1
|
Xu X, Lou Z, Li J, Liang F, Yu Y, Wu M. Inhibition of Hsp90 Alleviates Necroptosis and Inflammation in Lung Epithelial Cells During Pulmonary Ischemia-Reperfusion Injury. Clin Exp Pharmacol Physiol 2025; 52:e70037. [PMID: 40169254 DOI: 10.1111/1440-1681.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Lung ischemia-reperfusion injury (LIRI) is a critical pathological process associated with various clinical conditions, characterised by excessive inflammatory responses and cell death, which can lead to severe respiratory dysfunction and even mortality. However, no effective therapeutic strategy is currently available. This study investigates the protective effects and underlying mechanisms of the Hsp90 inhibitor 17-dimethylaminoethylamino (17-DMAG) in LIRI. An in vivo mouse model of LIRI was established by transiently occluding the left pulmonary hilum with a microvascular clamp, followed by reperfusion. In vitro, necroptosis was induced in BEAS-2B cells using TSZ (TNF-α, Smac mimetic and z-VAD-FMK). Our results demonstrate that 17-DMAG significantly attenuates lung injury, inflammation and epithelial cell necroptosis in mice. Additionally, 17-DMAG mitigates TSZ-induced cell death and inflammatory responses in BEAS-2B cells. Mechanistically, 17-DMAG inhibits the phosphorylation of RIPK1, RIPK3 and MLKL-key necroptotic regulators and client proteins of Hsp90-thereby suppressing necroptosis and reducing the associated inflammatory response. In conclusion, 17-DMAG alleviates LIRI by inhibiting necroptosis and its consequent acute inflammatory cascade. These findings suggest that 17-DMAG may serve as a promising therapeutic candidate for LIRI treatment.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Lung Surgery, Zhejiang Cancer Hospital, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Zhejiang, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jinsheng Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Yifan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| |
Collapse
|
2
|
Leng F, Gu Z, Pan S, Lin S, Wang X, Zhong M, Song J. Novel cortisol trajectory sub-phenotypes in sepsis. Crit Care 2024; 28:290. [PMID: 39227988 PMCID: PMC11370002 DOI: 10.1186/s13054-024-05071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Sepsis is a heterogeneous syndrome. This study aimed to identify new sepsis sub-phenotypes using plasma cortisol trajectory. METHODS This retrospective study included patients with sepsis admitted to the intensive care unit of Zhongshan Hospital Fudan University between March 2020 and July 2022. A group-based cortisol trajectory model was used to classify septic patients into different sub-phenotypes. The clinical characteristics, biomarkers, and outcomes were compared between sub-phenotypes. RESULTS A total of 258 patients with sepsis were included, of whom 186 were male. Patients were divided into two trajectory groups: the lower-cortisol group (n = 217) exhibited consistently low and slowly declining cortisol levels, while the higher-cortisol group (n = 41) showed relatively higher levels in comparison. The 28-day mortality (65.9% vs.16.1%, P < 0.001) and 90-day mortality (65.9% vs. 19.8%, P < 0.001) of the higher-cortisol group were significantly higher than the lower-cortisol group. Multivariable Cox regression analysis showed that the trajectory sub-phenotype (HR = 5.292; 95% CI 2.218-12.626; P < 0.001), APACHE II (HR = 1.109; 95% CI 1.030-1.193; P = 0.006), SOFA (HR = 1.161; 95% CI 1.045-1.291; P = 0.006), and IL-1β (HR = 1.001; 95% CI 1.000-1.002; P = 0.007) were independent risk factors for 28-day mortality. Besides, the trajectory sub-phenotype (HR = 4.571; 95% CI 1.980-10.551; P < 0.001), APACHE II (HR = 1.108; 95% CI 1.043-1.177; P = 0.001), SOFA (HR = 1.270; 95% CI 1.130-1.428; P < 0.001), and IL-1β (HR = 1.001; 95% CI 1.000-1.001; P = 0.015) were also independent risk factors for 90-day mortality. CONCLUSION This study identified two novel cortisol trajectory sub-phenotypes in patients with sepsis. The trajectories were associated with mortality, providing new insights into sepsis classification.
