1
|
Sun L, Liu L, Jiang J, Liu K, Zhu J, Wu L, Lu X, Huang Z, Yuan Y, Crowley SD, Mao H, Xing C, Ren J. Transcription factor Twist1 drives fibroblast activation to promote kidney fibrosis via signaling proteins Prrx1/TNC. Kidney Int 2024; 106:840-855. [PMID: 39181396 DOI: 10.1016/j.kint.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-β1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-β1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a β-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lishan Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanjuan Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingfeng Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Durham VA Medical Center, Durham, North Carolina, USA
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Zhu J, Gong Z, Wang X, Zhang K, Ma Y, Zou H, Song R, Zhao H, Liu Z, Dong W. mTORC1 and mTORC2 Co-Protect against Cadmium-Induced Renal Tubular Epithelial Cell Apoptosis and Acute Kidney Injury by Regulating Protein Kinase B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19667-19679. [PMID: 39219293 PMCID: PMC11404484 DOI: 10.1021/acs.jafc.4c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The potential threat of cadmium (Cd)-induced acute kidney injury (AKI) is increasing. In this study, our primary goal was to investigate the individual roles played by mTOR complexes, specifically mTORC1 and mTORC2, in Cd-induced apoptosis in mouse kidney cells. We constructed a mouse model with specific deletion of Raptor/Rictor renal cells. Inhibitors and activators of mTORC1 or mTORC2 were also applied. The effects of protein kinase B (AKT) activation and autophagy were studied. Both mTORC1 and mTORC2 were found to mediate the antiapoptotic mechanism of renal cells by regulating the AKT activity. Inhibition of mTORC1 or mTORC2 exacerbated Cd-induced kidney cell apoptosis, suggesting that both proteins exert antiapoptotic effects under Cd exposure. We further found that the AKT activation plays a key role in mTORC1/TORC2-mediated antiapoptosis, protecting Cd-exposed kidney cells from apoptosis. We also found that mTOR activators inhibited excessive autophagy, alleviated apoptosis, and promoted cell survival. These findings provide new insights into the regulatory mechanisms of mTOR in renal diseases and provide a theoretical basis for the development of novel therapeutic strategies to treat renal injury.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zhonggui Gong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Agricultural
High-tech Industrial Demonstration Area of the Yellow River Delta
of Shandong Province, Dongying, Shandong 257000, China
- National
Technological Innovation Center for Comprehensive Utilization of Saline-Alkali
Land, Dongying, Shandong 257000, China
| | - Xueru Wang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Kanglei Zhang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yonggang Ma
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hui Zou
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Ruilong Song
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hongyan Zhao
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Wenxuan Dong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Laboratory
of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary
Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
3
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Fu Y, Xiang Y, Zha J, Chen G, Dong Z. Enhanced STAT3/PIK3R1/mTOR signaling triggers tubular cell inflammation and apoptosis in septic-induced acute kidney injury: implications for therapeutic intervention. Clin Sci (Lond) 2024; 138:351-369. [PMID: 38411015 DOI: 10.1042/cs20240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Septic acute kidney injury (AKI) is a severe form of renal dysfunction associated with high morbidity and mortality rates. However, the pathophysiological mechanisms underlying septic AKI remain incompletely understood. Herein, we investigated the signaling pathways involved in septic AKI using the mouse models of lipopolysaccharide (LPS) treatment and cecal ligation and puncture (CLP). In these models, renal inflammation and tubular cell apoptosis were accompanied by the aberrant activation of the mechanistic target of rapamycin (mTOR) and the signal transducer and activator of transcription 3 (STAT3) signaling pathways. Pharmacological inhibition of either mTOR or STAT3 significantly improved renal function and reduced apoptosis and inflammation. Interestingly, inhibition of STAT3 with pharmacological inhibitors or small interfering RNA blocked LPS-induced mTOR activation in renal tubular cells, indicating a role of STAT3 in mTOR activation. Moreover, knockdown of STAT3 reduced the expression of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1/p85α), a key subunit of the phosphatidylinositol 3-kinase for AKT and mTOR activation. Chromatin immunoprecipitation assay also proved the binding of STAT3 to PIK3R1 gene promoter in LPS-treated kidney tubular cells. In addition, knockdown of PIK3R1 suppressed mTOR activation during LPS treatment. These findings highlight the dysregulation of mTOR and STAT3 pathways as critical mechanisms underlying the inflammatory and apoptotic phenotypes observed in renal tubular cells during septic AKI, suggesting the STAT3/ PIK3R1/mTOR pathway as a therapeutic target of septic AKI.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jie Zha
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, U.S.A
| |
Collapse
|
6
|
Guo C, Cui Y, Jiao M, Yao J, Zhao J, Tian Y, Dong J, Liao L. Crosstalk between proximal tubular epithelial cells and other interstitial cells in tubulointerstitial fibrosis after renal injury. Front Endocrinol (Lausanne) 2024; 14:1256375. [PMID: 38260142 PMCID: PMC10801024 DOI: 10.3389/fendo.2023.1256375] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
The energy needs of tubular epithelial components, especially proximal tubular epithelial cells (PTECs), are high and they heavily depend on aerobic metabolism. As a result, they are particularly vulnerable to various injuries caused by factors such as ischemia, proteinuria, toxins, and elevated glucose levels. Initial metabolic and phenotypic changes in PTECs after injury are likely an attempt at survival and repair. Nevertheless, in cases of recurrent or prolonged injury, PTECs have the potential to undergo a transition to a secretory state, leading to the generation and discharge of diverse bioactive substances, including transforming growth factor-β, Wnt ligands, hepatocyte growth factor, interleukin (IL)-1β, lactic acid, exosomes, and extracellular vesicles. By promoting fibroblast activation, macrophage recruitment, and endothelial cell loss, these bioactive compounds stimulate communication between epithelial cells and other interstitial cells, ultimately worsening renal damage. This review provides a summary of the latest findings on bioactive compounds that facilitate the communication between these cellular categories, ultimately leading to the advancement of tubulointerstitial fibrosis (TIF).
