1
|
Wang K, Yu H, Guo S, Sun G, Cao H, Xing D, Li D, Yan A. CAPRIN1/TYMS/MTHFD2 axis promotes EMT process in nasopharyngeal carcinoma development. Int J Biochem Cell Biol 2025; 185:106784. [PMID: 40246062 DOI: 10.1016/j.biocel.2025.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant tumor occurring in the nasopharynx. It frequently leads to treatment failure after metastasis, often resulting from epithelial-mesenchymal transition (EMT). Thymidylate synthetase (TYMS) is a key enzyme involved in DNA synthesis and replication. Currently, the role of TYMS and its mechanism of upstream and downstream in EMT of NPC is unclear. METHODS NPC cell lines HK-1 and C666-1 were used in this study. Lentivirus carrying TYMS knockdown and overexpressed plasmids were used to regulate TYMS expression. Cell migration and invasion were examined using the wound-healing and Transwell assays, respectively. C666-1 cells were injected into the axilla and tail vein of mice to form subcutaneous tumors and construct lung metastasis model, respectively. RNA immunoprecipitation assay was used to examine the interaction between protein and mRNA. RNA-seq was performed to explore the downstream regulatory mechanism of TYMS. RESULTS TYMS was highly expressed in NPC tissues. TYMS silencing and upregulation inhibited and promoted EMT processes in NPC cells, respectively, as demonstrated by the expression of EMT-related proteins, including E-cadherin, Slug, MMP2, and MMP9. Cytoplasmic activation/proliferation-associated protein-1 (CAPRIN1), a protein bound with TYMS mRNA, promoted the EMT process in NPC cells. Meanwhile, TYMS knockdown reversed the effect of CAPRIN1 overexpression. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was down-regulated following TYMS silencing. MTHFD2 knockdown abolished the effect of TYMS overexpression. CONCLUSION CAPRIN1/TYMS/MTHFD2 axis drives the EMT process and thus promotes NPC development, which is a promising target in therapy and adjuvant therapy of NPC.
Collapse
Affiliation(s)
- Kunrong Wang
- Department of Otorhinolaryngology, The Third People's Hospital of Dalian, Dalian, China; Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Hanbing Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Shuang Guo
- Department of Otorhinolaryngology, The Third People's Hospital of Dalian, Dalian, China
| | - Guihu Sun
- Department of Otorhinolaryngology, The Third People's Hospital of Dalian, Dalian, China
| | - Hongwei Cao
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Dongsheng Xing
- Department of Otorhinolaryngology, Liaoyang Central Hospital, Liaoyang, China
| | - Dawei Li
- Department of Otorhinolaryngology, The Third People's Hospital of Dalian, Dalian, China; Department of Otorhinolaryngology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Aihui Yan
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Xin M, Peng H, Zhang L. Exploring the prognosis value, immune correlation, and drug responsiveness prediction of homeobox C6 (HOXC6) in lung adenocarcinoma. Discov Oncol 2024; 15:393. [PMID: 39215852 PMCID: PMC11365874 DOI: 10.1007/s12672-024-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDS Homeobox C6 (HOXC6) is a gene that encodes for a transcription factor involved in various cellular processes, including development and differentiation, and regulates cancer progression. However, the carcinogenesis and effect of HOXC6 in lung adenocarcinoma (LUAD) still need further investigation. METHODS The differential HOXC6 expression levels at the mRNA and protein level were explored in multiple public datasets, including The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) dataset. Gene Expression Omnibus (GSE31210), International Cancer Genome Consortium (ICGC) datasets and the LUAD sample from Affiliated Hospital of Guangxi Medical University. We also investigated the relation between HOXC6 expression and clinicopathologic indexes. Furthermore, the correlation of immune infiltration, drug responsiveness and HOXC6 were explored. RESULTS The upregulated HOXC6 expressions at mRNA and protein levels were found in LUAD tissues compared to the normal lung tissues. Besides, the relatively shorter overall survival time, worse T and N stages, and lower immune scores were found in the high-expression HOXC6 subgroup. Notably, T cells regulatory (Tregs), Macrophages M0, and Plasma cells had the higher infiltration levels in the high-HOXC6 expression subgroup, while NK cells activated, Monocytes, Dendritic cells resting, and Mast cells resting had the lower infiltration levels. In drug sensitivity analysis, we revealed that LUAD patients with high-HOXC6 expression may be more susceptible to Camptothecin, Cytarabine, Docetaxel, Elesclomol, Rapamycin, Sorafinib, Temsirolimus, and Vorinostat. CONCLUSIONS Taken together, there is a great potential for HOXC6 to become a prognosis biomarker and contribute to develop treatment strategies for LUAD patients. Further mechanism exploration and drug development for HOXC6 are needed.
