1
|
dos Santos ALS, Rosolen BB, Ferreira FC, Chiancone IS, Pereira SS, Pontes KFM, Traina E, Werner H, Granese R, Araujo Júnior E. Intrauterine Zika Virus Infection: An Overview of the Current Findings. J Pers Med 2025; 15:98. [PMID: 40137414 PMCID: PMC11943202 DOI: 10.3390/jpm15030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus of the family Flaviviridae. The association between ZIKV and microcephaly was first described in Brazil in 2015. The risk of vertical transmission occurs in pregnant women with or without symptoms, and the risk of malformation appears to be worse when infection occurs in the first and second trimesters of pregnancy. The rate of vertical transmission varies from 26 to 65%, and not all fetuses develop malformations. The incidence of malformations resulting from transmission is uncertain, ranging from 6-8% in the US to 40% in Brazil. Congenital ZIKV syndrome is a set of clinical manifestations that can affect the fetus of a mother infected with ZIKV. The manifestations are broad and nonspecific, including microcephaly, subcortical calcifications, ocular changes, congenital contractures, early hypertension, and pyramidal and extrapyramidal signs. Other findings such as growth restriction and fetal miscarriage/death may also occur. Our aim in this article is to review the literature on mosquito transmission, clinical presentation, serologic diagnosis, intrauterine transmission, pre- and postnatal imaging diagnostic findings, and short- and long-term follow-up.
Collapse
Affiliation(s)
- Ana Luiza Soares dos Santos
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Beatriz Bussi Rosolen
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Fernanda Curvelo Ferreira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Isabella Samões Chiancone
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Stefany Silva Pereira
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
| | - Karina Felippe Monezi Pontes
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
- Service of Gynecology and Obstetrics, Ipiranga Hospital, São Paulo 04262-000, SP, Brazil
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (A.L.S.d.S.); (B.B.R.); (F.C.F.); (I.S.C.); (S.S.P.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (K.F.M.P.); (E.T.)
| |
Collapse
|
2
|
Bindu, Pandey HS, Seth P. Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Mol Neurobiol 2024; 61:9927-9944. [PMID: 37910284 DOI: 10.1007/s12035-023-03704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The Zika virus (ZIKV) outbreaks and its co-relation with microcephaly have become a global health concern. It is primarily transmitted by a mosquito, but can also be transmitted from an infected mother to her fetus causing impairment in brain development, leading to microcephaly. However, the underlying molecular mechanism of ZIKV-induced microcephaly is poorly understood. In this study, we explored the role of ZIKV non-structural protein NS4A and NS4B in ZIKV pathogenesis in a well-characterized primary culture of human fetal neural stem cells (fNSCs). We observed that the co-transfection of NS4A and NS4B altered the neural stem cell fate by arresting proliferation and inducing premature neurogenesis. NS4A + NS4B transfection in fNSCs increased autophagy and dysregulated notch signaling. Further, it also altered the regulation of downstream genes controlling cell proliferation. Additionally, we reported that 3 methyl-adenine (3-MA), a potent autophagy inhibitor, attenuated the deleterious effects of NS4A and NS4B as evidenced by the rescue in Notch1 expression, enhanced proliferation, and reduced premature neurogenesis. Our attempts to understand the mechanism of autophagy induction indicate the involvement of mitochondrial fission and ROS. Collectively, our findings highlight the novel role of NS4A and NS4B in mediating NSC fate alteration through autophagy-mediated notch degradation. The study also helps to advance our understanding of ZIKV-induced neuropathogenesis and suggests autophagy as a potential target for anti-ZIKV therapeutic intervention.
Collapse
Affiliation(s)
- Bindu
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
3
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
4
|
Sharma S, Majumdar A, Basu A. Regulation of Onecut2 by miR-9-5p in Japanese encephalitis virus infected neural stem/progenitor cells. Microbiol Spectr 2024; 12:e0323823. [PMID: 38319106 PMCID: PMC10913399 DOI: 10.1128/spectrum.03238-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Japanese encephalitis virus (JEV) is one of the major neurotropic viral infections that is known to dysregulate the homeostasis of neural stem/progenitor cells (NSPCs) and depletes the stem cell pool. NSPCs are multipotent stem cell population of the central nervous system (CNS) which are known to play an important role in the repair of the CNS during insults/injury caused by several factors such as ischemia, neurological disorders, CNS infections, and so on. Viruses have evolved to utilize host factors for their own benefit and during JEV infection, host factors, including the non-coding RNAs such as miRNAs, are reported to be affected, thereby cellular processes regulated by the miRNAs exhibit perturbed functionality. Previous studies from our laboratory have demonstrated the role of JEV infection in dysregulating the function of neural stem cells (NSCs) by altering the cell fate and depleting the stem cell pool leading to a decline in stem cell function in CNS repair mechanism post-infection. JEV-induced alteration in miRNA expression in the NSCs is one of the major interest to us. In prior studies, we have observed an altered expression pattern of certain miRNAs following JEV infection. In this study, we have validated the role of JEV infection in NSCs in altering the expression of miR-9-5p, which is a known regulator of neurogenesis in NSCs. Furthermore, we have validated the interaction of this miRNA with its target, Onecut2 (OC2), in primary NSCs utilizing miRNA mimic and inhibitor transfection experiments. Our findings indicate a possible role of JEV mediated dysregulated interaction between miR-9-5p and its putative target OC2 in NSPCs. IMPORTANCE MicroRNAs have emerged as key disease pathogenic markers and potential therapeutic targets. In this study, we solidify this concept by studying a key miRNA, miR-9-5p, in Japanese encephalitis virus infection of neural stem/progenitor cells. miRNA target Onecut2 has a possible role in stem cell pool biology. Here, we show a possible mechanistic axis worth investing in neurotropic viral biology.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