Collapse
Affiliation(s)
- Congcong Guo
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuying Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| | - Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yutian Tian
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Shandong Institute of Nephrology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicin, Jinan, Shandong, China
| |
Collapse
|
7
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
8
|
Gu M, Jiang H, Tan M, Yu L, Xu N, Li Y, Wu H, Hou Q, Dai C. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat Commun 2023; 14:6682. [PMID: 37865665 PMCID: PMC10590414 DOI: 10.1038/s41467-023-42476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
palmitoylation, a reversible post-translational modification, is initiated by the DHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases. However, the role and mechanisms for protein palmitoylation in renal fibrosis have not been elucidated. Here we show protein palmitoylation and DHHC9 were downregulated in the fibrotic kidneys of mouse models and chronic kidney disease (CKD) patients. Ablating DHHC9 in tubular cells aggravated, while inducing DHHC9 overexpression with adeno-DHHC9 transfection or iproniazid treatment protected against kidney fibrosis in male mouse models. Mechanistically, DHHC9 palmitoylated β-catenin, thereby promoted its ubiquitination and degradation. Additionally, acyl protein thioesterase 1 (APT1) was induced in the fibrotic kidneys, which depalmitoylated β-catenin, increased its abundance and nuclear translocation. Ablating tubular APT1 or inhibiting APT1 with ML348 markedly protected against unilateral ureter obstruction (UUO) or ischemia/reperfusion injury (IRI)-induced kidney fibrosis in male mice. This study reveals the regulatory mechanism of protein palmitoylation in kidney fibrosis.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Long Yu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ning Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Ying Li
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Han Wu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University; Nanjing, China, 210009, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Wang H, Fu L, Li Y, Wei L, Gu X, Li H, Li J, Wen S. m6A methyltransferase WTAP regulates myocardial ischemia reperfusion injury through YTHDF1/FOXO3a signaling. Apoptosis 2023; 28:830-839. [PMID: 36894806 DOI: 10.1007/s10495-023-01818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 03/11/2023]
Abstract
N6-methyladenosine (m6A) is emerging as an essential regulator in the progression of myocardial ischemia reperfusion (I/R) injury. However, the in-depth functions and mechanisms for m6A are still unclear. This work aimed to explore the potential functions and mechanisms for myocardial I/R injury. In this study, m6A methyltransferase WTAP and m6A modification level elevated in the hypoxia/reoxygenation (H/R) induced rat cardiomyocytes (H9C2) and I/R injury rat model. Bio-functional cellular experiments demonstrated that knockdown of WTAP remarkably released the proliferation and reduced the apoptosis and inflammatory cytokines induced by H/R. Moreover, exercise training alleviated WTAP level in exercise-trained rats. Mechanistically, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that a remarkable m6A modification site was found in the 3'-UTR of FOXO3a mRNA. Moreover, WTAP triggered the installation of m6A modification on FOXO3a mRNA through m6A reader YTHDF1, thereby enhancing the stability of FOXO3a mRNA. Collectively, WTAP/YTHDF1/m6A/FOXO3a axis regulates the myocardial I/R injury progression, which provides new insights for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Liujing Fu
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Yin Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Liudong Wei
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Xiufeng Gu
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Huanming Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Jie Li
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China
| | - Shangyu Wen
- Department of Cardiology, Tianjin Fourth Central Hospital, Tianjin, 300140, China.
