1
|
Meyer-Wilmes P, Huober J, Untch M, Blohmer JU, Janni W, Denkert C, Klare P, Link T, Rhiem K, Bayer C, Reinisch M, Bjelic-Radisic V, Zahm DM, Hanusch C, Solbach C, Heinrich G, Hartkopf AD, Schneeweiss A, Fasching P, Filmann N, Nekljudova V, Holtschmidt J, Stickeler E, Loibl S. Long-term outcomes of a randomized, open-label, phase II study comparing cabazitaxel versus paclitaxel as neoadjuvant treatment in patients with triple-negative or luminal B/HER2-negative breast cancer (GENEVIEVE). ESMO Open 2024; 9:103009. [PMID: 38663168 PMCID: PMC11061217 DOI: 10.1016/j.esmoop.2024.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND The GENEVIEVE study, comparing neoadjuvant cabazitaxel versus paclitaxel in triple-negative breast cancer (TNBC) and luminal B/human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC), previously reported significant differences in pathological complete response (pCR) rates. Effects on long-term outcome are unknown. PATIENTS AND METHODS GENEVIEVE randomized patients with cT2-3, any cN or cT1, cN+/pNSLN+, centrally confirmed TNBC or luminal B/HER2-negative BC (latter defined as estrogen/progesterone receptor-positive and >14% Ki-67-stained cells) to receive either cabazitaxel 25 mg/m2 q3w for four cycles or paclitaxel 80 mg/m2 weekly for 12 weeks. Anthracycline-containing chemotherapy was allowed in case of histologically proven invasive residuals as neoadjuvant treatment or after surgery as adjuvant treatment. Here we report the secondary endpoints invasive disease-free survival (iDFS), distant disease-free survival (DDFS), and overall survival (OS). RESULTS Of the 333 patients randomized, 74.7% and 83.2% completed treatment in the cabazitaxel and paclitaxel arms, respectively. After a median follow-up of 89.3 months (interquartile range 68.8-97.3 months), 80 iDFS events (43 after cabazitaxel and 37 after paclitaxel) and 47 deaths (23 after cabazitaxel and 24 after paclitaxel) were reported. IDFS rates were not significantly different between the cabazitaxel and paclitaxel arms after a 3-year (83.6% versus 85.0%) and 5-year follow-up (76.2% versus 78.3%) [hazard ratio (HR) = 1.27, 95% confidence interval 0.82-1.96, P = 0.294], respectively. DDFS rates at 3 years (88.6% versus 87.8%) and 5 years (82.1% versus 82.8%) for cabazitaxel and paclitaxel were comparable (HR = 1.15, P = 0.573). Similarly, OS rates at 3 years (91.6% versus 91.8%) and 5 years (89.2% versus 86.8%) showed no significant differences (HR = 1.05, P = 0.872). Subgroup analysis for TNBC and luminal B/HER2-negative BCs indicated no significant variations in 3- or 5-year iDFS, DDFS, or OS. CONCLUSIONS The significant differences in pCR rates observed in both treatment arms did not significantly impact long-term outcomes for patients treated with cabazitaxel versus paclitaxel in the GENEVIEVE trial.
Collapse
Affiliation(s)
- P Meyer-Wilmes
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik Aachen, Aachen, Germany
| | - J Huober
- Department of Interdisciplinary Medical Services, University Hospital Ulm & Cantonal Hospital St. Gallen, Breast Center, St. Gallen, Switzerland
| | - M Untch
- Helios Kliniken Berlin-Buch, Berlin
| | - J-U Blohmer
- Gynäkologie mit Brustzentrum, Charité-Universitätsmedizin Berlin, Berlin
| | | | - C Denkert
- Institut für Pathologie, Philipps-University Marburg and University Hospital Marburg (UKGM)-Universitätsklinikum Marburg, Marburg
| | - P Klare
- MediOnko-Institut GbR Berlin, Berlin
| | - T Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden
| | - K Rhiem
- Zentrum Familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Köln
| | - C Bayer
- Universitätsklinikum Erlangen, Erlangen
| | - M Reinisch
- Department of Gynecology with Breast Center, Evang. Kliniken Essen-Mitte, Charité - Universitätsmedizin Berlin, Berlin
| | - V Bjelic-Radisic
- Breast Unit, University Hospital Helios, University Witten Herdecke, Wuppertal
| | - D M Zahm
- SRH Waldklinikum Gera GmbH, Gera
| | | | - C Solbach
- Department of Gynecology and Obstetrics, Goethe University Frankfurt, University Hospital, Frankfurt
| | - G Heinrich
- Schwerpunktpraxis der Gynäkologie und Onkologie Fürstenwalde, Klinikum Offenbach
| | - A D Hartkopf
- AGO Study Group and Department of Women's Health, University Hospital Tübingen, Tübingen
| | - A Schneeweiss
- Nationales Centrum für Tumorerkrankungen, Universitätsklinikum und Deutsches Krebsforschungszentrum, Heidelberg
| | | | - N Filmann
- German Breast Group, Neu-Isenburg, Germany
| | | | | | - E Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik Aachen, Aachen, Germany
| | - S Loibl
- German Breast Group, Neu-Isenburg, Germany.