5
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
6
|
Scotto G, Massa S, Spirito F, Fazio V. Congenital Zika Virus Syndrome: Microcephaly and Orofacial Anomalies. Life (Basel) 2023; 14:55. [PMID: 38255670 PMCID: PMC10820182 DOI: 10.3390/life14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The progressive reappearance of Zika virus (ZIKV) infections since October 2013 and its circulation in >70 countries and territories (from French Polynesia to Brazil and other countries in the Americas, with sporadic spread in Europe and the East) has long been reported as a global public health emergency. ZIKV is a virus transmitted by arthropods (arboviruses), mainly by Aedes mosquitoes. ZIKV can also be transmitted to humans through mechanisms other than vector infection such as sexual intercourse, blood transfusions, and mother-to-child transmission. The latter mode of transmission can give rise to a severe clinical form called congenital Zika syndrome (CZS), which can result in spontaneous abortion or serious pathological alterations in the fetus such as microcephaly or neurological and orofacial anomalies. In this study, beside a succinct overview of the etiological, microbiological, and epidemiological aspects and modes of transmission of Zika virus infections, we have focused our attention on the pathogenetic and histopathological aspects in pregnancy and the pathogenetic and molecular mechanisms that can determine microcephaly, and consequently the clinical alterations, typical of the fetus and newborns, in a subject affected by CZS.
Collapse
Affiliation(s)
- Gaetano Scotto
- Infectious Diseases Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy
| | - Salvatore Massa
- Department of Agriculture, Food, Natural Resource and Engineering, University of Foggia, 71122 Foggia, Italy;
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzina Fazio
- Clinical Chemistry Laboratory, Virology Unit, University Hospital “OORR” Foggia, 71122 Foggia, Italy;
| |
Collapse
|
7
|
Camacho-Concha N, Santana-Román ME, Sánchez NC, Velasco I, Pando-Robles V, Pedraza-Alva G, Pérez-Martínez L. Insights into Zika Virus Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2023; 11:3316. [PMID: 38137537 PMCID: PMC10741857 DOI: 10.3390/biomedicines11123316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a significant public health threat, reaching pandemic levels in 2016. Human infection with ZIKV can manifest as either asymptomatic or as an acute illness characterized by symptoms such as fever and headache. Moreover, it has been associated with severe neurological complications in adults, including Guillain-Barre syndrome, and devastating fetal abnormalities, like microcephaly. The primary mode of transmission is through Aedes spp. mosquitoes, and with half of the world's population residing in regions where Aedes aegypti, the principal vector, thrives, the reemergence of ZIKV remains a concern. This comprehensive review provides insights into the pathogenesis of ZIKV and highlights the key cellular pathways activated upon ZIKV infection. Additionally, we explore the potential of utilizing microRNAs (miRNAs) and phytocompounds as promising strategies to combat ZIKV infection.
Collapse
Affiliation(s)
- Nohemi Camacho-Concha
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - María E. Santana-Román
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Nilda C. Sánchez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico
| | - Victoria Pando-Robles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (N.C.-C.); (M.E.S.-R.); (N.C.S.); (G.P.-A.)
| |
Collapse
|
8
|
Ramphan S, Chumchanchira C, Sornjai W, Chailangkarn T, Jongkaewwattana A, Assavalapsakul W, Smith DR. Strain Variation Can Significantly Modulate the miRNA Response to Zika Virus Infection. Int J Mol Sci 2023; 24:16216. [PMID: 38003407 PMCID: PMC10671159 DOI: 10.3390/ijms242216216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has emerged as a major public health concern due to its association with neurological disorders in humans, including microcephaly in fetuses. ZIKV infection has been shown to alter the miRNA profile in host cells, and these changes can contain elements that are proviral, while others can be antiviral in action. In this study, the expression of 22 miRNAs in human A549 cells infected with two different ZIKV isolates was investigated. All of the investigated miRNAs showed significant changes in expression at at least one time point examined. Markedly, 18 of the miRNAs examined showed statistically significant differences in expression between the two strains examined. Four miRNAs (miR-21, miR-34a, miR-128 and miR-155) were subsequently selected for further investigation. These four miRNAs were shown to modulate antiviral effects against ZIKV, as downregulation of their expression through anti-miRNA oligonucleotides resulted in increased virus production, whereas their overexpression through miRNA mimics reduced virus production. However, statistically significant changes were again seen when comparing the two strains investigated. Lastly, candidate targets of the miRNAs miR-34a and miR-128 were examined at the level of the mRNA and protein. HSP70 was identified as a target of miR-34a, but, again, the effects were strain type-specific. The two ZIKV strains used in this study differ by only nine amino acids, and the results highlight that consideration must be given to strain type variation when examining the roles of miRNAs in ZIKV, and probably other virus infections.