| |
Collapse
|
10
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
11
|
Zhu J, Wang H, Jiang X. mTORC1 beyond anabolic metabolism: Regulation of cell death. J Biophys Biochem Cytol 2022; 221:213609. [PMID: 36282248 PMCID: PMC9606688 DOI: 10.1083/jcb.202208103] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1), a multi-subunit protein kinase complex, interrogates growth factor signaling with cellular nutrient and energy status to control metabolic homeostasis. Activation of mTORC1 promotes biosynthesis of macromolecules, including proteins, lipids, and nucleic acids, and simultaneously suppresses catabolic processes such as lysosomal degradation of self-constituents and extracellular components. Metabolic regulation has emerged as a critical determinant of various cellular death programs, including apoptosis, pyroptosis, and ferroptosis. In this article, we review the expanding knowledge on how mTORC1 coordinates metabolic pathways to impinge on cell death regulation. We focus on the current understanding on how nutrient status and cellular signaling pathways connect mTORC1 activity with ferroptosis, an iron-dependent cell death program that has been implicated in a plethora of human diseases. In-depth understanding of the principles governing the interaction between mTORC1 and cell death pathways can ultimately guide the development of novel therapies for the treatment of relevant pathological conditions.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Tsinghua-Peking Center for Life Sciences, Beijing, China,Correspondence to Jiajun Zhu:
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY,Xuejun Jiang:
| |
Collapse
|
12
|
MicroRNA-1224-5p Aggravates Sepsis-Related Acute Lung Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9493710. [PMID: 35799888 PMCID: PMC9256451 DOI: 10.1155/2022/9493710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
Oxidative stress and inflammation are implicated in the development of sepsis-related acute lung injury (ALI). MicroRNA-1224-5p (miR-1224-5p) plays critical roles in regulating inflammatory response and reactive oxygen species (ROS) production. The present study is aimed at investigating the role and underlying mechanisms of miR-1224-5p in sepsis-related ALI. Mice were intratracheally injected with lipopolysaccharide (LPS, 5 mg/kg) for 12 h to induce sepsis-related ALI. To manipulate miR-1224-5p level, mice were intravenously injected with the agomir, antagomir, or matched controls for 3 consecutive days. Murine peritoneal macrophages were stimulated with LPS (100 ng/mL) for 6 h to further validate the role of miR-1224-5p in vitro. To inhibit adenosine 5′-monophosphate-activated protein kinase alpha (AMPKα) or peroxisome proliferator activated receptor-gamma (PPAR-γ), compound C or GW9662 was used in vivo and in vitro. We found that miR-1224-5p levels in lungs were elevated by LPS injection, and that the miR-1224-5p antagomir significantly alleviated LPS-induced inflammation, oxidative stress, and ALI in mice. Conversely, the miR-1224-5p agomir aggravated inflammatory response, ROS generation, and pulmonary dysfunction in LPS-treated mice. In addition, the miR-1224-5p antagomir reduced, while the miR-1224-5p agomir aggravated LPS-induced inflammation and oxidative stress in murine peritoneal macrophages. Further findings revealed that miR-1224-5p is directly bound to the 3′-untranslated regions of PPAR-γ and subsequently suppressed PPAR-γ/AMPKα axis, thereby aggravating LPS-induced ALI in vivo and in vitro. We demonstrate for the first time that endogenous miR-1224-5p is a critical pathogenic factor for inflammation and oxidative damage during LPS-induced ALI through inactivating PPAR-γ/AMPKα axis. Targeting miR-1224-5p may help to develop novel approaches to treat sepsis-related ALI.
Collapse
|
13
|
Ticagrelor Protects against Sepsis-Induced Acute Kidney Injury through an Adenosine Receptor-Dependent Pathway. Curr Med Sci 2022; 42:505-512. [DOI: 10.1007/s11596-022-2516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
|
14
|
Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022; 13:826732. [PMID: 35251009 PMCID: PMC8892604 DOI: 10.3389/fimmu.2022.826732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Kidney disease encompasses a complex set of diseases that can aggravate or start systemic pathophysiological processes through their complex metabolic mechanisms and effects on body homoeostasis. The prevalence of kidney disease has increased dramatically over the last two decades. CD4+CD25+ regulatory T (Treg) cells that express the transcription factor forkhead box protein 3 (Foxp3) are critical for maintaining immune homeostasis and preventing autoimmune disease and tissue damage caused by excessive or unnecessary immune activation, including autoimmune kidney diseases. Recent studies have highlighted the critical role of metabolic reprogramming in controlling the plasticity, stability, and function of Treg cells. They are also likely to play a vital role in limiting kidney transplant rejection and potentially promoting transplant tolerance. Metabolic pathways, such as mitochondrial function, glycolysis, lipid synthesis, glutaminolysis, and mammalian target of rapamycin (mTOR) activation, are involved in the development of renal diseases by modulating the function and proliferation of Treg cells. Targeting metabolic pathways to alter Treg cells can offer a promising method for renal disease therapy. In this review, we provide a new perspective on the role of Treg cell metabolism in renal diseases by presenting the renal microenvironment、relevant metabolites of Treg cell metabolism, and the role of Treg cell metabolism in various kidney diseases.
