1
|
Chakraborty S, Gupta AK, Gupta N, Meena JP, Seth R, Kabra M. Hematopoietic Stem Cell Transplantation for Storage Disorders: Present Status. Indian J Pediatr 2024; 91:830-838. [PMID: 38639861 DOI: 10.1007/s12098-024-05110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Storage disorders are a group of inborn errors of metabolism caused by the defective activity of lysosomal enzymes or transporters. All of these disorders have multisystem involvement with variable degrees of neurological features. Neurological manifestations are one of the most difficult aspects of treatment concerning these diseases. The available treatment modalities for some of these disorders include enzyme replacement therapy, substrate reduction therapy, hematopoietic stem cell transplantation (HSCT) and the upcoming gene therapies. As a one-time intervention, the economic feasibility of HSCT makes it an attractive option for treating these disorders, especially in lower and middle-income countries. Further, improvements in peri-transplantation medical care, better conditioning regimens and better supportive care have improved the outcomes of patients undergoing HSCT. In this review, we discuss the current evidence for HSCT in various storage disorders and its suitability as a mode of therapy for the developing world.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
2
|
Rintz E, Banacki M, Ziemian M, Kobus B, Wegrzyn G. Causes of death in mucopolysaccharidoses. Mol Genet Metab 2024; 142:108507. [PMID: 38815294 DOI: 10.1016/j.ymgme.2024.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Mucopolysaccharidoses are inherited metabolic diseases caused by mutations in genes encoding enzymes required for degradation of glycosaminoglycans. A lack or severe impairment of activity of these enzymes cause accumulation of GAGs which is the primary biochemical defect. Depending on the kind of the deficient enzyme, there are 12 types and subtypes of MPS distinguished. Despite the common primary metabolic deficit (inefficient GAG degradation), the course and symptoms of various MPS types can be different, though majority of the diseases from the group are characterized by severe symptoms and significantly shortened live span. Here, we analysed the frequency of specific, direct causes of death of patients with different MPS types, the subject which was not investigated comprehensively to date. We examined a total of 1317 cases of death among MPS patients, including 393 cases of MPS I, 418 cases of MPS II, 232 cases of MPS III, 45 cases of MPS IV, 208 cases of MPS VI, and 22 cases of MPS VII. Our analyses indicated that the most frequent causes of death differ significantly between MPS types, with cardiovascular and respiratory failures being predominant in MPS I, MPS II, and MPS VI, neurological deficits in MPS III, respiratory issues in MPS IV, and hydrops fetalis in MPS VII. Results of such studies suggest what specific clinical problems should be considered with the highest priority in specific MPS types, apart from attempts to correct the primary causes of the diseases, to improve the quality of life of patients and to prolong their lives.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland.
| | - Marcin Banacki
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Maja Ziemian
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Barbara Kobus
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| | - Grzegorz Wegrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Begley D, Gabathuler R, Pastores G, Garcia-Cazorla A, Ardigò D, Scarpa M, Tomanin R, Tosi G. Challenges and opportunities in neurometabolic disease treatment with enzyme delivery. Expert Opin Drug Deliv 2024; 21:817-828. [PMID: 38963225 DOI: 10.1080/17425247.2024.2375388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.
Collapse
Affiliation(s)
- David Begley
- Blood-Brain Barrier Group, King's College London, Strand, London, UK
| | | | | | - Angeles Garcia-Cazorla
- Neurometabolic Unit. Department of Neurology, Hospital Sant Joan de Déu, CIBERER and MetabERN, Barcelona, Spain
| | | | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Dept. of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giovanni Tosi
- Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Consiglieri G, Tucci F, De Pellegrin M, Guerrini B, Cattoni A, Risca G, Scarparo S, Sarzana M, Pontesilli S, Mellone R, Gasperini S, Galimberti S, Silvani P, Filisetti C, Darin S, Forni G, Miglietta S, Santi L, Facchini M, Corti A, Fumagalli F, Cicalese MP, Calbi V, Migliavacca M, Barzaghi F, Ferrua F, Gallo V, Recupero S, Canarutto D, Doglio M, Tedesco L, Volpi N, Rovelli A, la Marca G, Valsecchi MG, Zancan S, Ciceri F, Naldini L, Baldoli C, Parini R, Gentner B, Aiuti A, Bernardo ME. Early skeletal outcomes after hematopoietic stem and progenitor cell gene therapy for Hurler syndrome. Sci Transl Med 2024; 16:eadi8214. [PMID: 38691622 DOI: 10.1126/scitranslmed.adi8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.