Collapse
Affiliation(s)
- Mei Xin
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Huajian Peng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Linbo Zhang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
3
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Jovičić SM. Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases. Int J Immunopathol Pharmacol 2024; 38:3946320241250293. [PMID: 38712748 PMCID: PMC11080811 DOI: 10.1177/03946320241250293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Wei JB, Zeng XC, Ji KR, Zhang LY, Chen XM. Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis. Horm Metab Res 2023. [PMID: 38109896 DOI: 10.1055/a-2209-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
Collapse
Affiliation(s)
- Jian-Bin Wei
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Zeng
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kui-Rong Ji
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Ling-Yi Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiao-Min Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Ramesh V, Gollavilli PN, Pinna L, Siddiqui MA, Turtos AM, Napoli F, Antonelli Y, Leal‐Egaña A, Havelund JF, Jakobsen ST, Boiteux EL, Volante M, Færgeman NJ, Jensen ON, Siersbæk R, Somyajit K, Ceppi P. Propionate reinforces epithelial identity and reduces aggressiveness of lung carcinoma. EMBO Mol Med 2023; 15:e17836. [PMID: 37766669 PMCID: PMC10701619 DOI: 10.15252/emmm.202317836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Luisa Pinna
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Francesca Napoli
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Aldo Leal‐Egaña
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | - Elisa Le Boiteux
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marco Volante
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Paolo Ceppi
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| |
Collapse
|
7
|
Chmielewska-Kassassir M, Sobierajska K, Ciszewski WM, Kryczka J, Zieleniak A, Wozniak LA. Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:5003. [PMID: 37894370 PMCID: PMC10605291 DOI: 10.3390/cancers15205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To determine the mechanism of EPE in downregulating TYMS in MPM cancer. METHODS The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. RESULTS In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. CONCLUSION EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Collapse
Affiliation(s)
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| |
Collapse
|
8
|
Li C, Zheng L, Xu G, Yuan Q, Di Z, Yang Y, Dong X, Hou J, Wu G. Exploration of epithelial-mesenchymal transition-related lncRNA signature and drug sensitivity in breast cancer. Front Endocrinol (Lausanne) 2023; 14:1154741. [PMID: 37538794 PMCID: PMC10396438 DOI: 10.3389/fendo.2023.1154741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Breast cancer (BRCA) has become the most diagnosed cancer worldwide for female and seriously endanger female health. The epithelial-mesenchymal transition (EMT) process is associated with metastasis and drug resistance in BRCA patients. However, the prognostic value of EMT-related lncRNA in BRCA still needs to be revealed. The aim of this study is to construct an EMT-related lncRNA (ERL) signature with accuracy predictive ability for the prognosis of BRCA patients. Methods RNA-seq expression data and Clinical characteristics obtained from the TCGA (The Cancer Genome Atlas) were used in the study. First, we identified the EMT-related lncRNA by the Pearson correlation analysis. An EMT-related lncRNAs prognostic risk signature was constructed using univariate Cox regression and Lasso-penalized Cox regression analyses. The model's performance was validated using Kaplan-Meier (KM) survival analysis, ROC curve and C-index. Finally, a nomogram was constructed for clinical practice in evaluating the patients with BRCA and validated by calibration curve and decision curve analysis (DCA). We also evaluated the drug sensitivity of signature lncRNA and the tumor immune cell infiltration in breast cancer. Results We constructed a 10-lncRNA risk score signature based on the lncRNAs associated with the EMT process. We could assign BRCA patients to the high- and low-risk group according to the median risk score. The prognostic risk signature showed excellent accuracy and demonstrated sufficient independence from other clinical characteristics. The immune cell infiltration analysis showed that the prognostic risk signature was related to the infiltration of the immune cell subtype. Drug sensitivity analysis proved ERLs signature could effectively predict the sensitivity of patients to common chemotherapy drugs in BRCA and provide guidance for chemotherapy drugs for high-risk and low-risk patients. Conclusion Our ERL signature and nomogram have excellent prognostic value and could become reliable tools for clinical guidance.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lewei Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaoran Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyang Di