Collapse
Affiliation(s)
- Fei Leng
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhunyong Gu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Simeng Pan
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shilong Lin
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xu Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jieqiong Song
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Shi C, Mammadova-Bach E, Li C, Liu D, Anders HJ. Pathophysiology and targeted treatment of cholesterol crystal embolism and the related thrombotic angiopathy. FASEB J 2023; 37:e23179. [PMID: 37676696 DOI: 10.1096/fj.202301316r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
Cholesterol crystal (CC) embolism is a complication of advanced atherosclerotic plaques located in the major arteries. This pathological condition is primarily induced by interventional and surgical procedures or occurs spontaneously. CC can induce a wide range of tissue injuries including CC embolism syndrome, a spontaneous or intervention-induced complication of advanced atherosclerosis, while treatment of CC embolism has remained empiric. Vascular occlusions caused by CC embolism may exceed the ischemia tolerance of many tissues, particularly when small arteries are affected. The main approach to CC embolism is primary prophylaxis in patients at risk by stabilizing atherosclerotic plaques and avoiding unnecessary catheter interventions. During CC embolism, the use of platelet inhibitors to avoid abnormal activation and aggregation and anticoagulants may reduce the risk of vascular occlusions and tissue ischemia. This probably explains the relatively low prevalence of clinical manifestations of CC embolism, which are frequently found in autopsy studies. In this review, we summarized the current knowledge on the pathophysiology of CC embolism syndrome deriving from clinical observations and experimental mouse models. Furthermore, we described the risk factors of CC embolism in humans as well as the experimental studies based on empiric treatments. We also discuss potential therapeutic interventions based on recent experimental data and emerging drug options evolving from other research domains. Given the substantial unmet medical need to improve the outcomes of CC embolism, the identification of effective treatment strategies is urgently needed.
Collapse
Affiliation(s)
- Chongxu Shi
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Medical College, Nantong University, Nantong, China
| | - Elmina Mammadova-Bach
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Cong Li
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Medical College, Nantong University, Nantong, China
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
4
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
5
|
Xu Z, Mao C, Su C, Zhang H, Siempos I, Torres LK, Pan D, Luo Y, Schenck EJ, Wang F. Sepsis subphenotyping based on organ dysfunction trajectory. Crit Care 2022; 26:197. [PMID: 35786445 PMCID: PMC9250715 DOI: 10.1186/s13054-022-04071-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. METHODS We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. RESULTS A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening (n = 612, 13.1%), Delayed Worsening (n = 960, 20.5%), Rapidly Improving (n = 1932, 41.3%), and Delayed Improving (n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. CONCLUSIONS Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials.
Collapse
Affiliation(s)
- Zhenxing Xu
- grid.5386.8000000041936877XDivision of Health Informatics, Department of Population Health Sciences, Weill Cornell Medicine, 425 E. 61st Street, 3rd Floor, Suite 301, New York, NY USA
| | - Chengsheng Mao
- grid.16753.360000 0001 2299 3507Division of Health and Biomedical Informatics, Department of Preventive Medicine Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Rubloff Building 11th Floor, 750 N Lake Shore, Chicago, IL USA
| | - Chang Su
- grid.264727.20000 0001 2248 3398Department of Health Service Administration and Policy, College of Public Health, Temple University, Philadelphia, PA USA
| | - Hao Zhang
- grid.5386.8000000041936877XDivision of Health Informatics, Department of Population Health Sciences, Weill Cornell Medicine, 425 E. 61st Street, 3rd Floor, Suite 301, New York, NY USA
| | - Ilias Siempos
- grid.413734.60000 0000 8499 1112Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, 425 E. 61st Street, 4th Floor, Suite 402, New York, NY USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Weill Cornell Medical College, New York, NY USA
| | - Lisa K. Torres
- grid.413734.60000 0000 8499 1112Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, 425 E. 61st Street, 4th Floor, Suite 402, New York, NY USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Weill Cornell Medical College, New York, NY USA
| | - Di Pan
- grid.413734.60000 0000 8499 1112Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, 425 E. 61st Street, 4th Floor, Suite 402, New York, NY USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Weill Cornell Medical College, New York, NY USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine Center for Health Information Partnerships, Feinberg School of Medicine, Northwestern University, Rubloff Building 11th Floor, 750 N Lake Shore, Chicago, IL, USA.
| | - Edward J. Schenck
- grid.413734.60000 0000 8499 1112Division of Pulmonary and Critical Care Medicine, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, 425 E. 61st Street, 4th Floor, Suite 402, New York, NY USA ,grid.5386.8000000041936877XWeill Cornell Medicine, Weill Cornell Medical College, New York, NY USA
| | - Fei Wang
- Division of Health Informatics, Department of Population Health Sciences, Weill Cornell Medicine, 425 E. 61st Street, 3rd Floor, Suite 301, New York, NY, USA.
