1
|
Wang H, Qian D, Wang J, Liu Y, Luo W, Zhang H, Cheng J, Li H, Wu Y, Li W, Wang J, Yang X, Zhang T, Han D, Wang Q, Zhang CZ, Liu L. HnRNPR-mediated UPF3B mRNA splicing drives hepatocellular carcinoma metastasis. J Adv Res 2025; 68:257-270. [PMID: 38402949 PMCID: PMC11785583 DOI: 10.1016/j.jare.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.
Collapse
Affiliation(s)
- Hong Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenguang Luo
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Heng Li
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yang Wu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of General Surgery, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Wuhan Li
- Department of Emergency Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tianzhi Zhang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dong Han
- Tianjin Medical University Cancer Institute and Hospital, Department of Radiation Oncology, Tianjin, China
| | - Qinyao Wang
- Anhui Chest Hospital, Department of Radiation Oncology, Hefei, Anhui, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianxin Liu
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Li W, Zeng M, Ning Y, Lu R, Wei Y, Xu Z, Wei H, Pu J. m 6A-Methylated NUTM2B-AS1 Promotes Hepatocellular Carcinoma Stemness Feature via Epigenetically Activating BMPR1A Transcription. J Hepatocell Carcinoma 2024; 11:2393-2411. [PMID: 39649245 PMCID: PMC11624692 DOI: 10.2147/jhc.s480522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Oncofetal proteins are the optimal diagnostic biomarkers and therapeutic targets for HCC. As the most abundant modification in RNA, N6-methyladenosine (m6A) has been reported to be involved in HCC initiation and progression. However, whether m6A has oncofetal characteristics remains unknown. Methods Gene expression in HCC tissues and cells was detected using qPCR. The level of m6A methylation was determined using methylated RNA immunoprecipitation assay. The biological roles of NUTM2B-AS1 in HCC were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine incorporation, and spheroid formation assays. The mechanisms underlying the roles of NUTM2B-AS1 were explored using RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), chromatin immunoprecipitation (ChIP), and assay for transposase-accessible chromatin (ATAC). Results NUTM2B-AS1 was identified as a novel oncofetal long noncoding RNA that was upregulated in the fetal liver and HCC and silenced in adult liver tissues. METTL3 and METTL16 induce m6A hypermethylation of NUTM2B-AS1. The m6A methylation levels of NUTM2B-AS1 exhibit oncofetal characteristics. m6A methylation upregulates NUTM2B-AS1 expression by increasing NUTM2B-AS1 transcript stability. m6A-methylated NUTM2B-AS1 promotes HCC cell proliferation and stemness via epigenetically activating BMPR1A expression. NUTM2B-AS1 specifically binds to BMPR1A promoter. m6A-methylated NUTM2B-AS1 is recognized by the m6A reader YTHDC2, which further binds to the H3K4 methyltransferase MLL1. m6A-methylated NUTM2B-AS1 recruits YTHDC2 and MLL1 to BMPR1A promoter, leading to increased H3K4me3 and chromatin accessibility at BMPR1A promoter. Functional rescue assays suggest that BMPR1A is a critical mediator of the oncogenic role of m6A-methylated NUTM2B-AS1 in HCC. Conclusion METTL3- and METTL16-mediated m6A methylation of NUTM2B-AS1 is a novel oncofetal molecular event in HCC that promotes HCC stemness via epigenetically activating BMPR1A transcription.
