1
|
Ghosh CC, Cournoyer L, Liu Y, Ballarin A, Layman IB, LaPorte J, Morrissey M, Fraser K, Perati S, Cox BF, Yakirevich E, Treaba DO, Murtha TD, Guha P, Katz SC, Davar D. Subcutaneous checkpoint inhibition is equivalent to systemic delivery when combined with nelitolimod delivered via pressure-enabled drug delivery for depletion of intrahepatic myeloid-derived suppressor cells and control of liver metastases. J Immunother Cancer 2024; 12:e008837. [PMID: 39038918 PMCID: PMC11268044 DOI: 10.1136/jitc-2024-008837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Toll-like receptor 9 (TLR9) agonists induce inflammatory responses that promote the killing of infectious micro-organisms, cancer cells and develop adaptive immune responses. Their ability as immunomodulators to enhance the activity of checkpoint inhibitors (CPI) in treating liver tumors is limited in part by the distinctive biology of intrahepatic myeloid-derived suppressor cells (MDSC) and challenges with tumor-specific therapeutic delivery. We have shown that the regional delivery of type C TLR9 agonist via pressure-enabled drug delivery (PEDD) system improves delivery to the tumor, enhances depletion of MDSCs and overall, stimulates the immune system in combination with or without CPI. Currently, CPIs are delivered intravenously, although there is a growing interest in its subcutaneous (SQ) administration. We compared nelitolimod formerly known as SD-101 administered using PEDD in combination with systemic (Sys) or SQ CPI in murine liver metastases (LM). METHODS The LM model was developed by injecting MC38-Luc cells via the spleen of 8-12 week old male C57/BL6 mice followed by splenectomy. After a week, fluorescently labeled nelitolimod (10 µg/mouse) was delivered via PEDD and co-administered anti-programmed cell death-1 (α-PD-1) either via Sys or SQ. Tumor burden was monitored by in vivo imaging system. Serum cytokine levels were analyzed by Luminex. Tissues were harvested on Day 3 (D3) or Day 10 (D10) post-PEDD to enrich CD45+ cells and were analyzed via NanoString targeted transcriptomics (D3) or flow cytometry (FC, D10) to interrogate immune cell populations (D10). For NanoString analysis, the innate immune panels were selected, and for FC, MDSCs (CD11b+Gr1+), B cells (B220+), dendritic cells (DC, CD11c+), T (CD3+) cells, and M1-like macrophages (F4/80+CD38+Egr2-) were quantified. RESULTS Nelitolimod delivered via PEDD resulted in changes in innate and adaptive immune cells within LM, including depletion of liver MDSC and increased M1-like macrophages in the liver, which are supportive of antitumor immunity. While CPI monotherapy failed to control tumor progression, nelitolimod and CPI combination improved LM control, survival and antitumor immunity beyond the nelitolimod monotherapy effect, irrespective of CPI delivery route. CONCLUSION The SQ route of CPI delivery was equivalent to Sys in combination with nelitolimod, suggesting SQ-CPI may be a rational choice in combination with PEDD of nelitolimod for liver tumor treatment.