| |
Collapse
|
2
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
3
|
Liu C, Mohan SC, Wei J, Seki E, Liu M, Basho R, Giuliano AE, Zhao Y, Cui X. Breast cancer liver metastasis: Pathogenesis and clinical implications. Front Oncol 2022; 12:1043771. [PMID: 36387238 PMCID: PMC9641291 DOI: 10.3389/fonc.2022.1043771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 09/30/2023] Open
Abstract
Breast cancer is the most common malignant disease in female patients worldwide and can spread to almost every place in the human body, most frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is a common metastatic location for solid cancers as a whole, and it is also the third most common metastatic site for breast cancer. Breast cancer liver metastasis (BCLM) is a complex process. Although the hepatic microenvironment and liver sinusoidal structure are crucial factors for the initial arrest of breast cancer and progression within the liver, the biological basis of BCLM remains to be elucidated. Importantly, further understanding of the interaction between breast cancer cells and hepatic microenvironment in the liver metastasis of breast cancer will suggest ways for the development of effective therapy and prevention strategies for BCLM. In this review, we provide an overview of the recent advances in the understanding of the molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies for treating patients with BCLM as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.
Collapse
Affiliation(s)
- Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Srivarshini C. Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jielin Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Reva Basho
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, United States
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Zeng T, Sun C, Liang Y, Yang F, Yan X, Bao S, Zhang Y, Huang X, Fu Z, Li W, Yin Y. A Real-World Multicentre Retrospective Study of Low-Dose Apatinib for Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer. Cancers (Basel) 2022; 14:cancers14174084. [PMID: 36077621 PMCID: PMC9454649 DOI: 10.3390/cancers14174084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment options for human epidermal growth factor receptor (HER2)-negative breast cancer patients are limited in comparison to the HER2-positive patients, particularly for metastatic breast cancer patients. Apatinib is a small-molecule tyrosine kinase inhibitor that targets the vascular endothelial growth factor receptor 2 (VEGFR-2). Here, we reported the apatinib-based therapy data in HER2-negative metastatic breast cancer. Apatinib was taken at a dose of 250 mg orally once per day and combined with standard chemotherapy regimens. The PFS and OS of 128 patients were 4.7 months and 15.3 months, respectively. The objective response rate (ORR) and the disease control rate (DCR) were 22.7% and 80.5%, respectively. Patients with breast cancer susceptibility gene (BRCA) mutations were found to have a longer PFS and OS. Moreover, combination immunotherapy or paclitaxel-platinum regimens shared an improved response to other regimens. Most of the adverse effects (hypertension, anaemia, and hand-foot syndrome) were grade 1 to 2. Metastatic breast cancer patients could benefit from apatinib therapy at a low dosage, and the adverse effects are mild in real-world clinical practice. Furthermore, BRCA may be a putative biomarker for apatinib in HER2-negative breast cancer. Immunotherapy or paclitaxel-platinum regimens may be recommended to combine with apatinib therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Li
- Correspondence: (W.L.); (Y.Y.); Tel.: +86-025-68307102 (W.L. & Y.Y.)
| | - Yongmei Yin
- Correspondence: (W.L.); (Y.Y.); Tel.: +86-025-68307102 (W.L. & Y.Y.)
| |
Collapse
|
5
|
Lei L, Wang XJ, Tang SC. Novel taxanes in development: hopes or hypes? Crit Rev Oncol Hematol 2022; 176:103727. [DOI: 10.1016/j.critrevonc.2022.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022] Open
|
6
|
Utilizing Three-Dimensional Culture Methods to Improve High-Throughput Drug Screening in Anaplastic Thyroid Carcinoma. Cancers (Basel) 2022; 14:cancers14081855. [PMID: 35454763 PMCID: PMC9031362 DOI: 10.3390/cancers14081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive endocrine neoplasm, with a median survival of just four to six months post-diagnosis. Even with surgical and chemotherapeutic interventions, the five-year survival rate is less than 5%. Although combination dabrafenib/trametinib therapy was recently approved for treatment of the ~25% of ATCs harboring BRAFV600E mutations, there are no approved, effective treatments for BRAF-wildtype disease. Herein, we perform a screen of 1525 drugs and evaluate therapeutic candidates using monolayer cell lines and four corresponding spheroid models of anaplastic thyroid carcinoma. We utilize three-dimensional culture methods, as they have been shown to more accurately recapitulate tumor responses in vivo. These three-dimensional cultures include four distinct ATC spheroid lines representing unique morphology and mutational drivers to provide drug prioritization that will be more readily translatable to the clinic. Using this screen, we identify three exceptionally potent compounds (bortezomib, cabazitaxel, and YM155) that have established safety profiles and could potentially be moved into clinical trial for the treatment of anaplastic thyroid carcinoma, a disease with few treatment options.