Collapse
Affiliation(s)
- Wenchuan Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
3
|
Guo DZ, Zhang X, Zhang SQ, Zhang SY, Zhang XY, Yan JY, Dong SY, Zhu K, Yang XR, Fan J, Zhou J, Huang A. Single-cell tumor heterogeneity landscape of hepatocellular carcinoma: unraveling the pro-metastatic subtype and its interaction loop with fibroblasts. Mol Cancer 2024; 23:157. [PMID: 39095854 PMCID: PMC11295380 DOI: 10.1186/s12943-024-02062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Tumor heterogeneity presents a formidable challenge in understanding the mechanisms driving tumor progression and metastasis. The heterogeneity of hepatocellular carcinoma (HCC) in cellular level is not clear. METHODS Integration analysis of single-cell RNA sequencing data and spatial transcriptomics data was performed. Multiple methods were applied to investigate the subtype of HCC tumor cells. The functional characteristics, translation factors, clinical implications and microenvironment associations of different subtypes of tumor cells were analyzed. The interaction of subtype and fibroblasts were analyzed. RESULTS We established a heterogeneity landscape of HCC malignant cells by integrated 52 single-cell RNA sequencing data and 5 spatial transcriptomics data. We identified three subtypes in tumor cells, including ARG1+ metabolism subtype (Metab-subtype), TOP2A+ proliferation phenotype (Prol-phenotype), and S100A6+ pro-metastatic subtype (EMT-subtype). Enrichment analysis found that the three subtypes harbored different features, that is metabolism, proliferating, and epithelial-mesenchymal transition. Trajectory analysis revealed that both Metab-subtype and EMT-subtype originated from the Prol-phenotype. Translation factor analysis found that EMT-subtype showed exclusive activation of SMAD3 and TGF-β signaling pathway. HCC dominated by EMT-subtype cells harbored an unfavorable prognosis and a deserted microenvironment. We uncovered a positive loop between tumor cells and fibroblasts mediated by SPP1-CD44 and CCN2/TGF-β-TGFBR1 interaction pairs. Inhibiting CCN2 disrupted the loop, mitigated the transformation to EMT-subtype, and suppressed metastasis. CONCLUSION By establishing a heterogeneity landscape of malignant cells, we identified a three-subtype classification in HCC. Among them, S100A6+ tumor cells play a crucial role in metastasis. Targeting the feedback loop between tumor cells and fibroblasts is a promising anti-metastatic strategy.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen-Quan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiang-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia-Yan Yan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - San-Yuan Dong
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Kai Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Gopal P, Robert ME, Zhang X. Cholangiocarcinoma: Pathologic and Molecular Classification in the Era of Precision Medicine. Arch Pathol Lab Med 2024; 148:359-370. [PMID: 37327187 DOI: 10.5858/arpa.2022-0537-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT.— Cholangiocarcinoma (CCA) is a heterogeneous cancer of the bile duct, and its diagnosis is often challenging. OBJECTIVE.— To provide insights into state-of-the-art approaches for the diagnosis of CCA. DATA SOURCES.— Literature review via PubMed search and authors' experiences. CONCLUSIONS.— CCA can be categorized as intrahepatic or extrahepatic. Intrahepatic CCA is further classified into small-duct-type and large-duct-type, whereas extrahepatic CCA is classified into distal and perihilar according to site of origin within the extrahepatic biliary tree. Tumor growth patterns include mass forming, periductal infiltrating, and intraductal tumors. The clinical diagnosis of CCA is challenging and usually occurs at an advanced tumor stage. Pathologic diagnosis is made difficult by tumor inaccessibility and challenges in distinguishing CCA from metastatic adenocarcinoma to the liver. Immunohistochemical stains can assist in differentiating CCA from other malignancies, such as hepatocellular carcinoma, but no distinctive CCA-specific immunohistochemical profile has been identified. Recent advances in next-generation sequencing-based high-throughput assays have identified distinct genomic profiles of CCA subtypes, including genomic alterations that are susceptible to targeted therapies or immune checkpoint inhibitors. Detailed histopathologic and molecular evaluations of CCA by pathologists are critical for correct diagnosis, subclassification, therapeutic decision-making, and prognostication. The first step toward achieving these goals is to acquire a detailed understanding of the histologic and genetic subtypes of this heterogeneous tumor group. Here, we review state-of-the-art approaches that should be applied to establish a diagnosis of CCA, including clinical presentation, histopathology, staging, and the practical use of genetic testing methodologies.