| |
Collapse
|
6
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7:193. [PMID: 34312370 PMCID: PMC8313570 DOI: 10.1038/s41420-021-00579-w] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yajun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guodong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuru Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiling Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lu Qian
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
7
|
Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf) 2021; 231:e13590. [PMID: 33270362 DOI: 10.1111/apha.13590] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. As mitochondrial dysfunction critically contributes to the pathogenesis of MI, intensive research is focused on the development of therapeutic strategies targeting mitochondrial homeostasis. Mitochondria possess a quality control system which maintains and restores their structure and function by regulating mitochondrial fission, fusion, biogenesis, degradation and death. In response to slight damage such as transient hypoxia or mild oxidative stress, mitochondrial metabolism shifts from oxidative phosphorylation to glycolysis, in order to reduce oxygen consumption and maintain ATP output. Mitochondrial dynamics are also activated to modify mitochondrial shape and structure, in order to meet cardiomyocyte energy requirements through augmenting or reducing mitochondrial mass. When damaged mitochondria cannot be repaired, poorly structured mitochondria will be degraded through mitophagy, a process which is often accompanied by mitochondrial biogenesis. Once the insult is severe enough to induce lethal damage in the mitochondria and the cell, mitochondrial death pathway activation is an inevitable consequence, and the cardiomyocyte apoptosis or necrosis program will be initiated to remove damaged cells. Mitochondrial quality surveillance is a hierarchical system preserving mitochondrial function and defending cardiomyocytes against stress. A failure of this system has been regarded as one of the potential pathologies underlying MI. In this review, we discuss the recent findings focusing on the role of mitochondrial quality surveillance in MI, and highlight the available therapeutic approaches targeting mitochondrial quality surveillance during MI.
Collapse
Affiliation(s)
- Hang Zhu
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| | - Sam Toan
- Department of Chemical Engineering University of Minnesota‐Duluth Duluth MN USA
| | - David Mui
- Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Hao Zhou
- Department of Cardiology Chinese PLA General HospitalMedical School of Chinese PLA Beijing China
| |
Collapse
|
8
|
Xiao T, Huang J, Liu Y, Zhao Y, Wei M. Matrine Protects Cardiomyocytes Against Hyperglycemic Stress by Promoting Mitofusin 2-Induced Mitochondrial Fusion. Front Physiol 2021; 11:597429. [PMID: 33613300 PMCID: PMC7888534 DOI: 10.3389/fphys.2020.597429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Matrine, an active component of Sophora flavescens Ait root extracts, has been used in China for years to treat cancer and viral hepatitis. In the present study, we explored the effects of matrine on hyperglycemia-treated cardiomyocytes. Cardiomyocyte function, oxidative stress, cellular viability, and mitochondrial fusion were assessed through immunofluorescence, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assays, and RNA interference. Matrine treatment suppressed hyperglycemia-induced oxidative stress in cardiomyocytes by upregulating transcription of nuclear factor erythroid 2-like 2 and heme oxygenase-1. Matrine also improved cardiomyocyte contractile and relaxation function during hyperglycemia, and it reduced hyperglycemia-induced cardiomyocyte death by inhibiting mitochondrial apoptosis. Matrine treatment increased the transcription of mitochondrial fusion-related genes and thus attenuated the proportion of fragmented mitochondria in cardiomyocytes. Inhibiting mitochondrial fusion by knocking down mitofusin 2 (Mfn2) abolished the cardioprotective effects of matrine during hyperglycemia. These results demonstrate that matrine could be an effective drug to alleviate hyperglycemia-induced cardiomyocyte damage by activating Mfn2-induced mitochondrial fusion.