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yalong Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingxing Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Naseem A, Pal A, Gowan S, Asad Y, Donovan A, Temesszentandrási-Ambrus C, Kis E, Gaborik Z, Bhalay G, Raynaud F. Intracellular Metabolomics Identifies Efflux Transporter Inhibitors in a Routine Caco-2 Cell Permeability Assay-Biological Implications. Cells 2022; 11:3286. [PMID: 36291153 PMCID: PMC9601193 DOI: 10.3390/cells11203286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2023] Open
Abstract
Caco-2 screens are routinely used in laboratories to measure the permeability of compounds and can identify substrates of efflux transporters. In this study, we hypothesized that efflux transporter inhibition of a compound can be predicted by an intracellular metabolic signature in Caco-2 cells in the assay used to test intestinal permeability. Using selective inhibitors and transporter knock-out (KO) cells and a targeted Liquid Chromatography tandem Mass Spectrometry (LC-MS) method, we identified 11 metabolites increased in cells with depleted P-glycoprotein (Pgp) activity. Four metabolites were altered with Breast Cancer Resistance (BCRP) inhibition and nine metabolites were identified in the Multidrug Drug Resistance Protein 2 (MRP2) signature. A scoring system was created that could discriminate among the three transporters and validated with additional inhibitors. Pgp and MRP2 substrates did not score as inhibitors. In contrast, BCRP substrates and inhibitors showed a similar intracellular metabolomic signature. Network analysis of signature metabolites led us to investigate changes of enzymes in one-carbon metabolism (folate and methionine cycles). Our data shows that methylenetetrahydrofolate reductase (MTHFR) protein levels increased with Pgp inhibition and Thymidylate synthase (TS) protein levels were reduced with Pgp and MRP2 inhibition. In addition, the methionine cycle is also affected by both Pgp and MRP2 inhibition. In summary, we demonstrated that the routine Caco-2 assay has the potential to identify efflux transporter inhibitors in parallel with substrates in the assays currently used in many DMPK laboratories and that inhibition of efflux transporters has biological consequences.
Collapse
Affiliation(s)
- Afia Naseem
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Sharon Gowan
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Adam Donovan
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | | | - Emese Kis
- SOLVO Biotechnology, Charles River Company, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Zsuzsanna Gaborik
- SOLVO Biotechnology, Charles River Company, Irinyi József u. 4-20, 1117 Budapest, Hungary
| | - Gurdip Bhalay
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| | - Florence Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., Sutton SM2 5NG, UK
| |
Collapse
|
10
|
Thymidylate Synthase Overexpression Drives the Invasive Phenotype in Colon Cancer Cells. Biomedicines 2022; 10:biomedicines10061267. [PMID: 35740289 PMCID: PMC9219882 DOI: 10.3390/biomedicines10061267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
Thymidylate synthase (TYMS) is the crucial enzymatic precursor for DNA biosynthesis and, therefore, the critical target for numerous types of chemotherapy, including the most frequently applied agent in colon cancer treatment 5-fluorouracil (5-FU). TYMS also seems to be associated with cancer metastasis and acquiring mesenchymal character by tumor cells during epithelial–mesenchymal transition (EMT). Based on that knowledge, we decided to investigate the role of TYMS in the modulation of invasive ability in colon cancer cells, where its effect on cancer metastasis has not been studied in detail before. We employed colon cancer cells isolated from different stages of tumor development, cells undergoing EMT, and TYMS overexpressing cells. The elongation ratio, cell migration, invasion assay, and MMP-7 secretion were applied to analyze the cell behavior. Important epithelial and mesenchymal markers characteristic of EMT were examined at the protein level by Western blot assay. Overall, our study showed a correlation between TYMS level and invasion ability in colon cancer cells and, above all, a crucial role of TYMS in the EMT regulation. We postulate that chemotherapeutics that decrease or inhibit TYMS expression could increase the effectiveness of the therapy in patients with colon cancer, especially in the metastatic stage.
