1
|
Luo X, Liu P, Ye X, He J, Lai Y, Lv Y, Wu X, Liu Y, Zhang Q, Yang H, Wei W, Deng C, Kuang S, Wu S, Xue Y, Rao F. Curcumin improves atrial fibrillation susceptibility by regulating tsRNA expression in aging mouse atrium. PeerJ 2024; 12:e17495. [PMID: 39076782 PMCID: PMC11285363 DOI: 10.7717/peerj.17495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/09/2024] [Indexed: 07/31/2024] Open
Abstract
Age is an independent risk factor for atrial fibrillation (AF), and curcumin can delay aging related disease through reducing oxidative stress and inflammation. However, its target in aging-related AF remains unclear. Transfer RNA-derived small RNA (tsRNA) is a novel short non-coding RNA (sncRNA), and exerts a potential regulatory function in aging. This study was to explore the therapeutic targets of curcumin in atrium of aged mice by PANDORA-seq. Aged mice (18 month) were treated with curcumin (100 mg/kg). Rapid transjugular atrial pacing was performed to observe AF inducibility. SA-β-gal staining, reactive oxygen species (ROS) detection and qRT-PCR were used to assess the degree of aging and oxidative stress/inflammation levels. PANDORA-seq was performed to reveal the differentially expressed sncRNAs in the atrium of mice. The results showed that curcumin reduced the susceptibility AF of aged mice by improving aging-related atrial fibrosis. Compared to young mice (5 month) group, aged mice yielded 473 significantly altered tsRNA sequences, while 947 tsRNA sequences were significantly altered after treated with curcumin. Enrichment analysis revealed that the target genes were mainly related to DNA damage and protein modification. Compared with the 5 month group, the expression levels of mature-mt_tRNA-Val-TAC_CCA_end, mature-mt_tRNA-Glu-TTC_CCA_end, and mature-tRNA-Asp-GTC_CCA_end were up-regulated in the 18 month group, while the expression of mature-mt_tRNA-Thr-TGT_5_end was down-regulated. This trend was reversed in the 18 month + curcumin group. Increased cellular ROS levels, inflammation expression and senescence in aged mice atrium were improved by the down-regulation of mature-mt_tRNA-Val-TAC_CCA_end. In conclusion, our findings identified mature-mt_tRNA-Val-TAC_CCA_end participated in the mechanism of aging-related atrial fibrosis, providing new intervention target of aging-related AF.
Collapse
Affiliation(s)
- Xueshan Luo
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Panyue Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Xingdong Ye
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Jintao He
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Yingyu Lai
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Yidong Lv
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Xiongbin Wu
- Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Qianhuan Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Chunyu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Sujuan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Shulin Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Yumei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangzhou, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
- South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yin F, Zhao W, Ding C, Hou C, Wang S, Sun C, Zhao Z, Zhang Z, Ren F, Liu Y, Li X. A Novel Cellular Senescence-related lncRNA Signature for Predicting the Prognosis of Breast Cancer Patients. J Cancer 2024; 15:4700-4716. [PMID: 39006073 PMCID: PMC11242350 DOI: 10.7150/jca.96107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Long non-coding RNA (lncRNA), a crucial regulator in breast cancer (BC) development, is intricately linked with cellular senescence. However, there is a lack of cellular senescence-related lncRNAs (CSRLs) signature to evaluate the prognosis of BC patients. Methods: Correlation analysis was conducted to identify lncRNAs associated with cellular senescence. Subsequently, a CSRL signature was crafted in the training cohort. The model's accuracy was evaluated through survival analysis and receiver operating characteristic curves. Furthermore, prognostic nomograms amalgamating cellular senescence and clinical characteristics were devised. Tumor microenvironment and checkpoint disparities were compared between low-risk and high-risk groups. The correlation between these signatures and treatment response in BC patients was also investigated. Finally, functional experiments were conducted for validation. Results: A signature comprising nine CSRLs was devised, which demonstrated adept prognostic capability in BC patients. Functional enrichment analysis revealed that tumor and immune-related pathways were predominantly enriched. Compared to the low-risk group, the high-risk group could benefit more from immunotherapy and certain chemotherapeutic agents. The expression of the 9 CSRLs was validated through in vitro experiments in different subtypes of BC cell lines and tissues. AC098484.1 was specifically verified for its association with senescence-associated secretory phenotypes. Conclusion: The CSRLs signature emerges as a promising prognostic biomarker for BC, with implications for immunological studies and treatment strategies. AC098484.1 has potential relevance in the treatment of BC cell senescence, and these findings improve the clinical treatment levels for BC patients.