Collapse
Affiliation(s)
- Zhongyu Han
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hongxia Tao
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongli Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiyalatu Sai
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yunlong Li
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Blood Transfusion Sicuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
15
|
Gu M, Tan M, Zhou L, Sun X, Lu Q, Wang M, Jiang H, Liang Y, Hou Q, Xue X, Xu Z, Dai C. Protein phosphatase 2Acα modulates fatty acid oxidation and glycolysis to determine tubular cell fate and kidney injury. Kidney Int 2022; 102:321-336. [PMID: 35483524 DOI: 10.1016/j.kint.2022.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
Energy metabolism is crucial in maintaining cellular homeostasis and adapting to stimuli for tubular cells. However, the underlying mechanisms remain largely unknown. Here, we report that PP2Acα was upregulated in damaged tubular cells from patients and animal models with acute or chronic kidney injury. Using in vitro and in vivo model, we demonstrated that PP2Acα induction in damaged tubular cells suppresses fatty acid oxidation and promotes glycolysis, leading to cell death and fibrosis. Mechanistically, we revealed that PP2Acα dephosphorylates ACC through interaction with B56δ, leading to the regulation of fatty acid oxidation. Furthermore, PP2Acα also dephosphorylates p-Glut1 (Thr478) and suppresses Trim21-mediated Glut1 ubiquitination and degradation, leading to the promotion of glucose intake and glycolysis. Thus, this study adds new insight into the tubular cell metabolic alterations in kidney diseases. PP2Acα may be a promising therapeutic target for kidney injury.
Collapse
Affiliation(s)
- Mengru Gu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mengzhu Tan
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lu Zhou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xiaoli Sun
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qingmiao Lu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Mingjie Wang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hanlu Jiang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Yan Liang
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Qing Hou
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xian Xue
- Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Zhuo Xu
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Chunsun Dai
- Center for Kidney Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Clinical Genetics, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Wang S, Liang Y, Dai C. Metabolic Regulation of Fibroblast Activation and Proliferation during Organ Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:115-125. [PMID: 35527985 DOI: 10.1159/000522417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/29/2022] [Indexed: 12/13/2022]
Abstract
Background Activated fibroblasts are present in the injury response, tumorigenesis, fibrosis, and inflammation in a variety of tissues and myriad disease types. Summary During normal tissue repair, quiescent fibroblasts transform into a proliferative and contractile phenotype termed myofibroblasts and are then lost as repair resolves to form a scar. When excessive levels are reached, activated fibroblasts proliferate and produce large amounts of extracellular matrix, which accumulates in the interstitial space of different organs. This accumulation leads to fibrotic dysfunction and multiple-organ dysfunction syndrome. To date, there are limited effective treatments for these conditions. Cellular metabolism is the cornerstone of all biological activities. Emerging evidence shows that metabolic alterations in fibroblasts are important for the activation process and illness progression. These discoveries, along with current clinical advances showing decreased lung fibrosis after targeting specific metabolic pathways, thus offer new possibilities for therapeutic interventions. The purpose of this review was to summarize the most recent knowledge of the major metabolic changes that occur during fibroblast transition from quiescent to activated states and the evidence linking alterations in fibroblast metabolism to the pathobiology of several common fibrotic diseases and tumor-related diseases. Key Messages Metabolic disorders are associated with the progression of chronic kidney diseases. Interfering with fibroblast metabolism may be a promising therapeutic strategy for renal fibrosis and other fibrosis-related diseases.
Collapse
Affiliation(s)
- Sudan Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Genetics, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021; 22:ijms221910431. [PMID: 34638771 PMCID: PMC8508998 DOI: 10.3390/ijms221910431] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.