Collapse
Affiliation(s)
- Purva Gopal
- From the Department of Pathology, UT Southwestern Medical Center, Dallas, Texas (Gopal)
| | - Marie E Robert
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Robert, Zhang)
| | - Xuchen Zhang
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Robert, Zhang)
| |
Collapse
|
5
|
Ye J, Pang Y, Yang X, Zhang C, Shi L, Chen Z, Huang G, Wang X, Lu F. PPIH gene regulation system and its prognostic significance in hepatocellular carcinoma: a comprehensive analysis. Aging (Albany NY) 2023; 15:11448-11470. [PMID: 37874737 PMCID: PMC10637785 DOI: 10.18632/aging.205134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Peptidyl-prolyl isomerase H (PPIH) is a member of the cyclophilin protein family, which functions as a molecular chaperone and is involved in the splicing of pre-mRNA. According to reports, the malignant progression of HCC related to hepatitis B virus (HBV) is tightly associated with RNA-binding proteins. Nevertheless, there is no research on PPIH expression or its function in the occurrence and progression of HCC. RESULTS We are the first to reveal that the mRNA and protein levels of Ppih are substantially overexpressed in HCC, as the outcomes show. A significant correlation existed between enriched expression of Ppih within HCC and more advanced, poorly differentiated, and TP53-mutated tumors. CONCLUSION These findings, which suggest that Ppih may serve as a predictive biomarker for people with HCC, serve as a starting point for further investigation into the function of Ppih in the progression of carcinogenesis. METHODS Accordingly, we utilized clinical samples and bioinformatics analysis to assess Ppih's mRNA, protein expression, and gene regulatory system in HCC. Additionally, Wilcoxon signed-rank testing and logistic regression were utilized to inspect the association between clinicopathological factors and Ppih. Clinical pathological traits linked to overall survival (OS) among HCC patients were examined via TCGA data via Cox regression and the Kaplan-Meier approach. Additionally, via TCGA data collection, gene set enrichment assessment was also conducted.
Collapse
Affiliation(s)
- Jun Ye
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yilin Pang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xunjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Lei Shi
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Guijia Huang
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Xianhe Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Fangyang Lu
- Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| |
Collapse
|
6
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
7
|
Zhuang X, Deng G, Wu X, Xie J, Li D, Peng S, Tang D, Zhou G. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol 2023; 13:1143600. [PMID: 37188191 PMCID: PMC10175665 DOI: 10.3389/fonc.2023.1143600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Hepato-pancreato-biliary (HPB) cancer is a serious category of cancer including tumors originating in the liver, pancreas, gallbladder and biliary ducts. It is limited by two-dimensional (2D) cell culture models for studying its complicated tumor microenvironment including diverse contents and dynamic nature. Recently developed three-dimensional (3D) bioprinting is a state-of-the-art technology for fabrication of biological constructs through layer-by-layer deposition of bioinks in a spatially defined manner, which is computer-aided and designed to generate viable 3D constructs. 3D bioprinting has the potential to more closely recapitulate the tumor microenvironment, dynamic and complex cell-cell and cell-matrix interactions compared to the current methods, which benefits from its precise definition of positioning of various cell types and perfusing network in a high-throughput manner. In this review, we introduce and compare multiple types of 3D bioprinting methodologies for HPB cancer and other digestive tumors. We discuss the progress and application of 3D bioprinting in HPB and gastrointestinal cancers, focusing on tumor model manufacturing. We also highlight the current challenges regarding clinical translation of 3D bioprinting and bioinks in the field of digestive tumor research. Finally, we suggest valuable perspectives for this advanced technology, including combination of 3D bioprinting with microfluidics and application of 3D bioprinting in the field of tumor immunology.
