955. [PMID: 33921581 PMCID: PMC8072891 DOI: 10.3390/cancers13081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T cell therapy has exhibited good application prospects in the treatment of hematologic malignancies. However, there are still many unsolved problems, such as the limited antitumor effect of CAR-T on solid tumors and the potential risk of CAR-T therapy in clinical applications. In order to meet these challenges, more and more solutions are proposed. Therefore, in this review, we have discussed the recent breakthroughs in CAR-T therapy for cancer treatment, with an emphasis on the potentially effective CAR-T modifications and combined strategies. Abstract Despite remarkable achievements in the treatment of hematologic malignancies, chimeric antigen receptor (CAR)-T cell therapy still faces many obstacles. The limited antitumor activity and persistence of infused CAR-T cells, especially in solid tumors, are the main limiting factors for CAR-T therapy. Moreover, clinical security and accessibility are important unmet needs for the application of CAR-T therapy. In view of these challenges, many potentially effective solutions have been proposed and confirmed. Both the independent and combined strategies of CAR-T therapy have exhibited good application prospects. Thus, in this review, we have discussed the cutting-edge breakthroughs in CAR-T therapy for cancer treatment, with the aim of providing a reference for addressing the current challenges.
Collapse
|
48
|
Hong R, Hu Y, Huang H. Biomarkers for Chimeric Antigen Receptor T Cell Therapy in Acute Lymphoblastic Leukemia: Prospects for Personalized Management and Prognostic Prediction. Front Immunol 2021; 12:627764. [PMID: 33717147 PMCID: PMC7947199 DOI: 10.3389/fimmu.2021.627764] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a breakthrough in immunotherapy with the potential of ushering in a new era in cancer treatment. Remarkable therapeutic response and complete remission of this innovative management have been observed in patients with relapse/refractory acute lymphoblastic leukemia. With CAR-T cell therapy becoming widely used both in multicenter clinical trials and as a commercial treatment, therapeutic efficacy monitoring and management of toxicities will be indispensable for ensuring safety and improving overall survival. Biomarkers can act not only as effective indicators reflecting patients' baseline characteristics, CAR-T cell potency, and the immune microenvironment, but can also assess side effects during treatment. In this review, we will elaborate on a series of biomarkers associated with therapeutic response as well as treatment-related toxicities, and present their current condition and latent value with respect to the clinical utility. The combination of biomarker research and CAR-T cell therapy will contribute to establishing a safer and more powerful monitoring system and prolonging the event-free survival of patients.
Collapse
Affiliation(s)
- Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
49
|
Li H, Yang C, Cheng H, Huang S, Zheng Y. CAR-T cells for Colorectal Cancer: Target-selection and strategies for improved activity and safety. J Cancer 2021; 12:1804-1814. [PMID: 33613769 PMCID: PMC7890323 DOI: 10.7150/jca.50509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell immunotherapy is a novel method that is genetically engineered to recruit T cells against malignant disease. Administration of CAR-T cells has led to progress in hematological malignancies, and it has been proposed for solid tumors like colorectal cancer (CRC) for years. However, this method was not living up to expectations for the intrinsic challenges posed to CAR-T cells by solid tumors, which mainly due to the lacking of tumor-restricted antigens and adverse effects following treatment. New approaches are proposed to overcome the multiple challenges to alleviate the difficult situation of CAR-T cells in CRC, including engineering T cells with immune-activating molecules, regional administration of T cell, bispecific T cell engager, and combinatorial target-antigen recognition. In this review, we sum up the current stage of knowledge about target-selection, adverse events like on/off-tumor toxicity, the preclinical and clinical studies of CAR-T therapy, and the characteristics of strategies applied in CRC.
Collapse
Affiliation(s)
- Huali Li
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chao Yang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huangrong Cheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuoyang Huang
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongbin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
50
|
Zhou X, Rasche L, Kortüm KM, Danhof S, Hudecek M, Einsele H. Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies. Front Immunol 2021; 11:620312. [PMID: 33424871 PMCID: PMC7793717 DOI: 10.3389/fimmu.2020.620312] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratutumab have brought the treatment of multiple myeloma (MM) into the new era of immunotherapy. More recently, chimeric antigen receptor (CAR) modified T cell, a novel cellular immunotherapy, has been developed for treatment of relapsed/refractory (RR) MM, and early phase clinical trials have shown promising efficacy of CAR T cell therapy. Many patients with end stage RRMM regard CAR T cell therapy as their “last chance” and a “hope of cure”. However, severe adverse events (AEs) and even toxic death related to CAR T cell therapy have been observed. The management of AEs related to CAR T cell therapy represents a new challenge, as the pathophysiology is not fully understood and there is still no well-established standard of management. With regard to CAR T cell associated toxicities in MM, in this review, we will provide an overview of experience from clinical trials, pathophysiology, and management strategies.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|