Collapse
|
18
|
HU J, HE A, YUE X, ZHOU M, ZHOU Y. METRNL reduced inflammation in sepsis-induced renal injury via PPARδ-dependent pathways. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.61821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jin HU
- Chongqing University Cancer Hospital, China
| | - Aiting HE
- Chongqing University Cancer Hospital, China
| | | | | | | |
Collapse
|
19
|
Guo C, Ye FX, Jian YH, Liu CH, Tu ZH, Yang DP. MicroRNA-214-5p aggravates sepsis-related acute kidney injury in mice. Drug Dev Res 2021; 83:339-350. [PMID: 34370322 DOI: 10.1002/ddr.21863] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a devastating comorbidity in sepsis and correlates with a very poor prognosis and increased mortality. Currently, we use lipopolysaccharide (LPS) to establish sepsis-related AKI and try to demonstrate the pathophysiological role of microRNA-214-5p (miR-214-5p) in this process. Mice were intravenously injected with the miR-214-5p agomir, antagomir or negative controls for three consecutive days and then received a single intraperitoneal injection of LPS (10 mg/kg) for 24 h to induce AKI. Besides, the Boston University mouse proximal tubular cell lines were stimulated with LPS (10 μg/ml) for 8 h to investigate the role of miR-214-5p in vitro. To inhibit adenosine monophosphate-activated protein kinase (AMPK), compound C (CpC) was used in vivo. For glucagon-like peptide-1 receptor (GLP-1R) silence, cells were transfected with the small interfering RNA against GLP-1R. miR-214-5p level was upregulated in LPS-treated kidneys and proximal tubular cell lines. The miR-214-5p antagomir reduced LPS-induced renal inflammation and oxidative stress, thereby preventing renal damage and dysfunction. In contrast, the miR-214-5p agomir aggravated LPS-induced inflammation, oxidative stress and AKI in vivo and in vitro. Mechanistically, we found that the miR-214-5p antagomir prevented septic AKI via activating AMPK and that CpC treatment completely abrogated its renoprotective effect in mice. Further detection showed that miR-214-5p directly bound to the 3'-untranslational region of GLP-1R to inhibit GLP-1R/AMPK axis. Our data identify miR-214-5p as a promising therapeutic candidate to treat sepsis-related AKI.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang-Xiong Ye
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Hong Jian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Hua Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Hui Tu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ding-Ping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Ye Y, Xu L, Ding H, Wang X, Luo J, Zhang Y, Zen K, Fang Y, Dai C, Wang Y, Zhou Y, Jiang L, Yang J. Pyruvate kinase M2 mediates fibroblast proliferation to promote tubular epithelial cell survival in acute kidney injury. FASEB J 2021; 35:e21706. [PMID: 34160104 DOI: 10.1096/fj.202100040r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a devastating condition with high morbidity and mortality rates. The pathological features of AKI are tubular injury, infiltration of inflammatory cells, and impaired vascular integrity. Pyruvate kinase is the final rate-limiting enzyme in the glycolysis pathway. We previously showed that pyruvate kinase M2 (PKM2) plays an important role in regulating the glycolytic reprogramming of fibroblasts in renal interstitial fibrosis. The present study aimed to determine the role of PKM2 in fibroblast activation during the pathogenesis of AKI. We found increased numbers of S100A4 positive cells expressing PKM2 in renal tissues from mice with AKI induced via folic acid or ischemia/reperfusion (I/R). The loss of PKM2 in fibroblasts impaired fibroblast proliferation and promoted tubular epithelial cell death including apoptosis, necroptosis, and ferroptosis. Mechanistically, fibroblasts produced less hepatocyte growth factor (HGF) in response to a loss of PKM2. Moreover, in two AKI mouse models, fibroblast-specific deletion of PKM2 blocked HGF signal activation and aggravated AKI after it was induced in mice via ischemia or folic acid. Fibroblast proliferation mediated by PKM2 elicits pro-survival signals that repress tubular cell death and may help to prevent AKI progression. Fibroblast activation mediated by PKM2 in AKI suggests that targeting PKM2 expression could be a novel strategy for treating AKI.
Collapse
Affiliation(s)
- Yinyin Ye
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Lingling Xu
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Ding
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Zhang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Fang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuwei Wang
- Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Peired AJ, Lazzeri E, Guzzi F, Anders HJ, Romagnani P. From kidney injury to kidney cancer. Kidney Int 2021; 100:55-66. [PMID: 33794229 DOI: 10.1016/j.kint.2021.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Epidemiologic studies document strong associations between acute or chronic kidney injury and kidney tumors. However, whether these associations are linked by causation, and in which direction, is unclear. Accumulating data from basic and clinical research now shed light on this issue and prompt us to propose a new pathophysiological concept with immanent implications in the management of patients with kidney disease and patients with kidney tumors. As a central paradigm, this review proposes the mechanisms of kidney damage and repair that are active during acute kidney injury but also during persistent injuries in chronic kidney disease as triggers of DNA damage, promoting the expansion of (pre-)malignant cell clones. As renal progenitors have been identified by different studies as the cell of origin for several benign and malignant kidney tumors, we discuss how the different types of kidney tumors relate to renal progenitors at specific sites of injury and to germline or somatic mutations in distinct signaling pathways. We explain how known risk factors for kidney cancer rather represent risk factors for kidney injury as an upstream cause of cancer. Finally, we propose a new role for nephrologists in kidney cancer (i.e., the primary and secondary prevention and treatment of kidney injury to reduce incidence, prevalence, and recurrence of kidney cancer).