Collapse
Affiliation(s)
- Xiaomei Zhuang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Deng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Wu
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Juping Xie
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Songlin Peng
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
9
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Wang H, Liu J, Chen W, Na J, Huang Y, Li G. A fluorescence aptasensor based on GSH@GQDs and RGO for the detection of Glypican-3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120798. [PMID: 35051745 DOI: 10.1016/j.saa.2021.120798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Glypican-3 (GPC3), a heparin sulfate proteoglycan, is a potential diagnostic and therapeutic target for hepatocellular carcinoma. In this paper, a novel fluorescent aptasensor for GPC3 detection is constructed via glutathione@graphene quantum dots-labeled GPC3 aptamer (GSH@GQDs-GPC3Apt) as a fluorescence probe. First, GSH@GQDs is screened out with higher fluorescence intensity, which emits bright blue fluorescence under ultraviolet light. Then, the fluorescence-labeled GSH@GQDs-GPC3Apt probe is formed by the combination of amination GPC3Apt and GSH@GQDs using EDC/NHS coupled reaction. Under hydrogen bond and π-π interaction/stacking, the fluorescence of GSH@GQDs-GPC3Apt could be quenched by reductive graphene oxide (RGO) with the help of the photoinduced electron transfer and the fluorescence resonance energy transfer mechanism. In the presence of GPC3, the GSH@GQDs-GPC3Apt specifically recognizes and binds to GPC3, giving rise to the change of secondary structure of GPC3Apt to form the GPC3/GPC3Apt-GSH@GQDs complex, which would lead to the disintegration of the GSH@GQDs-GPC3Apt-RGO compound. Therefore, the energy transfer process is blocked and the fluorescence intensity is restored, enabling a highly sensitive response to GPC3. When the concentration of GPC3 is from 5.0 ng/mL to 150.0 ng/mL, the fluorescence recovery rate is well linearly related to GPC3 concentration with the limit of detection of 2.395 ng/mL (S/N = 3). This strategy shows recoveries from 98.31% to 101.89% in human serum samples and provides simple, fast and cheap analysis of GPC3, which suggests that it has great potential applications in clinical diagnosis for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huixue Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinya Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Wei Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China
| | - Jintong Na
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guiyin Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People's Republic of China.
| |
Collapse
|
11
|
Lennartz M, Gehrig E, Weidemann S, Gorbokon N, Menz A, Büscheck F, Hube-Magg C, Hinsch A, Reiswich V, Höflmayer D, Fraune C, Jacobsen F, Bernreuther C, Lebok P, Sauter G, Wilczak W, Steurer S, Burandt E, Marx AH, Simon R, Krech T, Clauditz TS, Minner S, Dum D, Uhlig R. Large-Scale Tissue Microarray Evaluation Corroborates High Specificity of High-Level Arginase-1 Immunostaining for Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11122351. [PMID: 34943588 PMCID: PMC8699869 DOI: 10.3390/diagnostics11122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Arginase-1 catalyzes the conversion of arginine to ornithine and urea. Because of its predominant expression in hepatocytes, it serves as a marker for hepatocellular carcinoma, although other tumor entities can also express arginase-1. To comprehensively determine arginase-1 expression in normal and neoplastic tissues, tissue microarrays containing 14,912 samples from 117 different tumor types and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, arginase-1 was expressed in the liver, the granular layer of the epidermis, and in granulocytes. Among tumors, a nuclear and cytoplasmic arginase-1 immunostaining was predominantly observed in hepatocellular carcinoma, where 96% of 49 cancers were at least moderately positive. Although 22 additional tumor categories showed occasional arginase immunostaining, strong staining was exceedingly rare in these entities. Staining of a few tumor cells was observed in squamous cell carcinomas of various sites. Staining typically involved maturing cells with the beginning of keratinization in these tumors and was significantly associated with a low grade in 635 squamous cell carcinomas of various sites (p = 0.003). Teratoma, urothelial carcinoma and pleomorphic adenomas sometimes also showed arginase expression in areas with squamous differentiation. In summary, arginase-1 immunohistochemistry is highly sensitive and specific for hepatocellular carcinoma if weak and focal staining is disregarded.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eva Gehrig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Andreas H. Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Correspondence: ; Tel.: +49-40-74105-7214
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
- Institute of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.L.); (E.G.); (S.W.); (N.G.); (A.M.); (F.B.); (C.H.-M.); (A.H.); (V.R.); (D.H.); (C.F.); (F.J.); (C.B.); (P.L.); (G.S.); (W.W.); (S.S.); (E.B.); (A.H.M.); (T.K.); (T.S.C.); (S.M.); (D.D.); (R.U.)
| |
Collapse
|