Collapse
|
11
|
Huang H, Huo Z, Jiao J, Ji W, Huang J, Bian Z, Xu B, Shao J, Sun J. HOXC6 impacts epithelial-mesenchymal transition and the immune microenvironment through gene transcription in gliomas. Cancer Cell Int 2022; 22:170. [PMID: 35488304 PMCID: PMC9052479 DOI: 10.1186/s12935-022-02589-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary malignant tumours of the central nervous system (CNS). To improve the prognosis of glioma, it is necessary to identify molecular markers that may be useful for glioma therapy. HOXC6, an important transcription factor, is involved in multiple cancers. However, the role of HOXC6 in gliomas is not clear. METHODS Bioinformatic and IHC analyses of collected samples (n = 299) were performed to detect HOXC6 expression and the correlation between HOXC6 expression and clinicopathological features of gliomas. We collected clinical information from 177 to 299 patient samples and estimated the prognostic value of HOXC6. Moreover, cell proliferation assays were performed. We performed Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) based on ChIP-seq and public datasets to explore the biological characteristics of HOXC6 in gliomas. RNA-seq was conducted to verify the relationship between HOXC6 expression levels and epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the tumour purity, stromal and immune scores were evaluated. The relationship between HOXC6 expression and infiltrating immune cell populations and immune checkpoint proteins was also researched. RESULTS HOXC6 was overexpressed and related to the clinicopathological features of gliomas. In addition, knockdown of HOXC6 inhibited the proliferation of glioma cells. Furthermore, increased HOXC6 expression was associated with clinical progression. The biological role of HOXC6 in gliomas was primarily associated with EMT and the immune microenvironment in gliomas. High HOXC6 expression was related to high infiltration by immune cells, a low tumour purity score, a high stromal score, a high immune score and the expression of a variety of immune checkpoint genes, including PD-L1, B7-H3 and CLTA-4. CONCLUSIONS These results indicated that HOXC6 might be a key factor in promoting tumorigenesis and glioma progression by regulating the EMT signalling pathway and might represent a novel immune therapeutic target in gliomas.
Collapse
Affiliation(s)
- Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Micro-RNA-215 and -375 regulate thymidylate synthase protein expression in pleural mesothelioma and mediate epithelial to mesenchymal transition. Virchows Arch 2022; 481:233-244. [PMID: 35461395 PMCID: PMC9343276 DOI: 10.1007/s00428-022-03321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
The standard front-line treatment for pleural mesothelioma (PM) is pemetrexed-based chemotherapy, whose major target is thymidylate synthase (TS). In several cancer models, miR-215 and miR-375 have been shown to target TS, while information on these miRNAs in PM are still limited although suggest their role in epithelial to mesenchymal transition. Seventy-one consecutive PM tissues (4 biphasic, 7 sarcomatoid, and 60 epithelioid types) and 16 commercial and patient-derived PM cell lines were screened for TS, miR-215, and miR-375 expression. REN and 570B cells were selected for miR-215 and miR-375 transient transfections to test TS modulation. ZEB1 protein expression in tumor samples was also tested. Moreover, genetic profile was investigated by means of BAP1 and p53 immunohistochemistry. Expression of both miR-215 and miR-375 was significantly higher in epithelioid histotype. Furthermore, inverse correlation between TS protein and both miR-215 and miR-375 expression was found. Efficiently transfected REN and 570B cell lines overexpressing miR-215 and miR-375 showed decreased TS protein levels. Epithelioid PM with a mesenchymal component highlighted by reticulin stain showed significantly higher TS and ZEB1 protein and lower miRNA expression. A better survival was recorded for BAP1 lost/TS low cases. Our data indicate that miR-215 and miR-375 are involved in TS regulation as well as in epithelial-to-mesenchymal transition in PM.