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Ludwig Maximilian University Klinikum, Munich, Germany
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies, University of Florence, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy.
| |
Collapse
|
22
|
Rosette KA, Lander SM, VanOpstall C, Looyenga BD. Three-dimensional coculture provides an improved in vitro model for papillary renal cell carcinoma. Am J Physiol Renal Physiol 2021; 321:F33-F46. [PMID: 34029144 DOI: 10.1152/ajprenal.00141.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) represents the second most common kidney cancer and can be distinguished from other types based on its unique histological architecture and specific pattern of genomic alterations. Sporadic type 1 pRCC is almost universally driven by focal or chromosomal amplification of the receptor tyrosine kinase MET, although the specific mode of its activation is unclear. Although the MET receptors found in human tumor specimens appear highly active, those found on the surface of in vitro-cultured tumor cells are only weakly activated in the absence of exogenous hepatocyte growth factor ligand. Furthermore, pRCC cells cultured in standard two-dimensional conditions with serum fail to respond functionally to MET knockdown or the selective MET inhibitor capmatinib despite clear evidence of kinase inhibition at the molecular level. To better model pRCC in vitro, we developed a three-dimensional coculture system in which renal tumor cells are layered on top of primary fibroblasts in a fashion that mimics the papillary architecture of human tumors. In this three-dimensional spheroid model, the tumor cells survive and proliferate in the absence of serum due to trophic support of hepatocyte growth factor-producing fibroblasts. Unlike tumor cells grown in monoculture, the proliferation of cocultured tumor cells is sensitive to capmatinib and parallels inhibition of MET kinase activity. These findings demonstrate the importance of stromal fibroblasts in pRCC and indicate that accurate in vitro representation of this disease requires the presence of both tumor and fibroblast cells in a structured coculture model.NEW & NOTEWORTHY Two-dimensional monoculture of papillary renal cancer cells fails to replicate several features of the disease found in humans. We hypothesized that this discordance results from lack of trophic support from renal fibroblasts, which are involved in the architecture of human papillary renal tumors. We found that three-dimensional layering of renal cancer cells on top of a fibroblast core using magnetic bioprinting produces a structured spheroid that more faithfully mimics the behavior of human tumors.
Collapse
Affiliation(s)
- Kylee A Rosette
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Stephen M Lander
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Calvin VanOpstall
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| | - Brendan D Looyenga
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan
| |
Collapse
|
23
|
Wu LZ, Weng YQ, Ling YX, Zhou SJ, Ding XK, Wu SQ, Yu K, Jiang SF, Chen Y. A Web of Science-based scientometric analysis about mammalian target of rapamycin signaling pathway in kidney disease from 1986 to 2020. Transl Androl Urol 2021; 10:1006-1017. [PMID: 33850735 PMCID: PMC8039620 DOI: 10.21037/tau-20-1469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) signaling pathway is vital for the regulation of cell metabolism, growth and proliferation in the kidney. This study aims to show current research focuses and predict future trends about mTOR pathway in kidney disease by the methods of scientometric analysis. Methods We referred to publications from the Web of ScienceTM Core Collection (WoSCC) Database. Carrot2, VOSviewer and CiteSpace programs were applied to evaluate the distribution and contribution of authors, institutes and countries/regions of extensive bibliographic metadata, show current research focuses and predict future trends in kidney disease's area. Results Until July 10, 2020, there are 2,585 manuscripts about mTOR signaling pathway in kidney disease in total and every manuscript is cited 27.39 times on average. The big name of course is the United States. Research hot spots include "diabetic nephropathy", "kidney transplantation", "autosomal dominant polycystic kidney disease", "tuberous sclerosis complex", "renal cell carcinoma" and "autophagy". Seven key clusters are detected, including "kidney transplantation", "autosomal dominant polycystic kidney disease", "renal transplantation", "renal cell carcinoma", "hamartin", "autophagy" and "tuberous sclerosis complex". Conclusions Diabetic nephropathy, kidney transplantation, autosomal dominant polycystic kidney disease, tuberous sclerosis complex, renal cell carcinoma and autophagy are future research hot spots by utilizing scientometric analysis. In the future, it is necessary to research these fields.