Collapse
Affiliation(s)
- Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Chanida Chumchanchira
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| | - Thanathom Chailangkarn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand; (T.C.); (A.J.)
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; (S.R.); (W.S.)
| |
Collapse
|
9
|
Arora H, Prajapati B, Seth P. Potential role of lncRNA in impairing cellular properties of human neural progenitor cells following exposure to Zika virus E protein. Exp Neurol 2023; 368:114493. [PMID: 37479020 DOI: 10.1016/j.expneurol.2023.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Zika virus (ZIKV) infection during the first trimester of the pregnancy may lead to Congenital zika syndrome in the neonates. The viral infection hampers foetal brain development and causes microcephaly. Human neural progenitor cells (hNPCs) play an important role in brain development, however they are highly susceptible to ZIKV infection. In this study, we elucidated the molecular mechanisms that lead to cellular alterations in hNPCs due to ZIKV E-protein. We investigated proliferation, differentiation, migration and inflammation in hNPCs, which may lead to microcephaly. In our study, we found that ZIKV E-protein causes cell cycle arrest, decrease in proliferation and increase in mitotic length of the dividing hNPCs. We observed CyclinD1 and upstream molecules (p21 and p53) of the pathway are dysregulated, and intracellular calcium at basal level as well as upon ATP stimulation were reduced following over expression of ZIKV E-protein. ZIKV E-protein transfected hNPCs exhibited pre-mature differentiation with pro-neural genes upregulated. Furthermore, ZIKV E-protein disrupted migrational properties of hNPCs and caused elevated levels of inflammatory chemokines and cytokines. To gain insights into molecular mechanisms of these effects on hNPCs, we explored the possible involvement of long non coding RNAs in ZIKV neuropathogenesis. We have shortlisted lncRNAs associated with differentially expressed genes from publicly available transcriptomic data and found some of those lncRNAs are differentially expressed upon E-protein transfection of hNPCs. Gene ontology analysis suggest these lncRNAs play an important role in regulation of viral life cycle, host's defence response and cell proliferation.
Collapse
Affiliation(s)
- Himali Arora
- Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurugram, Haryana, India
| | - Bharat Prajapati
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurugram, Haryana, India.
| |
Collapse
|
10
|
Bhat EA, Ali T, Sajjad N, Kumar R, Bron P. Insights into the structure, functional perspective, and pathogenesis of ZIKV: an updated review. Biomed Pharmacother 2023; 165:115175. [PMID: 37473686 DOI: 10.1016/j.biopha.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Zika virus (ZIKV) poses a serious threat to the entire world. The rapid spread of ZIKV and recent outbreaks since 2007 have caused worldwide concern about the virus. Diagnosis is complicated because of the cross-reactivity of the virus with other viral antibodies. Currently, the virus is diagnosed by molecular techniques such as RT-PCR and IgM-linked enzyme immunoassays (MAC-ELISA). Recently, outbreaks and epidemics have been caused by ZIKV, and severe clinical symptoms and congenital malformations have also been associated with the virus. Although most ZIKV infections present with a subclinical or moderate flu-like course of illness, severe symptoms such as Guillain-Barre syndrome in adults and microcephaly in children of infected mothers have also been reported. Because there is no reliable cure for ZIKV and no vaccine is available, the public health response has focused primarily on preventing infection, particularly in pregnant women. A comprehensive approach is urgently needed to combat this infection and stop its spread and imminent threat. In view of this, this review aims to present the current structural and functional viewpoints, structure, etiology, clinical prognosis, and measures to prevent this transmission based on the literature and current knowledge. Moreover, we provide thorough description of the current understanding about ZIKV interaction with receptors, and a comparative examination of its similarities and differences with other viruses.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Tufail Ali
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir 190006, India
| | - Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Univ. Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
11
|
Kaur G, Pant P, Bhagat R, Seth P. Zika virus E protein modulates functions of human brain microvascular endothelial cells and astrocytes: implications on blood-brain barrier properties. Front Cell Neurosci 2023; 17:1173120. [PMID: 37545876 PMCID: PMC10399241 DOI: 10.3389/fncel.2023.1173120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Neurotropic viruses can cross the otherwise dynamically regulated blood-brain barrier (BBB) and affect the brain cells. Zika virus (ZIKV) is an enveloped neurotropic Flavivirus known to cause severe neurological complications, such as encephalitis and fetal microcephaly. In the present study, we employed human brain microvascular endothelial cells (hBMECs) and astrocytes derived from human progenitors to establish a physiologically relevant BBB model. We used this model to investigate the effects of ZIKV envelope (E) protein on properties of cells comprising the BBB. E protein is the principal viral protein involved in interaction with host cell surface receptors, facilitating the viral entry. Our findings show that the presence of ZIKV E protein leads to activation of both hBMECs and astrocytes. In hBMECs, we observed a decrease in the expression of crucial endothelial junction proteins such as ZO-1, Occludin and VE-Cadherin, which are vital in establishment and maintenance of the BBB. Consequently, the ZIKV E protein induced changes in BBB integrity and permeability. We also found upregulation of genes involved in leukocyte recruitment along with increased proinflammatory chemokines and cytokines upon exposure to E protein. Additionally, the E protein also led to astrogliosis, evident from the elevated expression of GFAP and Vimentin. Both cell types comprising the BBB exhibited inflammatory response upon exposure to E protein which may influence viral access into the central nervous system (CNS) and subsequent infection of other CNS cells. Overall, our study provides valuable insights into the transient changes that occur at the site of BBB upon ZIKV infection.