Collapse
Affiliation(s)
- Tong Xiao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jie Huang
- Department of Ultrasonography, Affiliated Tumor Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Yuan Liu
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yujie Zhao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Manman Wei
- Department of Cardiovascular, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
9
|
Wang M, Li Q, Zhang Y, Liu H. Total Glucosides of Peony Protect Cardiomyocytes against Oxidative Stress and Inflammation by Reversing Mitochondrial Dynamics and Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6632413. [PMID: 33354278 PMCID: PMC7735829 DOI: 10.1155/2020/6632413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/14/2023]
Abstract
Total glucosides of peony (TGP) are used to treat rheumatoid arthritis and systemic lupus erythematosus. We explored the protective effects of TGP on cardiomyocyte oxidative stress and inflammation in the presence of hydrogen peroxide by focusing on mitochondrial dynamics and bioenergetics. Our study demonstrated that hydrogen peroxide significantly repressed cardiomyocyte viability and promoted cell apoptosis through induction of the mitochondrial death pathway. TGP treatment sustained cardiomyocyte viability, reduced cardiomyocyte apoptosis, and decreased inflammation and oxidative stress. Molecular investigation indicated that hydrogen peroxide caused mitochondrial dynamics disruption and bioenergetics reduction in cardiomyocytes, but this alteration could be normalized by TGP. We found that disruption of mitochondrial dynamics abolished the regulatory effects of TGP on mitochondrial bioenergetics; TGP modulated mitochondrial dynamics through the AMP-activated protein kinase (AMPK) pathway; and inhibition of AMPK alleviated the protective effects of TGP on mitochondria. Our results showed that TGP treatment reduces cardiomyocyte oxidative stress and inflammation in the presence of hydrogen peroxide by correcting mitochondrial dynamics and enhancing mitochondrial bioenergetics. Additionally, the regulatory effects of TGP on mitochondrial function seem to be mediated through the AMPK pathway. These findings are promising for myocardial injury in patients with rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Rheumatism and Immunology, Tianjin First Central hospital, Tianjin, China
| | - Qiang Li
- Department of Pharmacy, Tianjin Union Medical Center, Tianjin, China
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Hao Liu
- Department of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Bin J, Bai T, Zhao Q, Duan X, Deng S, Xu Y. Parkin overexpression reduces inflammation-mediated cardiomyocyte apoptosis through activating Nrf2/ARE signaling pathway. J Recept Signal Transduct Res 2020; 41:451-456. [PMID: 33012239 DOI: 10.1080/10799893.2020.1825488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation has been acknowledged as one of the pathological alterations in various cardiovascular disorders. Parkin has been found to be associated with mitochondrial protection. In the present study, we explored the influence of Parkin overexpression on cardiomyocyte induced by LPS-mediated inflammation response. Our results demonstrated that cardiomyocyte viability was reduced and apoptotic rate was increased upon LPS treatment, an effect that may be caused by cardiomyocyte oxidative stress. At the molecular levels, LPS treatment promoted ROS production, a result that was followed by a drop in the levels of anti-oxidants. Interestingly, Parkin overexpression significantly promoted cardiomyocyte survival and this cardioprotective was attributable to the anti-oxidative property. Parkin overexpression enhanced the expression of anti-oxidative factors such as GSH, SOD and GPX, resulting into depressed ROS production. Further, we found that Parkin modulated cellular anti-oxidative capacity through the Nrf2/ARE signaling pathway. This finding demonstrates that oxidative stress could be considered as the core of inflammation response. Further, therapeutic approaches targeting Parkin would improve cardiomyocyte anti-oxidative capacity through activating Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Jianguo Bin
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Taizhu Bai
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Qingxi Zhao
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Xiaohua Duan
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Suxin Deng
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Yunjun Xu
- Department of Cardiology, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| |
Collapse
|
11
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
12
|
Tian Y, Song H, Qin W, Ding Z, Zhang Y, Shan W, Jin D. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol 2020; 11:897. [PMID: 32848850 PMCID: PMC7424023 DOI: 10.3389/fphys.2020.00897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we analyzed the role of mammalian STE20-like protein kinase 2 (Mst2), a serine-threonine protein kinase, in Lipopolysaccharides (LPS)-mediated inflammation and apoptosis in the H9C2 cardiomyocytes. Mst2 mRNA and protein levels were significantly upregulated in the LPS-treated H9C2 cardiomyocytes. LPS treatment induced expression of IL-2, IL-8, and MMP9 mRNA and proteins in the H9C2 cardiomyocytes, and this was accompanied by increased caspase-3/9 mediating H9C2 cardiomyocyte apoptosis. LPS treatment also increased mitochondrial reactive oxygen species (ROS) and the levels of antioxidant enzymes, such as GSH, SOD, and GPX, in the H9C2 cardiomyocytes. The LPS-treated H9C2 cardiomyocytes showed lower cellular ATP levels and mitochondrial state-3/4 respiration but increased mitochondrial fragmentation, including upregulation of the mitochondrial fission genes Drp1, Mff, and Fis1. LPS-induced inflammation, mitochondrial ROS, mitochondrial fission, and apoptosis were all significantly suppressed by pre-treating the H9C2 cardiomyocytes with the Mst2 inhibitor, XMU-MP1. However, the beneficial effects of Mst2 inhibition by XMU-MP1 were abolished by carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), a potent activator of mitochondrial fission. These findings demonstrate that Mst2 mediates LPS-induced cardiomyocyte inflammation and apoptosis by increasing mitochondrial fission.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Haijiu Song