Collapse
|
13
|
Pandi J, Arulprakasam A, Dhandapani R, Ramanathan S, Thangavelu S, Chinnappan J, Vidhya Rajalakshmi V, Alghamdi S, Shesha NT, Prasath S. Biomarkers for Breast Adenocarcinoma Using In Silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7825272. [PMID: 35280505 PMCID: PMC8913068 DOI: 10.1155/2022/7825272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022]
Abstract
This work elucidates the idea of finding probable critical genes linked to breast adenocarcinoma. In this study, the GEO database gene expression profile data set (GSE70951) was retrieved to look for genes that were expressed variably across breast adenocarcinoma samples and healthy tissue samples. The genes were confirmed to be part of the PPI network for breast cancer pathogenesis and prognosis. In Cytoscape, the CytoHubba module was used to discover the hub genes. For correlation analysis, the predictive biomarker of these hub genes, as well as GEPIA, was used. A total of 155 (85 upregulated genes and 70 downregulated genes) were identified. By integrating the PPI and CytoHubba data, the major key/hub genes were selected from the results. The KM plotter is employed to find the prognosis of those major pivot genes, and the outcome shows worse prognosis in breast adenocarcinoma patients. Further experimental validation will show the predicted expression levels of those hub genes. The overall result of our study gives the consequences for the identification of a critical gene to ease the molecular targeting therapy for breast adenocarcinoma. It could be used as a prognostic biomarker and could lead to therapy options for breast adenocarcinoma.
Collapse
Affiliation(s)
- Jhansi Pandi
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Saikishore Ramanathan
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit, Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - S. Prasath
- Department of Mechanical Engineering, College of Engineering and Technology, Mizan Tepi University, Ethiopia
| |
Collapse
|
14
|
Ciszewski WM, Włodarczyk J, Chmielewska-Kassassir M, Fichna J, Wozniak LA, Sobierajska K. Evening primrose seed extract rich in polyphenols modulates the invasiveness of colon cancer cells by regulating the TYMS expression. Food Funct 2022; 13:10994-11007. [DOI: 10.1039/d2fo01737g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural polyphenols are plant metabolites exhibiting a broad range of biological activities.
Collapse
Affiliation(s)
- Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
15
|
Parma B, Ramesh V, Gollavilli PN, Siddiqui A, Pinna L, Schwab A, Marschall S, Zhang S, Pilarsky C, Napoli F, Volante M, Urbanczyk S, Mielenz D, Schrøder HD, Stemmler M, Wurdak H, Ceppi P. Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:248. [PMID: 34364401 PMCID: PMC8348813 DOI: 10.1186/s13046-021-02049-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Background The identification of novel targets is of paramount importance to develop more effective drugs and improve the treatment of non-small cell lung cancer (NSCLC), the leading cause of cancer-related deaths worldwide. Since cells alter their metabolic rewiring during tumorigenesis and along cancer progression, targeting key metabolic players and metabolism-associated proteins represents a valuable approach with a high therapeutic potential. Metabolic fitness relies on the functionality of heat shock proteins (HSPs), molecular chaperones that facilitate the correct folding of metabolism enzymes and their assembly in macromolecular structures. Methods Gene fitness was determined by bioinformatics analysis from available datasets from genetic screenings. HSPD1 expression was evaluated by immunohistochemistry from formalin-fixed paraffin-embedded tissues from NSCLC patients. Real-time proliferation assays with and without cytotoxicity reagents, colony formation assays and cell cycle analyses were used to monitor growth and drug sensitivity of different NSCLC cells in vitro. In vivo growth was monitored with subcutaneous injections in immune-deficient mice. Cell metabolic activity was analyzed through extracellular metabolic flux analysis. Specific knockouts were introduced by CRISPR/Cas9. Results We show heat shock protein family D member 1 (HSPD1 or HSP60) as a survival gene ubiquitously expressed in NSCLC and associated with poor patients’ prognosis. HSPD1 knockdown or its chemical disruption by the small molecule KHS101 induces a drastic breakdown of oxidative phosphorylation, and suppresses cell proliferation both in vitro and in vivo. By combining drug profiling with transcriptomics and through a whole-genome CRISPR/Cas9 screen, we demonstrate that HSPD1-targeted anti-cancer effects are dependent on oxidative phosphorylation and validated molecular determinants of KHS101 sensitivity, in particular, the creatine-transporter SLC6A8 and the subunit of the cytochrome c oxidase complex COX5B. Conclusions These results highlight mitochondrial metabolism as an attractive target and HSPD1 as a potential theranostic marker for developing therapies to combat NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02049-8.