Collapse
Affiliation(s)
- Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | | | | | - Alessandro Cattoni
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Giulia Risca
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Stefano Scarparo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Marina Sarzana
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Silvia Pontesilli
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renata Mellone
- Radiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gasperini
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Units of Neurology and Neurophysiology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Silvani
- Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Filisetti
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giulia Forni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Simona Miglietta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Marcella Facchini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Francesca Fumagalli
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Salvatore Recupero
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Daniele Canarutto
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Matteo Doglio
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Lucia Tedesco
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Laboratory of Biochemistry and Glycobiology, 41125 Modena, Italy
| | - Attilio Rovelli
- Paediatrics, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Newborn Screening, Clinical Chemistry and Pharmacology Laboratory, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
- Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Fabio Ciceri
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
- Department of Haematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Cristina Baldoli
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rossella Parini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1015 Lausanne, Switzerland
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), 20132 Milan, Italy
- "Vita-Salute" San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
5
|
Cattoni A, Nicolosi ML, Capitoli G, Gadda A, Molinari S, Louka S, Buonsante A, Orlandi S, Salierno G, Bellani I, Vendemini F, Ottaviano G, Gaiero A, Fichera G, Biondi A, Balduzzi A. Pubertal attainment and Leydig cell function following pediatric hematopoietic stem cell transplantation: a three-decade longitudinal assessment. Front Endocrinol (Lausanne) 2023; 14:1292683. [PMID: 38152128 PMCID: PMC10751351 DOI: 10.3389/fendo.2023.1292683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Impaired testosterone secretion is a frequent sequela following hematopoietic stem cell transplantation (HSCT) in pediatrics, but long-term longitudinal trendlines of clinical and biochemical findings are still scanty. Methods Monocentric, retrospective analysis. Male patients transplanted <18 years between 1992 and 2021, surviving ≥2 years after HSCT and showing, upon enrollment, clinical and biochemical signs consistent with pubertal onset and progression were included. Clinical and biochemical data collected every 6-12 months were recorded. Results Of 130 patients enrolled, 56% were prepubertal, while 44% were peri-/postpubertal upon HSCT. Overall, 44% showed spontaneous progression into puberty and normal gonadal profile, while the remaining experienced pubertal arrest (1%), isolated increase of FSH (19%), compensated (23%) or overt (13%) hypergonadotropic hypogonadism. Post-pubertal testicular volume (TV) was statistically smaller among patients still pre-pubertal upon HSCT (p 0.049), whereas no differences were recorded in adult testosterone levels. LH and testosterone levels showed a specular trend between 20 and 30 years, as a progressive decrease in sexual steroids was associated with a compensatory increase of the luteinizing hormone. A variable degree of gonadal dysfunction was reported in 85%, 51%, 32% and 0% of patients following total body irradiation- (TBI), busulfan-, cyclophosphamide- and treosulfan-based regimens, respectively. TBI and busulfan cohorts were associated with the lowest probability of gonadal event-free course (p<0.0001), while it achieved 100% following treosulfan. A statistically greater gonadotoxicity was detected after busulfan than treosulfan (p 0.024). Chemo-only regimens were associated with statistically larger TV (p <0.001), higher testosterone (p 0.008) and lower gonadotropin levels (p <0.001) than TBI. Accordingly, the latter was associated with a 2-fold increase in the risk of gonadal failure compared to busulfan (OR 2.34, CI 1.08-8.40), whereas being pre-pubertal upon HSCT was associated with a reduced risk (OR 0.15, CI 0.08-0.30). Conclusions a) patients pre-pubertal upon HSCT showed a reduced risk of testicular endocrine dysfunction, despite smaller adult TV; b) patients showed downwards trend in testosterone levels after full pubertal attainment, despite a compensatory increase in LH; c) treosulfan was associated to a statistically lower occurrence of hypogonadism than busulfan, with a trend towards larger TV, higher testosterone levels and lower gonadotropins.
Collapse
Affiliation(s)
- Alessandro Cattoni
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Laura Nicolosi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics, Biostatistics and Bioimaging B4 Centre, University of Milano-Bicocca, Monza, Italy
| | - Alberto Gadda
- Bicocca Bioinformatics, Biostatistics and Bioimaging B4 Centre, University of Milano-Bicocca, Monza, Italy
| | - Silvia Molinari
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Sotiris Louka
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Buonsante
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Simona Orlandi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianluca Salierno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Iacopo Bellani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Vendemini
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alberto Gaiero
- Department of Pediatrics and Neonatology, IRCCS Gaslini Savona e Pietra Ligure, Savona, Italy
| | | | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Adriana Balduzzi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Elvidge KL, Christodoulou J, Farrar MA, Tilden D, Maack M, Valeri M, Ellis M, Smith NJC. The collective burden of childhood dementia: a scoping review. Brain 2023; 146:4446-4455. [PMID: 37471493 PMCID: PMC10629766 DOI: 10.1093/brain/awad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.
Collapse
Affiliation(s)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Randwick, NSW 2031, Australia
- Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | | | - Megan Maack
- Childhood Dementia Initiative, Brookvale, NSW 2100, Australia
| | | | - Magda Ellis
- THEMA Consulting Pty Ltd, Pyrmont, NSW 2009, Australia
| | - Nicholas J C Smith
- Discipline of Paediatrics, University of Adelaide, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Health Network, North Adelaide, South Australia 5006, Australia
| |
Collapse
|