Collapse
|
12
|
Dey D, Shrivastava V, Joshi D, Singal CMS, Tyagi S, Bhat MA, Jaiswal P, Sharma JB, Palanichamy JK, Sinha S, Seth P, Sen S. Hypoxia Induces Early Neurogenesis in Human Fetal Neural Stem Cells by Activating the WNT Pathway. Mol Neurobiol 2023; 60:2910-2921. [PMID: 36749560 DOI: 10.1007/s12035-023-03248-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (β-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.
Collapse
Affiliation(s)
- Devanjan Dey
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vadanya Shrivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Diksha Joshi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sagar Tyagi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Paritosh Jaiswal
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Sudip Sen
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Dahiya N, Yadav M, Singh H, Jakhar R, Sehrawat N. ZIKV: Epidemiology, infection mechanism and current therapeutics. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2022.1059283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Zika virus (ZIKV) is a vector-borne flavivirus that has been detected in 87 countries worldwide. Outbreaks of ZIKV infection have been reported from various places around the world and the disease has been declared a public health emergency of international concern. ZIKV has two modes of transmission: vector and non-vector. The ability of ZIKV to vertically transmit in its competent vectors, such as Aedes aegypti and Aedes albopictus, helps it to cope with adverse conditions, and this could be the reason for the major outbreaks that occur from time to time. ZIKV outbreaks are a global threat and, therefore, there is a need for safe and effective drugs and vaccines to fight the virus. In more than 80% of cases, ZIKV infection is asymptomatic and leads to complications, such as microcephaly in newborns and Guillain–Barré syndrome (GBS) in adults. Drugs such as sofosbuvir, chloroquine, and suramin have been found to be effective against ZIKV infections, but further evaluation of their safety in pregnant women is needed. Although temoporfin can be given to pregnant women, it needs to be tested further for side effects. Many vaccine types based on protein, vector, DNA, and mRNA have been formulated. Some vaccines, such as mRNA-1325 and VRC-ZKADNA090-00-VP, have reached Phase II clinical trials. Some new techniques should be used for formulating and testing the efficacy of vaccines. Although there have been no recent outbreaks of ZIKV infection, several studies have shown continuous circulation of ZIKV in mosquito vectors, and there is a risk of re-emergence of ZIKV in the near future. Therefore, vaccines and drugs for ZIKV should be tested further, and safe and effective therapeutic techniques should be licensed for use during outbreaks.
Collapse
|
14
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Vaziri S, Pour SH, Akrami-Mohajeri F. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health Res Perspect 2022; 13:341-351. [DOI: 10.24171/j.phrp.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in a rhesus monkey during an investigation of the yellow fever virus in the Zika Forest of Uganda; it was also isolated later from humans in Nigeria. The main distribution areas of ZIKV were the African mainland and South-East Asia in the 1980s, Micronesia in 2007, and more recently the Americas in 2014. ZIKV belongs to the Flaviviridae family and Flavivirus genus. ZIKV infection, which is transmitted by Aedes mosquitoes, is an emerging arbovirus disease. The clinical symptoms of ZIKV infection are fever, headache, rashes, arthralgia, and conjunctivitis, which clinically resemble dengue fever syndrome. Sometimes, ZIKV infection has been associated with Guillain-Barré syndrome and microcephaly. At the end of 2015, following an increase in cases of ZIKV infection associated with Guillain-Barré syndrome and microcephaly in newborns in Brazil, the World Health Organization declared a global emergency. Therefore, considering the global distribution and pathogenic nature of this virus, the current study aimed at reviewing the virologic features, transmission patterns, clinical manifestations, diagnosis, treatment, and prevention of ZIKV infection.