- The First Department of Medicine, Chengde City Hospital of traditional Chinese Medicine, Chengde, China
| | - Wei Qin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zhenjiang Ding
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Weichao Shan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Dapeng Jin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
13
|
Wang J, Zhu P, Toan S, Li R, Ren J, Zhou H. Pum2-Mff axis fine-tunes mitochondrial quality control in acute ischemic kidney injury. Cell Biol Toxicol 2020; 36:365-378. [PMID: 31993882 DOI: 10.1007/s10565-020-09513-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial fission factor (Mff) has been demonstrated to play a role in the activation of mitochondrial cleavage and mitochondrial death, denoting its role in the regulation of mitochondrial quality control. Recent evidence suggested that the mRNA translation of Mff is under the negative regulation by the RNA-binding protein Pumilio2 (Pum2). This study was designed to examine the role of Pum2 and Mff in the governance of mitochondrial quality control in a murine model of acute ischemic kidney injury. Our results indicated that genetic deletion of Mff overtly attenuated ischemic acute kidney injury (AKI)-induced renal failure through inhibition of pro-inflammatory response, tubular oxidative stress, and ultimately cell death in the kidney. Furthermore, Mff inhibition effectively preserved mitochondrial homeostasis through amelioration of mitochondrial mitosis, restoration of Sirt1/3 expression, and boost of mitochondrial respiration. Western blot analysis revealed that levels of Pum2 were significantly downregulated by ischemic AKI, inversely coinciding with levels of Mff. Overexpression of Pum2 reduced ischemic AKI-mediated Mff upregulation and offered protection on renal tubules through modulation of mitochondrial quality control. Taken together, our data have unveiled the molecular mechanism of the Pum2-Mff axis in mitochondrial quality control in a mouse model of ischemic AKI. These data indicated the therapeutic potential of Pum2 activation and Mff inhibition in the management of ischemic AKI.
Collapse
Affiliation(s)
- Jin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Ruibing Li
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
14
|
Martin-Sanchez D, Fontecha-Barriuso M, Martinez-Moreno JM, Ramos AM, Sanchez-Niño MD, Guerrero-Hue M, Moreno JA, Ortiz A, Sanz AB. Ferroptosis and kidney disease. Nefrologia 2020; 40:384-394. [PMID: 32624210 DOI: 10.1016/j.nefro.2020.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Cell death is a finely regulated process occurring through different pathways. Regulated cell death, either through apoptosis or regulated necrosis offers the possibility of therapeutic intervention. Necroptosis and ferroptosis are among the best studied forms of regulated necrosis in the context of kidney disease. We now review the current evidence supporting a role for ferroptosis in kidney disease and the implications of this knowledge for the design of novel therapeutic strategies. Ferroptosis is defined functionally, as a cell modality characterized by peroxidation of certain lipids, constitutively suppressed by GPX4 and inhibited by iron chelators and lipophilic antioxidants. There is functional evidence of the involvement of ferroptosis in diverse forms of kidneys disease. In a well characterized nephrotoxic acute kidney injury model, ferroptosis caused an initial wave of death, triggering an inflammatory response that in turn promoted necroptotic cell death that perpetuated kidney dysfunction. This suggests that ferroptosis inhibitors may be explored as prophylactic agents in clinical nephrotoxicity or ischemia-reperfusion injury such as during kidney transplantation. Transplantation offers the unique opportunity of using anti-ferroptosis agent ex vivo, thus avoiding bioavailability and in vivo pharmacokinetics and pharmacodynamics issues.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | | | - Juan A Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain; Centre of Biomedical Research in Network of Cardiovascular Disease (CIBERCV), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain; School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|
15
|
Fu G, Wang B, He B, Feng M, Yu Y. LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res 2020; 41:32-37. [PMID: 32580628 DOI: 10.1080/10799893.2020.1783682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necroptosis is a new type of cell death. However, the role of necroptosis in LPS-related cardiomyocyte damage has not been fully understood. The aim of our study is to explore the molecular mechanism underlying inflammation-mediated cardiomyocyte necroptosis. H9C2 cardiomyocyte cell line was treated with LPS. Then, cell viability and necroptosis were measured through qPCR and ELISA. Pathway analysis was performed to verify whether Ripk3/Pgam5 signaling pathway is implicated into the regulation of cardiomyocyte necroptosis. The results demonstrated that LPS reduced cardiomyocyte viability and activated necroptosis. At the molecular levels, oxidative stress and inflammation were triggered by LPS and these alterations may contribute to the activation of necroptosis. Finally, we found that Ripk3/Pgam5 signaling pathway was activated by LPS in cardiomyocyte and this signaling pathway may explain the regulatory mechanism underlying LPS-mediated necroptosis. Altogether, our results demonstrated that septic cardiomyopathy is associated with an activation of necroptosis through the Ripk3/Pgam5 signaling pathway.
