1
|
Ma XH, Gao MG, Cheng RQ, Qin YZ, Duan WB, Jiang H, Huang XJ, Zhao XS. The expression level of EVI1 and clinical features help to distinguish prognostic heterogeneity in the AML entity with EVI1 overexpression. Cancer Lett 2025; 615:217547. [PMID: 39956382 DOI: 10.1016/j.canlet.2025.217547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Acute myeloid leukemia (AML) with 3q26 rearrangements results in a poor prognosis and typically causes ecotropic viral integration site1 (EVI1) overexpression (EVI1oe); however, many AML patients with EVI1oe have undetected 3q26 rearrangements. The aim of this study was to restratify AML patients with EVI1oe. We retrospectively reviewed the diagnostic outcomes of 1327 patients tested at our institute from November 2015 to December 2022. A total of 468 de novo AML patients were included, with 191 classified as EVI1oe. Eighteen AML patients with EVI1oe had detectable 3q26 rearrangements and had significantly greater EVI1 expression levels than those without rearrangements. A new cutoff value for EVI1oe in AML patients of 122 % was determined using the ROC curve based on overall survival (OS) and effectively distinguished the prognosis of EVI1oe AML patients without detectable 3q26 rearrangements (p = 0.0051 and 0.0039, respectively). Using this cutoff value, ELN stratification, transplantation status, response to induction therapy, and bone marrow blast percentage, we constructed a nomogram model (C-index = 0.808). This model was used to stratify patients into two risk subgroups, with the low-risk subgroup showing better OS than the high-risk subgroup did (p < 0.001 in the training cohort; p = 0.002 in the validation cohort). In conclusion, AML patients with EVI1oe have heterogeneous prognoses. The use of EVI1 expression levels in combination with other risk factors may enable accurate prognostic stratification of AML patients with EVI1oe.
Collapse
MESH Headings
- Humans
- MDS1 and EVI1 Complex Locus Protein/genetics
- MDS1 and EVI1 Complex Locus Protein/metabolism
- Male
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Female
- Middle Aged
- Prognosis
- Retrospective Studies
- Aged
- Adult
- Biomarkers, Tumor/genetics
- Gene Rearrangement
- Chromosomes, Human, Pair 3/genetics
- Nomograms
- Young Adult
Collapse
Affiliation(s)
- Xiao-Hang Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Rong-Qi Cheng
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Wen-Bing Duan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
2
|
Zhang LN, Li JX, Wang Z, Yang L, Chen Z, Tao F, Wu S, Lu WJ, Sun M, Qi SS, Zheng ZZ, Xiong H. Clinical significance of dynamic monitoring of EVI1 gene expression in pediatric acute myeloid leukemia. BMC Pediatr 2024; 24:802. [PMID: 39643863 PMCID: PMC11622451 DOI: 10.1186/s12887-024-05243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Abstract
OBJECTIVE To investigate the clinical significance of dynamic monitoring ecotropic virus integration site-1 (EVI1) expression in childhood acute myeloid leukemia (AML). METHODS A retrospective analysis was conducted on 113 pediatric AML patients of Wuhan Children's Hospital from 2014 to 2022. The correlation between EVI1 expression levels and clinical indicators including clinical characteristics, first complete remission (CR1), relapse, and overall survival (OS) was analyzed. Receiver operating characteristic (ROC) curve analysis was carried out to comprehend the influence of EVI1 expression on relapse. RESULTS A total of 78 AML children with EVI1 expression at initial diagnosis were eligible, divided into EVI1-positive (EVI1high) and EVI1-negative (EVI1low) groups. FAB classification (P = 0.047) and abnormal karyotype (P = 0.009) showed significant differences between the two groups. The proportion of EVI1high in individuals with complex and/or monomeric karyotypes was significantly higher than in other cases (P = 0.032). When completing the first induction therapy, the EVI1high group showed a significantly lower CR1 rate than the EVI1low group (P = 0.015). Among 51 cases with EVI1 expression dynamically monitored, those with EVI1 overexpression more than twice had significantly shorter OS (P < 0.05). Among 19 non-HSCT patients undergoing three EVI1 assessments during induction therapy, those with EVI1 overexpression over once had higher relapse rates (P = 0.045). In addition, EVI1 expression level ≥ 83.38% significantly predicted relapse (AUC = 0.833). CONCLUSION Aberrantly high expression of EVI1 in pediatric AML was associated with poor prognosis. Continuous and dynamic monitoring of EVI1 expression promotes prognostic evaluation. We add some insights into the impact of EVI1 on the AML patients' OS and survival.