Collapse
|
16
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
17
|
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
18
|
Venkatesan A, Barik A, Paul D, Muthaiyan M, Das R. Identification of novel lncRNA by reanalysis of RNA-seq data in Zika Virus Infected hiNPCs. Virusdisease 2022; 33:185-193. [DOI: 10.1007/s13337-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022] Open
|
19
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
20
|
Chakraborty K, Kar S, Rai B, Bhagat R, Naskar N, Seth P, Gupta A, Bhattacharjee A. Copper dependent ERK1/2 phosphorylation is essential for the viability of neurons and not glia. Metallomics 2022; 14:mfac005. [PMID: 35150272 PMCID: PMC8975716 DOI: 10.1093/mtomcs/mfac005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
Intracellular copper [Cu(I)] has been hypothesized to play role in the differentiation of the neurons. This necessitates understanding the role of Cu(I) not only in the neurons but also in the glia considering their anatomical proximity, contribution towards ion homeostasis, and neurodegeneration. In this study, we did a systematic investigation of the changes in the cellular copper homeostasis during neuronal and glial differentiation and the pathways triggered by them. Our study demonstrates increased mRNA for the plasma membrane copper transporter CTR1 leading to increased Cu(I) during the neuronal (PC-12) differentiation. ATP7A is retained in the trans-Golgi network (TGN) despite high Cu(I) demonstrating its utilization towards the neuronal differentiation. Intracellular copper triggers pathways essential for neurite generation and ERK1/2 activation during the neuronal differentiation. ERK1/2 activation also accompanies the differentiation of the foetal brain derived neuronal progenitor cells. The study demonstrates that ERK1/2 phosphorylation is essential for the viability of the neurons. In contrast, differentiated C-6 (glia) cells contain low intracellular copper and significant downregulation of the ERK1/2 phosphorylation demonstrating that ERK1/2 activation does not regulate the viability of the glia. But ATP7A shows vesicular localization despite low copper in the glia. In addition to the TGN, ATP7A localizes into RAB11 positive recycling endosomes in the glial neurites. Our study demonstrates the role of copper dependent ERK1/2 phosphorylation in the neuronal viability. Whereas glial differentiation largely involves sequestration of Cu(I) into the endosomes potentially (i) for ready release and (ii) rendering cytosolic copper unavailable for pathways like the ERK1/2 activation.
Collapse
Affiliation(s)
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Bhawana Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Reshma Bhagat
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
21
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
22
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
23
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
24
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses' regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran.
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
25
|
Bhagat R, Rajpara P, Kaur G, Gupta K, Seth P. Zika virus E protein dysregulate mir-204/WNT2 signalling in human fetal neural stem cells. Brain Res Bull 2021; 176:93-102. [PMID: 34425198 DOI: 10.1016/j.brainresbull.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Zika Virus (ZIKV) belongs to the family of flaviviruses, and is neurotrophic. It has been known to cause severe congenital disabilities including microcephaly in neonates. The virus has a specific preference towards neural stem cells (NSCs). ZIKV impairs proliferation and differentiation of NSCs during in-utero brain development of the fetus. However, molecular pathways involved in ZIKV induced alteration in NSCs are yet to be explored. In our previous study, we have described that ZIKV E protein dysregulates microRNA circuitry in NSCs and also impairs their proliferative and differentiation abilities. WNT signalling was found to be the target of differentially expressed miRNAs as suggested by PANTHER PATHWAY analysis of differentially expressed miRNA targets. In our current follow-up study, we investigate that WNT2 is downregulated in response to ZIKV E protein in human fetal NSCs and WNT2 is the molecular target of microRNA miR-204-5p. We provide pieces of evidences that miR-204-5p/WNT2 axis is involved in ZIKV induced impairment in the proliferation and immature differentiation of neural stem cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Prateek Rajpara
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Guneet Kaur
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Karnika Gupta
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Gurgaon, Haryana, India.
| |
Collapse
|
26
|
Gomes JA, Sgarioni E, Vieira IA, Fraga LR, Ashton-Prolla P, Terças-Tretell ACP, da Silva JH, Ribeiro BFR, Galera MF, de Oliveira TM, Carvalho de Andrade MDF, Carvalho IF, Schuler-Faccini L, Vianna FSL. Functional Polymorphisms in the p53 Pathway Genes on the Genetic Susceptibility to Zika Virus Teratogenesis. Front Cell Infect Microbiol 2021; 11:641413. [PMID: 34307186 PMCID: PMC8294037 DOI: 10.3389/fcimb.2021.641413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital Zika Syndrome (CZS) occurs in up to 42% of individuals exposed to ZIKV prenatally. Deregulation in gene expression and protein levels of components of the p53 signaling pathway, such as p53 and MDM2, due to ZIKV infection has been reported. Here, we evaluate functional polymorphisms in genes of the p53 signaling pathway as risk factors to CZS. Forty children born with CZS and forty-eight children exposed to ZIKV, but born without congenital anomalies were included in this study. Gestational and sociodemographic information as well as the genotypic and allelic frequencies of functional polymorphisms in TP53, MDM2, MIR605 and LIF genes were compared between the two groups. We found children with CZS exposed predominantly in the first trimester and controls in the third trimester (p<0.001). Moreover, children with CZS were predominantly from families with a lower socioeconomic level (p=0.008). We did not find a statistically significant association between the investigated polymorphisms and development of CZS; however, by comparing individuals with CZS and lissencephaly or without lissencephaly, we found a significative difference in the allelic frequencies of the TP53 rs1042522, which is associated with a more potent p53-induced apoptosis (p=0.007). Our findings suggest that the TP53 rs1042522 polymorphism should be better investigate as a genetic risk factor for the development of lissencephaly in children with CZS.