Collapse
Affiliation(s)
| | - Lauren Cournoyer
- Department of Surgery, Brown University School of Medicine, Providence, RI, USA
| | - Yujia Liu
- Trisalus Life Sciences, Westminster, Colorado, USA
| | | | - Ilan B Layman
- Department of Surgery, Brown University School of Medicine, Providence, RI, USA
| | | | | | - Kayla Fraser
- Trisalus Life Sciences, Westminster, Colorado, USA
| | | | - Bryan F Cox
- Trisalus Life Sciences, Westminster, Colorado, USA
| | - Evgeny Yakirevich
- Department of Pathology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Diana O Treaba
- Department of Pathology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Timothy D Murtha
- Department of Surgery, Brown University School of Medicine, Providence, RI, USA
| | - Prajna Guha
- Trisalus Life Sciences, Westminster, Colorado, USA
| | - Steven C Katz
- Trisalus Life Sciences, Westminster, Colorado, USA
- Department of Surgery, Brown University School of Medicine, Providence, RI, USA
| | - Diwakar Davar
- Department of Hematology and Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Park R, Saeed A. Immunotherapy in Colorectal Cancer - Finding the Achilles' Heel. NEJM EVIDENCE 2024; 3:EVIDra2300353. [PMID: 38804784 DOI: 10.1056/evidra2300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
AbstractColorectal cancer treatment has evolved considerably in the last decade with the development of immunotherapies. Immune checkpoint inhibitor therapies have brisk and durable responses in patients with advanced microsatellite instability-high colorectal cancer, both surgically resectable and unresectable; however, patients with microsatellite stable colorectal cancer in general do not respond to the same therapy. Emerging evidence shows that immune checkpoint inhibitors may elicit responses in subsets of patients with microsatellite stable colorectal cancer, especially when combined with other anticancer agents that can modulate the tumor microenvironment. Therefore, rationally designed therapeutic combinations involving immune checkpoint inhibitors, as well as the development of predictive biomarkers for optimal patient selection, have emerged as two key areas of active research. In addition, other immunotherapeutic agents such as cell-based therapies and bispecific T-cell engagers are beginning to be studied in preclinical and early-phase settings. Although by no means a universal treatment strategy, immunotherapy can elicit responses in microsatellite stable colorectal cancer and further research is needed to extend their benefit to patients with microsatellite stable colorectal cancer. Here, we review the current state of immunotherapeutic regimens for microsatellite stable colorectal cancer.
Collapse
Affiliation(s)
- Robin Park
- Division of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL
- Department of Medicine, University of South Florida, Tampa, FL
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh
- UPMC Hillman Cancer Center, Pittsburgh
| |
Collapse
|
3
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Capacio BA, Shankara Narayanan JS, Vicente DA, Liu Y, LaPorte JP, Cox BF, Jaroch DB, Katz SC, White RR. Pressure-Enabled Drug Delivery (PEDD) of a class C TLR9 agonist in combination with checkpoint inhibitor therapy in a murine pancreatic cancer model. Surgery 2023; 174:666-673. [PMID: 37391328 DOI: 10.1016/j.surg.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Systemic immunotherapy has had limited clinical benefit in pancreatic ductal adenocarcinoma. This is thought to be due to its desmoplastic immunosuppressive tumor microenvironment in addition to high intratumoral pressures that limit drug delivery. Recent preclinical cancer models and early-phase clinical trials have demonstrated the potential of toll-like receptor 9 agonists, including the synthetic CpG oligonucleotide SD-101, to stimulate a wide range of immune cells and eliminate suppressive myeloid cells. We hypothesized that Pressure-Enabled Drug Delivery via Pancreatic Retrograde Venous Infusion of toll-like receptor 9 agonist would improve responsiveness to systemic anti-programmed death receptor-1 checkpoint inhibitor therapy in a murine orthotopic pancreatic ductal adenocarcinoma model. METHODS Murine pancreatic ductal adenocarcinoma (KPC4580P) tumors were implanted into the pancreatic tails of C57BL/6J mice and treated 8 days after implantation. Mice were assigned to one of the following treatment groups: Pancreatic Retrograde Venous Infusion delivery of saline, Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist, systemic anti-programmed death receptor-1, systemic toll-like receptor 9 agonist, or the combination of Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist and systemic anti-programmed death receptor-1 (Combo). Fluorescently labeled toll-like receptor 9 agonist (radiant efficiency) was used to measure uptake of the drug on day 1. Changes in tumor burden were evaluated by necropsy at 2 different time points, 7 and 10 days after toll-like receptor 9 agonist treatment. Blood and tumors were collected at necropsy 10 days after toll-like receptor 9 agonist treatment for flow cytometric analysis of tumor-infiltrating leukocytes and plasma cytokines. RESULTS All mice analyzed survived to necropsy. Site of tumor fluorescence measurements revealed 3-fold higher intensity fluorescence in Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist compared to systemic toll-like receptor 9 agonist mice. Tumor weights were significantly lower in the Combo group compared to Pancreatic Retrograde Venous Infusion delivery of saline. Flow cytometry of the Combo group demonstrated significantly increased overall T-cell number, specifically CD4+ T-cells, and a trend toward increased CD8+ T-cells. Cytokine analysis showed significantly decreased IL-6 and CXCL1. CONCLUSION Pressure-Enabled Drug Delivery of toll-like receptor 9 agonist by Pancreatic Retrograde Venous Infusion with systemic anti-programmed death receptor-1 demonstrated improved pancreatic ductal adenocarcinoma tumor control in a murine pancreatic ductal adenocarcinoma model. These results support study of this combination therapy in pancreatic ductal adenocarcinoma patients and expansion of ongoing Pressure-Enabled Drug Delivery clinical trials.