Collapse
Affiliation(s)
- Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhao Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Ding
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chong Hou
- Department of Emergency medicine, Tianjin Medical University General Hospital, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zexia Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhanrui Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuying Liu
- Department of Pathology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Wu Z, Yu J, Han T, Tu Y, Su F, Li S, Huang Y. System analysis based on Anoikis-related genes identifies MAPK1 as a novel therapy target for osteosarcoma with neoadjuvant chemotherapy. BMC Musculoskelet Disord 2024; 25:437. [PMID: 38835052 PMCID: PMC11149263 DOI: 10.1186/s12891-024-07547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone malignant tumor in children, and its prognosis is often poor. Anoikis is a unique mode of cell death.However, the effects of Anoikis in OS remain unexplored. METHOD Differential analysis of Anoikis-related genes was performed based on the metastatic and non-metastatic groups. Then LASSO logistic regression and SVM-RFE algorithms were applied to screen out the characteristic genes. Later, Univariate and multivariate Cox regression was conducted to identify prognostic genes and further develop the Anoikis-based risk score. In addition, correlation analysis was performed to analyze the relationship between tumor microenvironment, drug sensitivity, and prognostic models. RESULTS We established novel Anoikis-related subgroups and developed a prognostic model based on three Anoikis-related genes (MAPK1, MYC, and EDIL3). The survival and ROC analysis results showed that the prognostic model was reliable. Besides, the results of single-cell sequencing analysis suggested that the three prognostic genes were closely related to immune cell infiltration. Subsequently, aberrant expression of two prognostic genes was identified in osteosarcoma cells. Nilotinib can promote the apoptosis of osteosarcoma cells and down-regulate the expression of MAPK1. CONCLUSIONS We developed a novel Anoikis-related risk score model, which can assist clinicians in evaluating the prognosis of osteosarcoma patients in clinical practice. Analysis of the tumor immune microenvironment and chemotherapeutic drug sensitivity can provide necessary insights into subsequent mechanisms. MAPK1 may be a valuable therapeutic target for neoadjuvant chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Jiapei Yu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Tao Han
- Department of Orthopedics, the Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Yiting Tu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Fang Su
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shi Li
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, 325027, Zhejiang Province, China.
| | - Yixing Huang
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Simoni M, Menegazzi C, Fracassi C, Biffi CC, Genova F, Tenace NP, Lucianò R, Raimondi A, Tacchetti C, Brugarolas J, Mazza D, Bernardi R. PML restrains p53 activity and cellular senescence in clear cell renal cell carcinoma. EMBO Mol Med 2024; 16:1324-1351. [PMID: 38730056 PMCID: PMC11178789 DOI: 10.1038/s44321-024-00077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC), the major subtype of RCC, is frequently diagnosed at late/metastatic stage with 13% 5-year disease-free survival. Functional inactivation of the wild-type p53 protein is implicated in ccRCC therapy resistance, but the detailed mechanisms of p53 malfunction are still poorly characterized. Thus, a better understanding of the mechanisms of disease progression and therapy resistance is required. Here, we report a novel ccRCC dependence on the promyelocytic leukemia (PML) protein. We show that PML is overexpressed in ccRCC and that PML depletion inhibits cell proliferation and relieves pathologic features of anaplastic disease in vivo. Mechanistically, PML loss unleashed p53-dependent cellular senescence thus depicting a novel regulatory axis to limit p53 activity and senescence in ccRCC. Treatment with the FDA-approved PML inhibitor arsenic trioxide induced PML degradation and p53 accumulation and inhibited ccRCC expansion in vitro and in vivo. Therefore, by defining non-oncogene addiction to the PML gene, our work uncovers a novel ccRCC vulnerability and lays the foundation for repurposing an available pharmacological intervention to restore p53 function and chemosensitivity.