Collapse
|
7
|
Zhang W, Sun R, Zhang Y, Hu R, Li Q, Wu W, Cao X, Zhou J, Pei J, Yuan P. Cabazitaxel suppresses colorectal cancer cell growth via enhancing the p53 antitumor pathway. FEBS Open Bio 2021; 11:3032-3050. [PMID: 34496154 PMCID: PMC8564099 DOI: 10.1002/2211-5463.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
There were approximately 1.93 million new cases and 940 000 deaths from colorectal cancer in 2020. The first‐line chemotherapeutic drugs for colorectal cancer are mainly based on 5‐fluorouracil, although the use of these drugs is limited by the development of drug resistance. Consequently, there is a need for novel chemotherapeutic drugs for the efficient treatment of colorectal cancer patients. In the present study, we screened 160 drugs approved by the Food and Drug Administration and identified that cabazitaxel (CBT), a microtube inhibitor, can suppress colony formation and cell migration of colorectal cancer cells in vitro. CBT also induces G2/M phase arrest and apoptosis of colorectal cancer cells. Most importantly, it inhibits the growth of colorectal cancer cell xenograft tumors in vivo. Transcriptome analysis by RNA‐sequencing revealed that Tub family genes are abnormally expressed in CBT‐treated colorectal cancer cells. The expression of several p53 downstream genes that are associated with cell cycle arrest, apoptosis, and inhibition of angiogenesis and metastasis is induced by CBT in colorectal cancer cells. Overall, our results suggests that CBT suppresses colorectal cancer by upregulating the p53 pathway, and thus CBT may have potential as an alternative chemotherapeutic drug for colorectal cancer.
Collapse
Affiliation(s)
- Wen Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Ruiqian Sun
- Guangdong Country Garden School, Foshan City, China
| | - Yongjun Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Rong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Weili Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| | - Xinyu Cao
- Institute of Clinical Medical Sciences,, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jianfeng Pei
- Center for Quantitative Biology,, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ping Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China
| |
Collapse
|
8
|
Cao X, Li B, Chen J, Dang J, Chen S, Gunes EG, Xu B, Tian L, Muend S, Raoof M, Querfeld C, Yu J, Rosen ST, Wang Y, Feng M. Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002022. [PMID: 33753567 PMCID: PMC7986678 DOI: 10.1136/jitc-2020-002022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Limited therapeutic options are available for triple-negative breast cancer (TNBC), emphasizing an urgent need for more effective treatment approaches. The development of strategies by targeting tumor-associated macrophages (TAMs) to stimulate their ability of Programmed Cell Removal (PrCR) provides a promising new immunotherapy for TNBC treatment. Methods CD47 is a critical self-protective “don’t eat me” signal on multiple human cancers against macrophage immunosurveillance. Using human and mouse TNBC preclinical models, we evaluated the efficacy of PrCR-based immunotherapy by blocking CD47. We performed high-throughput screens on FDA-approved anti-cancer small molecule compounds for agents potentiating PrCR and enhancing the efficacy of CD47-targeted therapy for TNBC treatment. Results We showed that CD47 was widely expressed on TNBC cells and TAMs represented the most abundant immune cell population in TNBC tumors. Blockade of CD47 enabled PrCR of TNBC cells, but the efficacy was not satisfactory. Our high-throughput screens identified cabazitaxel in enhancing PrCR-based immunotherapy. A combination of CD47 blockade and cabazitaxel treatment yielded a highly effective treatment strategy, promoting PrCR of TNBC cells and inhibiting tumor development and metastasis in preclinical models. We demonstrated that cabazitaxel potentiated PrCR by activating macrophages, independent of its cytotoxicity toward cancer cells. When treated with cabazitaxel, the molecular and phenotypic signatures of macrophages were polarized toward M1 state, and the NF-kB signaling pathway became activated. Conclusion The combination of CD47 blockade and macrophage activation by cabazitaxel synergizes to vastly enhance the elimination of TNBC cells. Our results show that targeting macrophages is a promising and effective strategy for TNBC treatment.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Bolei Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jing Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jessica Dang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - E Gulsen Gunes
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Bo Xu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Lei Tian
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Sabina Muend
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope, Duarte, California, USA
| | - Christiane Querfeld
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Division of Dermatology, City of Hope, Duarte, California, USA.,Department of Pathology, City of Hope, Duarte, California, USA
| | - Jianhua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA.,Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, California, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA.,Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Yingyu Wang
- Center for Informatics, City of Hope, Duarte, California, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California, USA
| |
Collapse
|