Collapse
Affiliation(s)
| | | | - Diego A Vicente
- Uniformed Services University of Health Sciences, Bethsda, MD
| | - Yujia Liu
- TriSalus Life Sciences, Westminster, CO
| | | | | | | | - Steven C Katz
- TriSalus Life Sciences, Westminster, CO; Department of Surgery, Brown University Warren Alpert Medical School, Providence, RI
| | - Rebekah R White
- Department of Surgery, Moores Cancer Center, University of California San Diego, CA.
| |
Collapse
|
5
|
Cascini C, Ratti C, Botti L, Parma B, Cancila V, Salvaggio A, Meazza C, Tripodo C, Colombo MP, Chiodoni C. Rewiring innate and adaptive immunity with TLR9 agonist to treat osteosarcoma. J Exp Clin Cancer Res 2023; 42:154. [PMID: 37365634 DOI: 10.1186/s13046-023-02731-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary bone tumor in children and adolescent. Surgery and multidrug chemotherapy are the standard of treatment achieving 60-70% of event-free survival for localized disease at diagnosis. However, for metastatic disease, the prognosis is dismal. Exploiting immune system activation in the setting of such unfavorable mesenchymal tumors represents a new therapeutic challenge. METHODS In immune competent OS mouse models bearing two contralateral lesions, we tested the efficacy of intralesional administration of a TLR9 agonist against the treated and not treated contralateral lesion evaluating abscopal effect. Multiparametric flow cytometry was used to evaluate changes of the tumor immune microenviroment. Experiments in immune-deficient mice allowed the investigation of the role of adaptive T cells in TLR9 agonist effects, while T cell receptor sequencing was used to assess the expansion of specific T cell clones. RESULTS TLR9 agonist strongly impaired the growth of locally-treated tumors and its therapeutic effect also extended to the contralateral, untreated lesion. Multiparametric flow cytometry showed conspicuous changes in the immune landscape of the OS immune microenvironment upon TLR9 engagement, involving a reduction in M2-like macrophages, paralleled by increased infiltration of dendritic cells and activated CD8 T cells in both lesions. Remarkably, CD8 T cells were needed for the induction of the abscopal effect, whereas they were not strictly necessary for halting the growth of the treated lesion. T cell receptor (TCR) sequencing of tumor infiltrating CD8 T cells showed the expansion of specific TCR clones in the treated tumors and, remarkably, their selected representation in the contralateral untreated lesions, providing the first evidence of the rewiring of tumor-associated T cell clonal architectures. CONCLUSIONS Overall these data indicate that the TLR9 agonist acts as an in situ anti-tumor vaccine, activating an innate immune response sufficient to suppress local tumor growth while inducing a systemic adaptive immunity with selective expansion of CD8 T cell clones, which are needed for the abscopal effect.
Collapse
Affiliation(s)
- Caterina Cascini
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Chiara Ratti
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Botti
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Beatrice Parma
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Valeria Cancila
- Department of Health Science, Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy
| | - Adriana Salvaggio
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Cristina Meazza
- Pediatric Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Mario P Colombo
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Claudia Chiodoni
- Department of Experimental Oncology, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
6
|
Wang T, Hu Y, Dusi S, Qi F, Sartoris S, Ugel S, De Sanctis F. "Open Sesame" to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front Immunol 2023; 14:1130060. [PMID: 36911674 PMCID: PMC9992799 DOI: 10.3389/fimmu.2023.1130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.
Collapse
Affiliation(s)
- Tian Wang
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Yushu Hu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Fang Qi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|