Collapse
Affiliation(s)
- Lan-Nan Zhang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Jian-Xin Li
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhuo Wang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Li Yang
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhi Chen
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Fang Tao
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Sha Wu
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Wen-Jie Lu
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Ming Sun
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Shan-Shan Qi
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Zhong-Zheng Zheng
- Shanghai Tissuebank Biotechnology Co., Ltd, Shanghai, 201318, China.
| | - Hao Xiong
- Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| |
Collapse
|
3
|
Li J, Zong S, Wan Y, Ruan M, Zhang L, Yang W, Chen X, Zou Y, Chen Y, Guo Y, Wu P, Zhang Y, Zhu X. Integration of Transcriptomic Features to Improve Prognosis Prediction of Pediatric Acute Myeloid Leukemia With KMT2A Rearrangement. Hemasphere 2023; 7:e979. [PMID: 38026790 PMCID: PMC10666994 DOI: 10.1097/hs9.0000000000000979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Lysine methyltransferase 2A-rearranged acute myeloid leukemia (KMT2A-r AML) is a special entity in the 2022 World Health Organization classification of myeloid neoplasms, characterized by high relapse rate and adverse outcomes. Current risk stratification was established on the treatment response and translocation partner of KMT2A. To study the transcriptomic feature and refine the current stratification of pediatric KMT2A-r AML, we analyzed clinical and RNA sequencing data of 351 patients. By implementing least absolute shrinkage and selection operator algorithm, we identified 7 genes (KIAA1522, SKAP2, EGFL7, GAB2, HEBP1, FAM174B, and STARD8) of which the expression levels were strongly associated with outcomes. We then developed a transcriptome-based score, dividing patients into 2 groups with distinct gene expression patterns and prognosis, which was further validated in an independent cohort and outperformed the LSC17 score. We also found cell cycle, oxidative phosphorylation, and metabolism pathways were upregulated in patients with inferior outcomes. By integrating clinical characteristics, we proposed a simple-to-use prognostic scoring system with excellent discriminability, which allowed us to distinguish allogeneic hematopoietic stem cell transplantation candidates more precisely. In conclusion, pediatric KMT2A-r AML is heterogenous on transcriptomic level and the newly proposed scoring system combining clinical characteristics and transcriptomic features can be instructive in clinical routines.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Suyu Zong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Ruan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Peng Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Liu XX, Pan XA, Gao MG, Kong J, Jiang H, Chang YJ, Zhang XH, Wang Y, Liu KY, Chen Z, Zhao XS, Huang XJ. The adverse impact of ecotropic viral integration site-1 (EVI1) overexpression on the prognosis of acute myeloid leukemia with KMT2A gene rearrangement in different risk stratification subtypes. Int J Lab Hematol 2023; 45:195-203. [PMID: 36358022 DOI: 10.1111/ijlh.