Collapse
Affiliation(s)
- Guohua Fu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Binhao Wang
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Bin He
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Mingjun Feng
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yibo Yu
- Arrhythmia Center, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res 2020; 41:1-5. [PMID: 32583708 DOI: 10.1080/10799893.2020.1784938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main therapeutic strategy currently used for acute myocardial infarction (AMI) is to open occluded coronary arteries, a process defined as blood reperfusion. However, blood reperfusion will increase cardiac mortality, tissue damage and cardiac dysfunction in patients with AMI, which is mechanically defined as "ischemia/reperfusion (I/R) injury". It is currently believed that mitochondrial dynamics plays a key role in myocardial I/R, especially excessive mitochondrial fission, which is the main cause of cardiac dysfunction. Therefore, in the process of I/R injury, effective drug intervention and correct treatment strategies can be used to regulate mitochondrial dynamic balance to combat ischemia-reperfusion injury, which can play a huge role in improving the prognosis of patients. This review summarized the effects of mitochondrial fission and mitochondrial fusion balance on myocardial and mitochondrial functional changes during myocardial I/R injury. Finally, combined with the previous injury mechanisms, this review also briefly described some drug intervention that may be beneficial to clinical practice to improve the postoperative quality of life of patients with AMI.
Collapse
Affiliation(s)
- David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Aging (Albany NY) 2020; 12:12160-12174. [PMID: 32554853 PMCID: PMC7343464 DOI: 10.18632/aging.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Rho-associated kinase 1 (ROCK1) regulates tumor metastasis by maintaining cellular cytoskeleton homeostasis. However, the precise role of ROCK1 in non-small-cell lung cancer (NSCLC) apoptosis remains largely unknown. In this study, we examined the function of ROCK1 in NSCLS survival using RNA interference-mediated knockdown. Our results showed that ROCK1 knockdown reduced A549 lung cancer cell viability in vitro. It also inhibited A549 cell migration and proliferation. Transfection of ROCK1 siRNA was associated with increased expression of large tumor suppressor kinase 2 (LATS2) and c-Jun N-terminal kinase (JNK). Moreover, ROCK1 knockdown-induced A549 cell apoptosis and inhibition of proliferation were suppressed by LATS2 knockdown or JNK inactivation, suggesting that ROCK1 deficiency triggers NSCLC apoptosis in a LATS2-JNK pathway-dependent manner. Functional analysis further demonstrated that ROCK1 knockdown dysregulated mitochondrial dynamics and inhibited mitochondrial biogenesis. This effect too was reversed by LATS2 knockdown or JNK inactivation. We have thus identified a potential pathway by which ROCK1 downregulation triggers apoptosis in NSCLC by inducing LATS2-JNK-dependent mitochondrial damage.