Collapse
Affiliation(s)
- Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aarif Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Luisa Pinna
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Marschall
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Francesca Napoli
- Department of Oncology At San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Marco Volante
- Department of Oncology At San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Sophia Urbanczyk
- Department of Molecular Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Mielenz
- Department of Molecular Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Marc Stemmler
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Wurdak
- Stem Cell and Brain Tumour Group, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany. .,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
16
|
Wang W, Cui J, Ma H, Lu W, Huang J. Targeting Pyrimidine Metabolism in the Era of Precision Cancer Medicine. Front Oncol 2021; 11:684961. [PMID: 34123854 PMCID: PMC8194085 DOI: 10.3389/fonc.2021.684961] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolic rewiring is considered as a primary feature of cancer. Malignant cells reprogram metabolism pathway in response to various intrinsic and extrinsic drawback to fuel cell survival and growth. Among the complex metabolic pathways, pyrimidine biosynthesis is conserved in all living organism and is necessary to maintain cellular fundamental function (i.e. DNA and RNA biosynthesis). A wealth of evidence has demonstrated that dysfunction of pyrimidine metabolism is closely related to cancer progression and numerous drugs targeting pyrimidine metabolism have been approved for multiple types of cancer. However, the non-negligible side effects and limited efficacy warrants a better strategy for negating pyrimidine metabolism in cancer. In recent years, increased studies have evidenced the interplay of oncogenic signaling and pyrimidine synthesis in tumorigenesis. Here, we review the recent conceptual advances on pyrimidine metabolism, especially dihydroorotate dehydrogenase (DHODH), in the framework of precision oncology medicine and prospect how this would guide the development of new drug precisely targeting the pyrimidine metabolism in cancer.
Collapse
Affiliation(s)
- Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Cui
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
17
|
Human tumor necrosis factor alpha-induced protein eight-like 1 exhibited potent anti-tumor effect through modulation of proliferation, survival, migration and invasion of lung cancer cells. Mol Cell Biochem 2021; 476:3303-3318. [PMID: 33895911 DOI: 10.1007/s11010-021-04060-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer represents one of the most prevalent neoplasms across the globe. Tobacco smoking, exposure to different occupational and environmental carcinogens, and various dietary factors are strongly implicated in the development of lung cancer. The 5-year survival rate of lung cancer is extremely poor which can be attributed to its propensity for early spread, lack of appropriate biomarkers and proper therapeutic strategies for this aggressive neoplasm. Emerging evidence suggests tumor necrosis factor-α-induced protein eight like 1 (TIPE1 or TNFAIP8L1), which functions as a cell death regulator, to hold high prospect as an important biomarker. Interestingly, this protein was found to be significantly downregulated in human lung cancer tissues compared to normal lung tissues. In addition, this protein exerted marked downregulation in different stages and grades of lung tumor. Further knockout of TIPE1 led to the enhancement in proliferation, survival, migration and invasion of NCIH460 human lung cancer cells through modulation of Akt/mTOR/STAT-3 signaling cascade. In addition, TIPE1 was found to be involved in nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, N-nitrosonornicotine and benzo[a]pyrene-mediated lung cancer through enhanced proliferation, survival and migration of lung cancer cells. Altogether, this newly identified protein plays a critical role in lung cancer pathogenesis and possess enormous prospect to serve as an important tool in the effective management of this aggressive neoplasm.