Collapse
Affiliation(s)
- Julia A Gomes
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Eduarda Sgarioni
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Igor A Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Lucas R Fraga
- Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Ashton-Prolla
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Juliana H da Silva
- Secretaria Municipal de Saúde de Tangará da Serra, Tangará da Serra, Brazil
| | | | - Marcial F Galera
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Thalita M de Oliveira
- Hospital Universitário Júlio Müller (HUJM), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Isabella F Carvalho
- Curso de Odontologia, Centro Universitário Christus (UNICHRISTUS), Fortaleza, Brazil
| | - Lavínia Schuler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Sistema Nacional de Informação sobre Agentes Teratogênicos (SIAT), Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.,Laboratório de Medicina Genômica (LMG), Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
27
|
Pan Y, Cheng A, Wang M, Yin Z, Jia R. The Dual Regulation of Apoptosis by Flavivirus. Front Microbiol 2021; 12:654494. [PMID: 33841381 PMCID: PMC8024479 DOI: 10.3389/fmicb.2021.654494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a form of programmed cell death, which maintains cellular homeostasis by eliminating pathogen-infected cells. It contains three signaling pathways: death receptor pathway, mitochondria-mediated pathway, and endoplasmic reticulum pathway. Its importance in host defenses is highlighted by the observation that many viruses evade, hinder or destroy apoptosis, thereby weakening the host’s immune response. Flaviviruses such as Dengue virus, Japanese encephalitis virus, and West Nile virus utilize various strategies to activate or inhibit cell apoptosis. This article reviews the research progress of apoptosis mechanism during flaviviruses infection, including flaviviruses proteins and subgenomic flaviviral RNA to regulate apoptosis by interacting with host proteins, as well as various signaling pathways involved in flaviviruses-induced apoptosis, which provides a scientific basis for understanding the pathogenesis of flaviviruses and helps in developing an effective antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
28
|
Bhagat R, Kaur G, Seth P. Molecular mechanisms of zika virus pathogenesis: An update. Indian J Med Res 2021; 154:433-445. [PMID: 35345069 PMCID: PMC9131805 DOI: 10.4103/ijmr.ijmr_169_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV), member of the family Flaviviridae belonging to genus Flavivirus, is an arthropod-borne virus. The ZIKV is known to cause severe congenital birth defects in neonates. Due to a large number of worldwide outbreaks and associated neurological complications with ZIKV, a public health emergency was declared by the World Health Organization on February 1, 2016. The virus exhibits neurotropism and has a specific propensity towards neural precursor cells of the developing brain. In utero ZIKV infection causes massive cell death in the developing brain resulting in various motor and cognitive disabilities in newborns. The virus modulates cell machinery at several levels to replicate itself and inhibits toll like receptors-3 signalling, deregulates microRNA circuitry and induces a chronic inflammatory response in affected cells. Several significant advances have been made to understand the mechanisms of neuropathogenesis, its prevention and treatment. The current review provides an update on cellular and molecular mechanisms of ZIKV-induced alterations in the function of various brain cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
- Department of Genetics, Washington University in Saint Louis, Missouri, United States of America
| | - Guneet Kaur
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
29
|
Saliu IO, Bhagat R, Ojo OB, Akinmoladun AC, Olaleye MT, Seth P, Rema V. Reduction of anoxia-induced bioenergetic disturbance in astrocytes by methanol fruit extract of Tetrapleura tetraptera and in silico evaluation of the effect of its antioxidative constituents on excitotoxicity. Toxicol Rep 2021; 8:264-276. [PMID: 33552925 PMCID: PMC7848610 DOI: 10.1016/j.toxrep.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/06/2022] Open
Abstract
Oxidative stress and excitotoxicity are some of the pathophysiological abnormalities in hypoxia-induced brain injury. This study evaluated the intrinsic antioxidant property of methanol fruit extract of Tetrapleura tetraptera (TT), traditionally used for managing brain diseases such as cerebral infarction in West Africa, and its ability to protect primary astrocytes from anoxia-induced cell death. The effect of the phytochemicals present in TT on excitotoxicity was assessed in silico, through docking with human glutamate synthetase (hGS). Chromatographic and spectrophotometric analyses of TT were performed. Primary astrocytes derived from neural stem cells were treated with TT and its effect on astrocyte viability was assessed. TT-treated astrocytes were then subjected to anoxic insult and, cell viability and mitochondrial membrane potential were evaluated. Molecular docking of hGS with detected phytochemicals in TT (aridanin, naringenin, ferulic acid, and scopoletin) was performed and the number of interactions with the lead compounds, aridanin, analyzed. HPLC-DAD analysis of TT revealed the presence of various bioactive phytochemicals. TT demonstrated notable antioxidant and radical scavenging activities. TT also protected astrocytes from anoxic insult by restoring cell viability and preventing alteration to mitochondrial membrane integrity. Aridanin, naringenin, ferulic acid, and scopoletin demonstrated good binding affinities with hGS indicating that Tetrapleura tetraptera is a potential source of new plant-based bioactives relevant in the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ibrahim Olabayode Saliu
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria.,Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| | - Reshma Bhagat
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Olubukola Benedicta Ojo
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Afolabi C Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - M Tolulope Olaleye