Collapse
|
18
|
Mulay SR, Steiger S, Shi C, Anders HJ. A guide to crystal-related and nano- or microparticle-related tissue responses. FEBS J 2020; 287:818-832. [PMID: 31829497 DOI: 10.1111/febs.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Crystals and nano- and microparticles form inside the human body from intrinsic proteins, minerals, or metabolites or enter the body as particulate matter from occupational and environmental sources. Associated tissue injuries and diseases mostly develop from cellular responses to such crystal deposits and include inflammation, cell necrosis, granuloma formation, tissue fibrosis, and stone-related obstruction of excretory organs. But how do crystals and nano- and microparticles trigger these biological processes? Which pathomechanisms are identical across different particle types, sizes, and shapes? In addition, which mechanisms are specific to the atomic or molecular structure of crystals or to specific sizes or shapes? Do specific cellular or molecular mechanisms qualify as target for therapeutic interventions? Here, we provide a guide to approach this diverse and multidisciplinary research domain. We give an overview about the clinical spectrum of crystallopathies, about shared and specific pathomechanisms as a conceptual overview before digging deeper into the specialty field of interest.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stefanie Steiger
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Chongxu Shi
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| |
Collapse
|
19
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Keshk WA, Ibrahim MA, Shalaby SM, Zalat ZA, Elseady WS. Redox status, inflammation, necroptosis and inflammasome as indispensable contributors to high fat diet (HFD)-induced neurodegeneration; Effect of N-acetylcysteine (NAC). Arch Biochem Biophys 2019; 680:108227. [PMID: 31838118 DOI: 10.1016/j.abb.2019.108227] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Adequate dietary intake has a crucial effect on brain health. High fat diet (HFD) rich in saturated fatty acids is linked to obesity and its complications as neurodegeneration via inducing oxidative stress and inflammation. The present study aimed to evaluate the effect of HFD on cerebral cortex in addition to shedding the light on the modulatory role of N-acetylcytsteine (NAC) and its possible underlying biochemical and molecular mechanisms. Twenty eight male Wistar rats were equally and randomly divided into four groups. Group III, and group IV were fed on HFD (45% kcal from fat) for 10 weeks. Group II and group IV were treated with NAC in a dose of 150 mg/kg body weight via intraperitoneal route. Body weight, blood glucose, serum insulin, insulin resistance index, cerebral cortex redox and inflammatory status were evaluated. Cerebral cortex receptor-interacting serine/threonine-protein kinase3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), nod like receptor protein 3 (NLRP3), interleukin (IL)-18 levels were determined by immunoassay. In addition, apoptosis-associated speck-like proteins (ASC) expression by real-time PCR; inducible nitric oxide synthase (iNOS), glial fibrillary activating protein (GFAP) and matrix metalloproteinase-9 (MMP-9) expression by immunohistochemistry were evaluated. NAC supplementation protected against HFD-induced gain of weights, hyperglycemia, and insulin resistance. Furthermore, NAC improved redox and inflammatory status; decreased levels of RIPK3, MLKL, NLRP3, IL-18; down-regulated ASC, iNOS, GFAP and MMP-9 expression; and decreased myeloperoxidase activity in cerebral cortex. NAC could protect against HFD-induced neurodegeneration via improving glycemic status and peripheral insulin resistance, disrupting oxidative stress/neuroinflammation/necroptosis/inflammasome activation axis in cerebral cortex. NAC may represent a promising strategy for conserving brain health against metabolic diseases-induced neurodegeneration.
Collapse
Affiliation(s)
- Walaa A Keshk
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Egypt.
| | - Marwa A Ibrahim
- Department of Histology & Cell Biology, Faculty of Medicine, Tanta University, Egypt
| | - Shahinaz M Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Zeinab A Zalat
- Department of Clinical Pharmacy, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| | - Walaa S Elseady
- Department of Anatomy, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
21
|
Huang D, Jiang Y. MKP1 reduces neuroinflammation via inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Cell Physiol 2019; 235:4316-4325. [PMID: 31612495 DOI: 10.1002/jcp.29308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
MAP kinase phosphatase 1 (MKP1) has been identified as an antiapoptotic protein via sustaining mitochondrial function. However, the role of MKP1 in neuroinflammation has not been fully understood. The aim of this study is to figure out the influence of MKP1 in lipopolysaccharide (LPS)-treated microglia BV-2 cells and investigate whether MKP1 reduces BV-2 cell death via modulating endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The results of this study demonstrated that MKP1 was rapidly downregulated after exposure to LPS. However, the transfection of MKP1 adenovirus could reverse cell viability and attenuate LPS-mediated BV-2 cell apoptosis. Mechanistically, MKP1 overexpression alleviated ER stress and corrected LPS-induced calcium overloading. Besides, MKP1 adenovirus transfection also reversed mitochondrial bioenergetics, maintained mitochondrial membrane potential, and blocked mitochondria-initiated apoptosis signals. Furthermore, we found that MKP1 overexpression is associated with inactivation of mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK) pathway. Interestingly, the activation of MAPK-JNK pathway could abolish the protective effects of MKP1 on BV-2 cells survival and mitochondrial function in the presence of LPS. Altogether, our results identified MKP1 as a primary defender of neuroinflammation via modulating ER stress and mitochondrial function in a manner dependent on MAPK-JNK pathway. These findings may open a new window for the treatment of neuroinflammation in the clinical setting.