Collapse
|
18
|
Li Z, Liu B, Li C, Sun S, Zhang H, Sun S, Wang Z, Zhang X. NRBP2 Functions as a Tumor Suppressor and Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer. Front Oncol 2021; 11:634026. [PMID: 33816275 PMCID: PMC8012753 DOI: 10.3389/fonc.2021.634026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
Nuclear Receptor Binding Protein 2 (NRBP2), one of the pseudokinases discovered during a screen of neural differentiation genes, inhibits tumor progression in medulloblastoma and hepatocellular carcinoma. However, the role and the mechanism of NRBP2 in the regulation of the progression of breast cancer (BC) have not been reported. In our study, NRBP2 was downregulated in human BC tissues compared with the corresponding normal tissues. Moreover, bioinformatics and cellular experiments illustrated that a lower level of NRBP2 contributed to a poor prognosis for patients with BC. In addition, we characterized the NRBP2-overexpressing BC cells and found that NRBP2 overexpression dramatically suppressed cell proliferation and invasion and inhibited the epithelial-mesenchymal transition (EMT) in cells in vitro, whereas knockdown of NRBP2 reversed these effects. Furthermore, overexpression of NRBP2 in the orthotopic breast tumor model significantly reduced lung metastatic nodules in nude mice. Mechanistically, NRBP2 regulated the activation of the 5′-adenosine monophosphate (AMP)-activated protein kinase/ mammalian target of rapamycin (AMPK/mTOR) signaling pathway. Moreover, the inhibition of cell proliferation, invasion and the EMT by NRBP2 overexpression was partially rescued after treatment with an AMPK inhibitor. Conversely, mTOR-specific inhibitors eliminated the effects of NRBP2 knockdown on increasing cell proliferation, invasion and the EMT, which suggested the anti-tumor effect of NRBP2, which may be partially related to the regulation of the AMPK/mTOR pathway. Taken together, NRBP2, a novel and effective prognostic indicator, inhibited the progression of BC and may become a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bingxiong Liu
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| | - Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanpu Zhang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongjie Zhang
- Department of General Surgery, Hanchuan People's Hospital, Hanchuan, China
| |
Collapse
|
19
|
Shi Y, Zhuang Y, Zhang J, Chen M, Wu S. METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner. Cancer Manag Res 2020; 12:13173-13184. [PMID: 33380825 PMCID: PMC7767748 DOI: 10.2147/cmar.s286275] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) ranks as the fourth leading cause of cancer-related deaths worldwide. N6-methyladenosine (m6A) RNA methylation is the most common modification of messenger RNAs (mRNAs). The prognosis of HCC patients with metastasis remains poor. Our study aimed to elucidate the regulatory role of m6A on HCC metastasis. Patients and Methods All HCC patients were enrolled from The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University. The expression levels of gene were tested by quantitative polymerase chain reaction (qPCR), Western blot, or immunohistochemistry (IHC) analysis. Wound healing assay, Transwell invasion assay, and lung metastasis model were implemented to investigate the migration and invasion ability of HCC cells. Candidate targets were selected by a comprehensive analysis of RNA-sequencing and m6A-sequencing of HepG2 cells. Results In this study, we demonstrated that METTL14 was significantly downregulated in HCC and significantly associated with the prognosis of HCC patients. METTL14 knockdown promoted the migration, invasion, and epithelial–mesenchymal transition (EMT) of HCC cells in vitro and in vivo. In addition, overlapping RNA-sequencing and m6A-sequencing data, we identified EGFR as a direct target of METTL14 in HCC. Mechanistically, METTL14 was found to inhibit HCC cell migration, invasion, and EMT through modulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner. Conclusion Targeting METTL14/EGFR/PI3K/AKT signaling pathway may facilitate the development of a new treatment strategy against the metastasis of HCC.
Collapse
Affiliation(s)
- Yuntao Shi
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Yingying Zhuang
- Department of Medical Imaging, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Jialing Zhang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Mengxue Chen
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Shangnong Wu
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| |
Collapse
|