Collapse
Affiliation(s)
- Matilde Simoni
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Menegazzi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Fracassi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia C Biffi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Medical Advisor, Sanofi, Milan, Italy
| | - Francesca Genova
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nazario Pio Tenace
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Universita' Vita-Salute San Raffaele, Milan, Italy
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Pai CP, Wang H, Seachrist DD, Agarwal N, Adams JA, Liu Z, Keri RA, Cao K, Schiemann WP, Kao HY. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. Cell Death Differ 2024; 31:768-778. [PMID: 38627584 PMCID: PMC11164886 DOI: 10.1038/s41418-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/30/2024] Open
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
- Chun-Peng Pai
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neel Agarwal
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua A Adams
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zhenghao Liu
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kaixiang Cao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - William P Schiemann
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hung-Ying Kao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
7
|
Singh S, Parthasarathi KTS, Bhat MY, Gopal C, Sharma J, Pandey A. Profiling Kinase Activities for Precision Oncology in Diffuse Gastric Cancer. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:76-89. [PMID: 38271566 DOI: 10.1089/omi.2023.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality globally. This is due to the fact that majority of the cases of GC are diagnosed at an advanced stage when the treatment options are limited and prognosis is poor. The diffuse subtype of gastric cancer (DGC) under Lauren's classification is more aggressive and usually occurs in younger patients than the intestinal subtype. The concept of personalized medicine is leading to the identification of multiple biomarkers in a large variety of cancers using different combinations of omics technologies. Proteomic changes including post-translational modifications are crucial in oncogenesis. We analyzed the phosphoproteome of DGC by using paired fresh frozen tumor and adjacent normal tissue from five patients diagnosed with DGC. We found proteins involved in the epithelial-to-mesenchymal transition (EMT), c-MYC pathway, and semaphorin pathways to be differentially phosphorylated in DGC tissues. We identified three kinases, namely, bromodomain adjacent to the zinc finger domain 1B (BAZ1B), WNK lysine-deficient protein kinase 1 (WNK1), and myosin light-chain kinase (MLCK) to be hyperphosphorylated, and one kinase, AP2-associated protein kinase 1 (AAK1), to be hypophosphorylated. LMNA hyperphosphorylation at serine 392 (S392) was demonstrated in DGC using immunohistochemistry. Importantly, we have detected heparin-binding growth factor (HDGF), heat shock protein 90 (HSP90), and FTH1 as potential therapeutic targets in DGC, as drugs targeting these proteins are currently under investigation in clinical trials. Although these new findings need to be replicated in larger study samples, they advance our understanding of signaling alterations in DGC, which could lead to potentially novel actionable targets in GC.
Collapse
Affiliation(s)
- Smrita Singh
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
| | - K T Shreya Parthasarathi
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwapeetham University, Kollam, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Jyoti Sharma
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Center for Molecular Medicine, National Institute of Mental Health and Neuro-Sciences (NIMHANS), Bangalore, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Fracassi C, Ugge' M, Abdelhalim M, Zapparoli E, Simoni M, Magliulo D, Mazza D, Lazarevic D, Morelli M, Collas P, Bernardi R. PML modulates epigenetic composition of chromatin to regulate expression of pro-metastatic genes in triple-negative breast cancer. Nucleic Acids Res 2023; 51:11024-11039. [PMID: 37823593 PMCID: PMC10639071 DOI: 10.1093/nar/gkad819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.
Collapse
Affiliation(s)
- Cristina Fracassi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Martina Ugge'
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matilde Simoni
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marco J Morelli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Lee J, Bang JH, Ryu YC, Hwang BH. Multiple suppressing small interfering RNA for cancer treatment-Application to triple-negative breast cancer. Biotechnol J 2023; 18:e2300060. [PMID: 37478121 DOI: 10.1002/biot.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Certain cancers, such as triple-negative breast cancer (TNBC), pose a challenging prognosis due to the absence of identifiable hormone-related receptors and effective targeted therapies. Consequently, novel therapeutics are required for these cancers, offering minimal side effects and reduced drug resistance. Unexpectedly, siRNA-7, initially employed as a control, exhibited significant efficacy in inhibiting cell viability in MDA-MB-231 cells. Through a genome-wide search of seed sequences, the targets of siRNA-7 were identified as cancer-related genes, namely PRKCE, RBPJ, ZNF737, and CDC7 in MDA-MB-231 cells. The mRNA repression analysis confirmed the simultaneous suppression by siRNA-7. Combinatorial administration of single-targeting siRNAs demonstrated a comparable reduction in viability to that achieved by siRNA-7. Importantly, siRNA-7 selectively inhibited cell viability in MDA-MB-231 cells, while normal HDF-n cells remained unaffected. Furthermore, in a xenograft mouse model, siRNA-7 exhibited a remarkable 76% reduction in tumor volume without any loss in body weight. These findings position siRNA-7 as a promising candidate for a novel, safe, specific, and potent TNBC cancer therapeutic. Moreover, the strategy of multiple suppressing small interfering RNA holds potential for the treatment of various diseases associated with gene overexpression.