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, 340001, Nigeria
| | - Pankaj Seth
- Neurovirology Section, Department of Molecular and Cellular Neuroscience, National Brain Research Centre (NBRC), Manesar, Haryana, 122052, India
| | - Velayudhan Rema
- Department of System and Cognitive Neuroscience, National Brain Research Center (NBRC), Manesar, Haryana, 122052, India
| |
Collapse
|
30
|
Hu Y, Xu Y, Huang Z, Deng Z, Fan J, Yang R, Ma H, Song J, Zhang Y. Transcriptome sequencing analysis of SH-SY5Y cells infected with EV71 reveals the potential neuropathic mechanisms. Virus Res 2020; 282:197945. [PMID: 32220619 DOI: 10.1016/j.virusres.2020.197945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/18/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022]
Abstract
Enterovirus A71 (EV71) remains the most common causative agent of hand, foot, and mouth disease (HFMD), and the neurological complications induced by EV71 are usually the leading cause of death in children with HFMD. However, the mechanism of nervous system changes caused by EV71 infection is still unclear. Therefore, in the current study, EV71 was inoculated into the human neuroblastoma cell line SH-SY5Y and subsequent transcriptome sequencing was used to examine the alterations of the transcriptome in infected SH-SY5Y cells. It is expected to determine the underlying mechanism of neurological diseases in response to EV71 infection. As a result, a total of 82,406,974, 112,410,808 and 87,780,371 clean reads were found in the control, EV71-12 h and EV71-24 h groups, respectively. Moreover, 160 and 745 differentially expressed genes were identified in the EV71-12 h and EV71-24 h groups, respectively, as compared to the control group. Next, to further explore the pathogenic mechanism triggered by EV71 infection, we mainly focused on the common differentially expressed genes at different time points of EV71 infection. And it was discovered that there were 95 common differentially expressed genes, which were used to conduct GO and pathway analysis. GO enrichment analysis demarcated related biological processes, molecular functions and cellular components, and KEGG pathway analysis enabled annotations of metabolic pathways and revealed interactions among the significantly enriched pathways. The results showed that the enriched GO term "Nervous system development" and enriched pathway "CCKR signaling map" might be important contributors to EV71-induced neuropathological mechanisms. In addition, we also screened 10 up- and down-regulated non-protein coding genes with significantly different expression in our transcriptome profiling, which suggested that these abnormally regulated non-protein-encoding genes might also play important roles in the pathogenesis of EV71 infection. Eventually, RT-qPCR technology was adopted to validate the transcriptome sequencing data and the experiment demonstrated that the RT-qPCR and transcriptome sequencing results were basically consistent. In summary, this is the first transcriptome analysis of SH-SY5Y cells in response to EV71 infection and provides valuable cues for further exploring the mechanism of nervous system changes caused by EV71 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Yanyan Xu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Zhenming Huang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Zheng Deng
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Jingyuan Fan
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Ruian Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Hongyu Ma
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650022, China.
| |
Collapse
|
31
|
Channakkar AS, Singh T, Pattnaik B, Gupta K, Seth P, Adlakha YK. MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 2020; 38:683-697. [PMID: 32012382 PMCID: PMC7217206 DOI: 10.1002/stem.3155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137.
Collapse
Affiliation(s)
- Asha S Channakkar
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Tanya Singh
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Karnika Gupta
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Yogita K Adlakha
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
32
|
Sharma V, Sharma M, Dhull D, Sharma Y, Kaushik S, Kaushik S. Zika virus: an emerging challenge to public health worldwide. Can J Microbiol 2019; 66:87-98. [PMID: 31682478 DOI: 10.1139/cjm-2019-0331] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that was first isolated from Zika forest, Uganda, in 1947. Since its inception, major and minor outbreaks have been documented from several parts of world. Aedes spp. mosquitoes are the primary vectors of ZIKV, but the virus can also be transmitted through sexual practices, materno-fetal transmission, and blood transfusion. The clinical presentations of symptomatic ZIKV infections are similar to dengue and chikungunya, including fever, headache, arthralgia, retro-orbital pain, conjunctivitis, and rash. ZIKV often causes mild illness in the majority of cases, but in some instances, it is linked with congenital microcephaly and autoimmune disorders like Guillain-Barré syndrome. The recent Indian ZIKV outbreak suggests that the virus is circulating in the South East Asian region and may cause new outbreaks in future. At present, no specific vaccines or antivirals are available to treat ZIKV, so management and control of ZIKV infections rely mostly on preventive measures.
Collapse
Affiliation(s)
- Vikrant Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Manisha Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla-171005, Himachal Pradesh, India
| | - Divya Dhull
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Yashika Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Sulochana Kaushik
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
33
|
Ferreira RO, Garcez PP. Dissecting the Toxic Effects of Zika Virus Proteins on Neural Progenitor Cells. Neuron 2019; 101:989-991. [PMID: 30897362 DOI: 10.1016/j.neuron.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanisms by which Zika virus (ZIKV) disrupts neurogenesis and causes microcephaly are poorly understood. In this issue of Neuron, Li et al. (2019) demonstrate that ZIKV protease NS2B-NS3 heterodimers cleave Septin-2 and lead to cytokinesis defects.