Collapse
Affiliation(s)
- Lian-Zhong Wu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Yi-Qin Weng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Yi-Xin Ling
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Shu-Juan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Kai Ding
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si-Qi Wu
- Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Song-Fu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Dong X, Luo Y, Lu S, Ma H, Zhang W, Zhu Y, Sun G, Sun X. Ursodesoxycholic acid alleviates liver fibrosis via proregeneration by activation of the ID1-WNT2/HGF signaling pathway. Clin Transl Med 2021; 11:e296. [PMID: 33635004 PMCID: PMC7828260 DOI: 10.1002/ctm2.296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The human liver possesses a remarkable capacity for self-repair. However, liver fibrosis remains a serious medical concern, potentially progressing to end-stage liver cirrhosis and even death. Liver fibrosis is characterized by excess accumulation of extracellular matrix in response to chronic injury. Liver regenerative ability, a strong indicator of liver health, is important in resisting fibrosis. In this study, we provide evidence that ursodesoxycholic acid (UDCA) can alleviate liver fibrosis by promoting liver regeneration via activation of the ID1-WNT2/hepatocyte growth factor (HGF) pathway. METHODS Bile duct ligation (BDL) and partial hepatectomy (PH) mouse models were used to verify the effects of UDCA on liver fibrosis, regeneration, and the ID1-WNT2/HGF pathway. An Id1 knockdown mouse model was also used to assess the role of Id1 in UDCA alleviation of liver fibrosis. RESULTS Our results demonstrate that UDCA can alleviate liver fibrosis in the BDL mice and promote liver regeneration via the ID1-WNT2/HGF pathway in PH mice. In addition, Id1 knockdown abolished the protection afforded by UDCA in BDL mice. CONCLUSIONS We conclude that UDCA protects against liver fibrosis by proregeneration via activation of the ID1-WNT2/HGF pathway.
Collapse
Affiliation(s)
- Xi Dong
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Yun Luo
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Shan Lu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Han Ma
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingP. R. China
| | - Wenchao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingP. R. China
| | - Yue Zhu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Guibo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Xiaobo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| |
Collapse
|
25
|
Gui Y, Dai C. mTOR Signaling in Kidney Diseases. KIDNEY360 2020; 1:1319-1327. [PMID: 35372878 PMCID: PMC8815517 DOI: 10.34067/kid.0003782020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 04/27/2023]
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Nephrology, University of Connecticut Health Center, Farmington, Connecticut
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Midgley AC, Wei Y, Zhu D, Gao F, Yan H, Khalique A, Luo W, Jiang H, Liu X, Guo J, Zhang C, Feng G, Wang K, Bai X, Ning W, Yang C, Zhao Q, Kong D. Multifunctional Natural Polymer Nanoparticles as Antifibrotic Gene Carriers for CKD Therapy. J Am Soc Nephrol 2020; 31:2292-2311. [PMID: 32769144 DOI: 10.1681/asn.2019111160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype. METHODS We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)-NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles in vitro for biocompatibility and antifibrotic function. To assess antifibrotic activity in vivo, we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD. RESULTS Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which-following endocytosis driven by CD44+ cells-promoted cellular growth and inhibited fibrotic gene expression in vitro. Intravenous tail injection of these nanoparticles resulted in approximately 40%-45% of gene uptake in kidneys in vivo. The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of BMP7 reversed the progression of fibrosis and regenerated tubules, whereas delivery of HGF/NK1 halted CKD progression by eliminating collagen fiber deposition. CONCLUSIONS Nanoparticle delivery of HGF/NK1 conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.
Collapse
Affiliation(s)
- Adam C Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongzhen Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Dashuai Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Anila Khalique
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenya Luo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiangsheng Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiasen Guo
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China.,State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Wen Ning
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China .,Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
27
|
Xing Z, Zhao C, Liu H, Fan Y. Endothelial Progenitor Cell-Derived Extracellular Vesicles: A Novel Candidate for Regenerative Medicine and Disease Treatment. Adv Healthc Mater 2020; 9:e2000255. [PMID: 32378361 DOI: 10.1002/adhm.202000255] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membranous structures, which can be secreted by most cell types. As a product of paracrine secretion, EVs are considered to be a regulatory mediator for intercellular communication. There are many bioactive cargos in EVs, such as proteins, lipids, and nucleic acids. As the precursor cell of vascular endothelial cells (ECs), endothelial progenitor cells (EPCs) are first discovered in peripheral blood. With the development of studies about the functions of EPCs, an increasing number of researchers focus on EPC-derived EVs (EPC-EVs). EPC-EVs exert key functions for promoting angiogenesis in regenerative medicine and show significant therapeutic effects on a variety of diseases such as circulatory diseases, kidney diseases, diabetes, bone diseases, and tissue/organ damages. This article reviews the current knowledge on the role of EPC-EVs in regenerative medicine and disease treatment, discussing the main challenges and future directions in this field.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
| | - Chen Zhao
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationSchool of Biological Science and Medical EngineeringBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
- National Research Center for Rehabilitation Technical Aids Beijing 100176 P. R. China
| |
Collapse
|
28
|
Gui Y, Hou Q, Lu Q, Dai C, Li J. Loss of Rictor in tubular cells exaggerates lipopolysaccharide induced renal inflammation and acute kidney injury via Yap/Taz-NF-κB axis. Cell Death Discov 2020; 6:40. [PMID: 32528729 PMCID: PMC7260239 DOI: 10.1038/s41420-020-0274-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that the mammalian target of rapamycin complex 2 (mTORC2) signaling alleviates renal inflammation and protects against cisplatin-induced AKI. However, the underlying mechanisms for mTORC2 in regulating renal inflammation in AKI remain to be determined. In this study, we found that lipopolysaccharide (LPS) could activate mTORC2 signaling in NRK-52E cells, and blockage of mTORC2 signaling led to Yap/Taz degradation, which in turn activated NF-κB signaling and induced inflammatory cytokines secretion. Overexpression of constitutively active Taz (Taz-S89A) could attenuate the inflammation-amplified role of mTORC2 blockage. In mouse models, tubule-specific deletion of Rictor had higher blood urea nitrogen level, severe morphological injury as well as more inflammatory cells accumulation compared with those in their littermate controls. Overall, these results demonstrate that mTORC2 signaling protects against renal inflammation and dictates the outcome of AKI by modulating Yap/Taz degradation.