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jang Hyuk Bang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Kao HY, Pai CP, Wang H, Agarwal N, Adams J, Liu Z, Seachrist D, Keri R, Schiemann W. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3266720. [PMID: 37720048 PMCID: PMC10503857 DOI: 10.21203/rs.3.rs-3266720/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER + breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Joshua Adams
- Washington University School of Medicine in St. Louis
| | | | | | - Ruth Keri
- Cleveland Clinic Lerner Research Institute
| | | |
Collapse
|
11
|
Elson DJ, Nguyen BD, Korjeff NA, Wilferd SF, Puig-Sanvicens V, Sang Jang H, Bernales S, Chakravarty S, Belmar S, Ureta G, Finlay D, Plaisier CL, Kolluri SK. Suppression of Ah Receptor (AhR) increases the aggressiveness of TNBC cells and 11-Cl-BBQ-activated AhR inhibits their growth. Biochem Pharmacol 2023; 215:115706. [PMID: 37506922 DOI: 10.1016/j.bcp.2023.115706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Triple-negative breast cancer (TNBC) represents around 15% of the 2.26 million breast cancers diagnosed worldwide annually and has the worst outcome. Despite recent therapeutic advances, there remains a lack of targeted therapies for this breast cancer subtype. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with biological roles in regulating development, xenobiotic metabolism, cell cycle progression and cell death. AhR activation by select ligands can promote tumor suppression in multiple cancer types. AhR can negatively regulate the activity of different oncogenic signaling pathways and can directly upregulate tumor suppressor genes such as p27Kip1. To determine the role of AhR in TNBC, we generated AhR-deficient cancer cells and investigated the impact of AhR loss on TNBC cell growth phenotypes. We found that AhR-deficient MDA-MB-468 TNBC cells have increased proliferation and formed significantly more colonies compared to AhR expressing cells. These cells without AhR expression grew aggressively in vivo. To determine the molecular targets driving this phenotype, we performed transcriptomic profiling in AhR expressing and AhR knockout MDA-MB-468 cells and identified tyrosine receptor kinases, as well as other genes involved in proliferation, survival and clonogenicity that are repressed by AhR. In order to determine therapeutic targeting of AhR in TNBC, we investigated the anti-cancer effects of the novel AhR ligand 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ), which belongs to a class of high affinity, rapidly metabolized AhR ligands called benzimidazoisoquinolines (BBQs). 11-Cl-BBQ induced AhR-dependent cancer cell-selective growth inhibition and strongly inhibited colony formation in TNBC cells.
Collapse
Affiliation(s)
- Daniel J Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Nicholas A Korjeff
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Sierra F Wilferd
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Veronica Puig-Sanvicens
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Sebastian Bernales
- Praxis Biotech, San Francisco, CA 94158, United States; Fundación Ciencia & Vida, Centro Científico y Tecnológico Ciencia & Vida, Avda. Del valle Norte 725, Santiago, Chile
| | | | - Sebastián Belmar
- Praxis Biotech, San Francisco, CA 94158, United States; Merken Biotech, Avda. Del valle Norte 725, Santiago, Chile
| | - Gonzalo Ureta
- Praxis Biotech, San Francisco, CA 94158, United States; Merken Biotech, Avda. Del valle Norte 725, Santiago, Chile
| | - Darren Finlay
- Sanford Burnham Prebys Medical Discovery Institute, NCI Designated Cancer Center, La Jolla, CA 92037, United States
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
12
|
Lin J, Ye S, Ke H, Lin L, Wu X, Guo M, Jiao B, Chen C, Zhao L. Changes in the mammary gland during aging and its links with breast diseases. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184281 DOI: 10.3724/abbs.2023073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The functional capacity of organisms declines in the process of aging. In the case of breast tissue, abnormal mammary gland development can lead to dysfunction in milk secretion, a primary function, as well as the onset of various diseases, such as breast cancer. In the process of aging, the terminal duct lobular units (TDLUs) within the breast undergo gradual degeneration, while the proportion of adipose tissue in the breast continues to increase and hormonal levels in the breast change accordingly. Here, we review changes in morphology, internal structure, and cellular composition that occur in the mammary gland during aging. We also explore the emerging mechanisms of breast aging and the relationship between changes during aging and breast-related diseases, as well as potential interventions for delaying mammary gland aging and preventing breast disease.