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION AML patients with KMT2A-MLLT3 and other 11q23 abnormalities belong to the intermediate and high-risk level groups, respectively. Whether the poor prognostic value of Ecotropic Viral Integration site-1 (EVI1) overexpression suits either the subtypes of KMT2A-MLLT3 or Non-KMT2A-MLLT3 AML patients (intermediate and high risk group) needs to be further investigated. METHODS We retrospectively analyzed the clinical characteristics of 166 KMT2A-r and KMT2A-PTD AML patients. RESULTS For the Non-KMT2A-MLLT3 group, patients in the EVI1-high subgroup had shorter OS and DFS and higher CIR than those in the EVI1-low subgroup (p = .027, p = .018, and p = .020, respectively). Additionally, both KMT2A-MLLT3 and Non-KMT2A-MLLT3 patients who received chemotherapy alone had poorer prognosis than patients who also received allogeneic hematopoietic stem cell transplant (allo-HSCT) regardless of their EVI1 expression level (all p < .001). For transplanted patients with KMT2A-MLLT3 or Non-KMT2A-MLLT3 rearrangement, the EVI1-high subgroup had worse prognosis than the EVI1-low subgroup (all p < .05). The 2-year CIR of the KMT2A-MLLT3 and Non-KMT2A-MLLT3 groups with high EVI1 expression was high (52% and 49.6%, respectively). However, for patients with low EVI1 expression, the 2-year CIR of transplanted patients with KMT2A-MLLT3 and Non-KMT2A-MLLT3 was relatively low. CONCLUSIONS Our study showed that for the Non-KMT2A-MLLT3 group, the EVI1-high group had shorter OS and DFS than the EVI1-low group. High EVI1 expression showed an adverse effect in AML with KMT2A rearrangement in different risk stratification subtypes. For the EVI1-high patients with non-KMT2A-MLLT3 rearrangement, other novel regimens towards relapse should be taken into consideration.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhong Chen
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Beijing Hightrust Diagnostics, Co., Ltd, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
5
|
Bai L, Zhang YZ, Yan CH, Wang Y, Xu LP, Zhang XH, Zhang LP, Huang XJ, Cheng YF. Outcomes of allogeneic haematopoietic stem cell transplantation for paediatric patients with MLL-rearranged acute myeloid leukaemia. BMC Cancer 2022; 22:896. [PMID: 35974319 PMCID: PMC9382754 DOI: 10.1186/s12885-022-09978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The presence of mixed-lineage leukaemia rearrangement (MLL-r) in paediatric patients with acute myeloid leukaemia (AML) is a poor prognostic predictor. Whether allogeneic haematopoietic stem cell transplantation (allo-HSCT) is beneficial in such cases remains unclear. Methods We evaluated the outcomes and prognostic factors of allo-HSCT in 44 paediatric patients with MLL-r AML in the first complete remission (CR1) between 2014 and 2019 at our institution. Results For all the 44 patients, the 3-year overall survival (OS), event-free survival (EFS), and cumulative incidence of relapse (CIR) were 74.5%, 64.1%, and 29.1%, respectively. Among them, 37 (84.1%) patients received haploidentical (haplo)-HSCT, and the 3-year OS, EFS, and CIR were 73.0%, 65.6%, and 26.4%, respectively. The 100-day cumulative incidence of grade II–IV acute graft-versus-host disease (aGVHD) post-transplantation was 27.3%, and that of grade III–IV aGVHD was 15.9%. The overall 3-year cumulative incidence of chronic graft-versus-host disease (cGVHD) post-transplantation was 40.8%, and that of extensive cGVHD was 16.7%. Minimal residual disease (MRD)-positive (MRD +) status pre-HSCT was significantly associated with lower survival and higher risk of relapse. The 3-year OS, EFS, and CIR differed significantly between patients with MRD + pre-HSCT (n = 15; 48.5%, 34.3% and 59%) and those with MRD-pre-HSCT (n = 29; 89.7%, 81.4% and 11.7%). Pre-HSCT MRD + status was an independent risk factor in multivariate analysis. Conclusions Allo-HSCT (especially haplo-HSCT) can be a viable strategy in these patients, and pre-HSCT MRD status significantly affected the outcomes.
Collapse
Affiliation(s)
- Lu Bai
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yong-Zhan Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Chen-Hua Yan
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yu Wang
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Lan-Ping Xu
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yi-Fei Cheng
- Department of Hematology, Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|