Collapse
Affiliation(s)
- Raiane O Ferreira
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Wei WJ, Shi B, Guan X, Ma JY, Wang YC, Liu J. Mapping theme trends and knowledge structures for human neural stem cells: a quantitative and co-word biclustering analysis for the 2013-2018 period. Neural Regen Res 2019; 14:1823-1832. [PMID: 31169201 PMCID: PMC6585554 DOI: 10.4103/1673-5374.257535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Neural stem cells, which are capable of multi-potential differentiation and self-renewal, have recently been shown to have clinical potential for repairing central nervous system tissue damage. However, the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically. In this study, we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word. Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies. Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder. We identified 78 high-frequency Medical Subject Heading (MeSH) terms. A visual matrix was built with the repeated bisection method in gCLUTO software. A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software. The analyses demonstrated that in the 6-year period, hot topics were clustered into five categories. As suggested by the constructed strategic diagram, studies related to cytology and physiology were well-developed, whereas those related to neural stem cell applications, tissue engineering, metabolism and cell signaling, and neural stem cell pathology and virology remained immature. Neural stem cell therapy for stroke and Parkinson's disease, the genetics of microRNAs and brain neoplasms, as well as neuroprotective agents, Zika virus, Notch receptor, neural crest and embryonic stem cells were identified as emerging hot spots. These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wei
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Bei Shi
- Department of Physiology, China Medical University, Shenyang, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing-Yun Ma
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
35
|
Xu D, Li C, Qin CF, Xu Z. Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annu Rev Virol 2019; 6:459-479. [PMID: 31206355 DOI: 10.1146/annurev-virology-092818-015740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The circulation of Zika virus (ZIKV) in nearly 80 countries and territories poses a significant global threat to public health. ZIKV is causally linked to severe developmental defects in the brain, recognized as congenital Zika syndrome (CZS), which includes microcephaly and other serious congenital neurological complications. Since the World Health Organization declared the ZIKV outbreak a public health emergency of international concern, remarkable progress has been made in the generation of different ZIKV infection animal models to gain insight into cellular targets and pathogenesis and to explore the associated underlying mechanisms. Here we focus on summarizing our current understanding of the effects of ZIKV on mammalian brain development in different developmental stages and discuss the potential underlying mechanisms of ZIKV-induced CZS, as well as future perspectives.
Collapse
Affiliation(s)
- Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China;
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; .,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
36
|
Castro FL, Geddes VEV, Monteiro FLL, Gonçalves RMDT, Campanati L, Pezzuto P, Paquin-Proulx D, Schamber-Reis BL, Azevedo GS, Gonçalves AL, Cunha DP, Moreira MEL, Vasconcelos ZFM, Chimeli L, Melo A, Tanuri A, Nixon DF, Ribeiro-Alves M, Aguiar RS. MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection. ASN Neuro 2019; 11:1759091419850983. [PMID: 31213064 PMCID: PMC6585135 DOI: 10.1177/1759091419850983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/24/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) member of the Flaviviridae family, which has been associated with the development of the congenital Zika syndrome (CZS). RNA viruses, such as flaviviruses, have been reported to exert a profound impact on host microRNAs (miRNAs). Cellular miRNAs modulated by ZIKV may help identify cellular pathways of relevance to pathogenesis. Here, we screened 754 human cellular miRNAs modulated by ZIKV infection (Brazilian PE strain) in a neuroblastoma cell line. Seven miRNAs (miR-99a*, miR-126*, miR-190b, miR-361-3p, miR-522-3p, miR-299-5p, and miR-1267) were downregulated during ZIKV infection, while miR-145 was upregulated. Furthermore, 11 miRNAs were exclusively expressed in ZIKV-infected (miR-148a, miR-342-5p, miR-598, and miR-708-3p) or mock cells (miR-208, miR-329, miR-432-5p, miR-488, miR-518b, miR-520g, and miR-767-5p). Furthermore, in silico analysis indicated that some central nervous system, cellular migration, and adhesion function-related biological processes were overrepresented in the list of target genes of the miRNAs regulated in ZIKV-infected cells, especially for miR-145 and miR-148a. The induction of miR-145 and miR-148a was confirmed in postmortem brain samples from stillborn with severe CZS. Finally, we determined the expression regulation of microcephaly related genes through RNA interference pathway caused by ZIKV directly on neuron cells.
Collapse
Affiliation(s)
- Fernanda L. Castro
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor E. V. Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio L. L. Monteiro
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raphael M. D. T. Gonçalves
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Loraine Campanati
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Bruno L. Schamber-Reis
- Faculdade de Ciências Médicas de Campina Grande, Núcleo de Genética Médica, Centro Universitário UniFacisa, Campina Grande, Brazil
| | | | | | | | | | | | - Leila Chimeli
- Laboratório de Neuropatologia, Instituto Estadual do Cérebro, Rio de Janeiro, Brazil
| | - Adriana Melo
- Faculdade de Ciências Médicas de Campina Grande, Núcleo de Genética Médica, Centro Universitário UniFacisa, Campina Grande, Brazil
- Instituto de Pesquisa Professor Amorim Neto, Campina Grande, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas F. Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | | | - Renato S. Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|