Collapse
Affiliation(s)
- Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003 China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 China
| |
Collapse
|
29
|
Lu Q, Wang M, Gui Y, Hou Q, Gu M, Liang Y, Xiao B, Zhao AZ, Dai C. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Dis 2020; 11:364. [PMID: 32404875 PMCID: PMC7221100 DOI: 10.1038/s41419-020-2539-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/14/2023]
Abstract
Ras homolog enriched in brain (Rheb1), a small GTPase, plays a crucial role in regulating cell growth, differentiation, and survival. However, the role and mechanisms for Rheb1 in tubular cell survival and acute kidney injury (AKI) remain unexplored. Here we found that Rheb1 signaling was activated in kidney tubule of AKI patients and cisplatin-treated mice. A mouse model of tubule-specific deletion of Rheb1 (Tubule-Rheb1−/−) was generated. Compared to control littermates, Tubule-Rheb1−/− mice were phenotypically normal within 2 months after birth but developed more severe kidney dysfunction, tubular cell death including apoptosis, necroptosis and ferroptosis, mitochondrial defect and less PGC-1α expression after cisplatin injection. In primary cultured tubular cells, Rheb1 ablation exacerbated cisplatin-induced cell death and mitochondrial defect. Furthermore, haploinsufficiency for Tsc1 in tubular cells led to Rheb1 activation and mitigated cisplatin-induced cell death, mitochondrial defect and AKI. Together, this study uncovers that Rheb1 may protect against cisplatin-induced tubular cell death and AKI through maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mingjie Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengru Gu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, 518000, Shenzhen, P.R. China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510515, Guangzhou, P.R. China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
31
|
Li Y, Xia W, Wu M, Yin J, Wang Q, Li S, Zhang A, Huang S, Zhang Y, Jia Z. Activation of GSDMD contributes to acute kidney injury induced by cisplatin. Am J Physiol Renal Physiol 2019; 318:F96-F106. [PMID: 31682173 DOI: 10.1152/ajprenal.00351.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most effective antitumor agents, but its clinical use is highly limited by its severe side effects, especially nephrotoxicity. Recently, the active form of gasdermin D (GSDMD), termed GSDMD-N, was identified to mediate pyroptotic inflammatory cell death in several diseases. However, the role of the GSDMD-N fragment in cisplatin-induced acute kidney injury (AKI) remains unclear. In the present study, we found that pyroptosis was induced by cisplatin in both mouse kidney tissues and renal tubular epithelial cells, accompanied by increased expression of the GSDMD-N fragment. In GSDMD knockout mice with cisplatin-induced AKI, we found that cisplatin-induced loss of renal function, renal tubular injury, and inflammation was significantly attenuated compared with wild-type mice. Furthermore, the GSDMD-N fragment was overexpressed by an established rapid plasmid tail vein injection approach to evaluate the role of this cleaved form of GSDMD in AKI. As expected, mice with GSDMD-N fragment overexpression in the kidney were more susceptible to cisplatin-induced AKI than control mice, as evidenced by further elevated serum levels of blood urea nitrogen and creatinine, aggravated renal pathology, increased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, and enhanced renal inflammatory cytokine secretion, which indicates a pathogenic role of GSDMD-N in cisplatin-induced AKI by triggering cell pyroptosis. Similar results were also observed in renal tubular epithelial cells overexpressing the GSDMD-N fragment. Thus these findings suggested that the activation of GSDMD contributes to cisplatin-induced AKI, possibly through triggering pyroptosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuzhen Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|