Collapse
Affiliation(s)
- Junqiang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Shihui Ye
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Liang Lin
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Xia Wu
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Mengfei Guo
- Huankui Academy, Nanchang University, Nanchang 330031, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- the Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| |
Collapse
|
13
|
Sui Y, Li S, Fu XQ, Zhao ZJ, Xing S. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. J Transl Med 2023; 21:109. [PMID: 36765396 PMCID: PMC9921081 DOI: 10.1186/s12967-023-03943-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Sui
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shuping Li
- grid.266902.90000 0001 2179 3618Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Xue-Qi Fu
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
14
|
Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1124080. [PMID: 36776317 PMCID: PMC9911835 DOI: 10.3389/fonc.2023.1124080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Transforming growth factor (TGF)-β signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-β signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion We constructed a novel TGF-β signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.
Collapse
|
15
|
Zhai J, Han J, Li C, Lv D, Ma F, Xu B. Tumor senescence leads to poor survival and therapeutic resistance in human breast cancer. Front Oncol 2023; 13:1097513. [PMID: 36937388 PMCID: PMC10019818 DOI: 10.3389/fonc.2023.1097513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Breast cancer (BRCA) is the most common malignant tumor that seriously threatens the health of women worldwide. Senescence has been suggested as a pivotal player in the onset and progression of tumors as well as the process of treatment resistance. However, the role of senescence in BRCA remains unelucidated. Methods The clinical and transcriptomic data of 2994 patients with BRCA were obtained from The Cancer Genome Atlas and the METABRIC databases. Consensus clustering revealed senescence-associated subtypes of BRCA patients. Functional enrichment analysis explored biological effect of senescence. We then applied weighted gene co-expression network analysis (WGCNA) and LASSO regression to construct a senescence scoring model, Sindex. Survival analysis validated the effectiveness of Sindex to predict the overall survival (OS) of patients with BRCA. A nomogram was constructed by multivariate Cox regression. We used Oncopredict algorithm and real-world data from clinical trials to explore the value of Sindex in predicting response to cancer therapy. Results We identified two distinct senescence-associated subtypes, noted low senescence CC1 and high senescence CC2. Survival analysis revealed worse OS associated with high senescence, which was also validated with patient samples from the National Cancer Center in China. Further analysis revealed extensively cell division and suppression of extracellular matrix process, along with lower stromal and immune scores in the high senescence CC2. We then constructed a 37 signature gene scoring model, Sindex, with robust predictive capability in patients with BRCA, especially for long time OS beyond 10 years. We demonstrated that the Sene-high subtype was resistant to CDK inhibitors but sensitive to proteosome inhibitors, and there was no significant difference in paclitaxel chemotherapy and immunotherapy between patients with different senescence statuses. Conclusions We reported senescence as a previously uncharacterized hallmark of BRCA that impacts patient outcomes and therapeutic response. Our analysis demonstrated that the Sindex can be used to identify not only patients at different risk levels for the OS but also patients who would benefit from some cancer therapeutic drugs.
Collapse
Affiliation(s)
- Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiashu Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- 4 + 4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Lv
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Binghe Xu, ; Fei Ma,
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Binghe Xu, ; Fei Ma,
| |
Collapse
|
16
|
Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis. Sci Rep 2022; 12:20135. [PMID: 36418345 PMCID: PMC9684445 DOI: 10.1038/s41598-022-24347-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis of breast cancer (BC), as the most common cancer among women, increases the survival rate and effectiveness of treatment. MicroRNAs (miRNAs) control various cell behaviors, and their dysregulation is widely involved in pathophysiological processes such as BC development and progress. In this study, we aimed to identify potential miRNA biomarkers for early diagnosis of BC. We also proposed a consensus-based strategy to analyze the miRNA expression data to gain a deeper insight into the regulatory roles of miRNAs in BC initiation. Two microarray datasets (GSE106817 and GSE113486) were analyzed to explore the differentially expressed miRNAs (DEMs) in serum of BC patients and healthy controls. Utilizing multiple bioinformatics tools, six serum-based miRNA biomarkers (miR-92a-3p, miR-23b-3p, miR-191-5p, miR-141-3p, miR-590-5p and miR-190a-5p) were identified for BC diagnosis. We applied our consensus and integration approach to construct a comprehensive BC-specific miRNA-TF co-regulatory network. Using different combination of these miRNA biomarkers, two novel diagnostic models, consisting of miR-92a-3p, miR-23b-3p, miR-191-5p (model 1) and miR-92a-3p, miR-23b-3p, miR-141-3p, and miR-590-5p (model 2), were obtained from bioinformatics analysis. Validation analysis was carried out for the considered models on two microarray datasets (GSE73002 and GSE41922). The model based on similar network topology features, comprising miR-92a-3p, miR-23b-3p and miR-191-5p was the most promising model in the diagnosis of BC patients from healthy controls with 0.89 sensitivity, 0.96 specificity and area under the curve (AUC) of 0.98. These findings elucidate the regulatory mechanisms underlying BC and represent novel biomarkers for early BC diagnosis.