Collapse
Affiliation(s)
- Dezhi Huang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Di Somma S, Iannuzzi CA, Passaro C, Forte IM, Iannone R, Gigantino V, Indovina P, Botti G, Giordano A, Formisano P, Portella G, Malfitano AM, Pentimalli F. The Oncolytic Virus dl922-947 Triggers Immunogenic Cell Death in Mesothelioma and Reduces Xenograft Growth. Front Oncol 2019; 9:564. [PMID: 31355131 PMCID: PMC6639422 DOI: 10.3389/fonc.2019.00564] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure that urgently requires effective therapeutic strategies. Current treatments are unable to increase significantly patient survival, which is often limited to <1 year from diagnosis. Virotherapy, based on the use of oncolytic viruses that exert anti-cancer effects by direct cell lysis and through the induction of anti-tumor immune response, represents an alternative therapeutic option for rare tumors with limited life expectancy. In this study, we propose the use of the adenovirus dl922-947, engineered to allow selective replication in cancer cells, to counteract MPM. Methods: We performed a thorough preclinical assessment of dl922-947 effects in a set of MPM cell lines and xenografts. Cytotoxicity of dl922-947 alone and in combination assays was evaluated by sulforhodamine B assay. Cell cycle, calreticulin expression, and high mobility group box protein 1 (HMGB1) secretion were determined by flow cytometry, whereas ATP content was determined by a luminescence-based bioassay. The modulation of angiogenic factors in MPM-infected cells was evaluated through ELISA. Results: We found that dl922-947 infection exhibits cytotoxic effects in MPM cell lines, affecting cell viability, cell cycle progression, and regulating main hallmarks of immunogenic cell death inducing calreticulin surface exposure, HMGB1 and ATP release. Our results also suggest that dl922-947 may affect angiogenic signals by regulation of VEGF-A and IL-8 secretion. Furthermore, dl922-947 shows anti-tumor efficacy in murine xenograft models reducing tumor growth and enhancing survival. Finally, the combination with cisplatin potentiated the cytotoxic effect of dl922-947. Conclusions: Overall our data identify virotherapy, based on the use of dl922-947, as a new possible therapeutic strategy against MPM, which could be used alone, in combination with standard chemotherapy drugs, as shown here, or other approaches also aimed at enhancing the antitumoral immune response elicited by the virus.
Collapse
Affiliation(s)
- Sarah Di Somma
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | | | - Carmela Passaro
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Raffaella Iannone
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Paola Indovina
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Formisano
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Giuseppe Portella
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Anna Maria Malfitano
- Dipartimento Scienze Mediche Traslazionali, Università di Napoli "Federico II", Naples, Italy
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
23
|
Serum FHR1 binding to necrotic-type cells activates monocytic inflammasome and marks necrotic sites in vasculopathies. Nat Commun 2019; 10:2961. [PMID: 31273197 PMCID: PMC6609651 DOI: 10.1038/s41467-019-10766-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/31/2019] [Indexed: 12/22/2022] Open
Abstract
Persistent inflammation is a hallmark of many human diseases, including anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) and atherosclerosis. Here, we describe a dominant trigger of inflammation: human serum factor H-related protein FHR1. In vitro, this protein selectively binds to necrotic cells via its N-terminus; in addition, it binds near necrotic glomerular sites of AAV patients and necrotic areas in atherosclerotic plaques. FHR1, but not factor H, FHR2 or FHR3 strongly induces inflammasome NLRP3 in blood-derived human monocytes, which subsequently secrete IL-1β, TNFα, IL-18 and IL-6. FHR1 triggers the phospholipase C-pathway via the G-protein coupled receptor EMR2 independent of complement. Moreover, FHR1 concentrations of AAV patients negatively correlate with glomerular filtration rates and associate with the levels of inflammation and progressive disease. These data highlight an unexpected role for FHR1 during sterile inflammation, may explain why FHR1-deficiency protects against certain diseases, and identifies potential targets for treatment of auto-inflammatory diseases.
Collapse
|
24
|
Fan J, Zhu Q, Wu Z, Ding J, Qin S, Liu H, Miao P. Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: Role of AMPK pathway and mitochondrial protection. J Cell Physiol 2019; 235:1165-1174. [PMID: 31268170 DOI: 10.1002/jcp.29030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.
Collapse
Affiliation(s)
- Jiamao Fan
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Qing Zhu
- Department of Cardiology, Linfen Central Hospital, Linfen, China.,Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Jiao Ding
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Shuai Qin
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Hui Liu
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Pengfei Miao
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| |
Collapse
|