Collapse
|
17
|
Li J, Wang J, Liu D, Tao C, Zhao J, Wang W. Establishment and validation of a novel prognostic model for lower-grade glioma based on senescence-related genes. Front Immunol 2022; 13:1018942. [PMID: 36341390 PMCID: PMC9633681 DOI: 10.3389/fimmu.2022.1018942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/07/2022] [Indexed: 01/10/2023] Open
Abstract
Objective Increasing studies have indicated that senescence was associated with tumorigenesis and progression. Lower-grade glioma (LGG) presented a less invasive nature, however, its treatment efficacy and prognosis prediction remained challenging due to the intrinsic heterogeneity. Therefore, we established a senescence-related signature and investigated its prognostic role in LGGs. Methods The gene expression data and clinicopathologic features were from The Cancer Genome Atlas (TCGA) database. The experimentally validated senescence genes (SnGs) from the CellAge database were obtained. Then LASSO regression has been performed to build a prognostic model. Cox regression and Kaplan-Meier survival curves were performed to investigate the prognostic value of the SnG-risk score. A nomogram model has been constructed for outcome prediction. Immunological analyses were further performed. Data from the Chinese Glioma Genome Atlas (CGGA), Repository of Molecular Brain Neoplasia Data (REMBRANDT), and GSE16011 were used for validation. Results The 6-SnG signature has been established. The results showed SnG-risk score could be considered as an independent predictor for LGG patients (HR=2.763, 95%CI=1.660-4.599, P<0.001). The high SnG-risk score indicated a worse outcome in LGG (P<0.001). Immune analysis showed a positive correlation between the SnG-risk score and immune infiltration level, and the expression of immune checkpoints. The CGGA datasets confirmed the prognostic role of the SnG-risk score. And Kaplan-Meier analyses in the additional datasets (CGGA, REMBRANDT, and GSE16011) validated the prognostic role of the SnG-signature (P<0.001 for all). Conclusion The SnG-related prognostic model could predict the survival of LGG accurately. This study proposed a novel indicator for predicting the prognosis of LGG and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Dongjing Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wen Wang, ; Jizong Zhao,
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- *Correspondence: Wen Wang, ; Jizong Zhao,
| |
Collapse
|
18
|
Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN. Epigenetic oncogenesis, biomarkers and emerging chemotherapeutics for breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194873. [PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria.
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Wahab Adesina Osunniran
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
19
|
Zhou L, Niu Z, Wang Y, Zheng Y, Zhu Y, Wang C, Gao X, Gao L, Zhang W, Zhang K, Melino G, Huang H, Wang X, Sun Q. Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. Cell Death Discov 2022; 8:13. [PMID: 35013121 PMCID: PMC8748965 DOI: 10.1038/s41420-021-00769-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Senescence is believed to be a pivotal player in the onset and progression of tumors as well as cancer therapy. However, the guiding roles of senescence in clinical outcomes and therapy selection for patients with cancer remain obscure, largely due to the absence of a feasible senescence signature. Here, by integrative analysis of single cell and bulk transcriptome data from multiple datasets of gastric cancer patients, we uncovered senescence as a veiled tumor feature characterized by senescence gene signature enriched, unexpectedly, in the noncancerous cells, and further identified two distinct senescence-associated subtypes based on the unsupervised clustering. Patients with the senescence subtype had higher tumor mutation loads and better prognosis as compared with the aggressive subtype. By the machine learning, we constructed a scoring system termed as senescore based on six signature genes: ADH1B, IL1A, SERPINE1, SPARC, EZH2, and TNFAIP2. Higher senescore demonstrated robustly predictive capability for longer overall and recurrence-free survival in 2290 gastric cancer samples, which was independently validated by the multiplex staining analysis of gastric cancer samples on the tissue microarray. Remarkably, the senescore signature served as a reliable predictor of chemotherapeutic and immunotherapeutic efficacies, with high-senescore patients benefited from immunotherapy, while low-senescore patients were responsive to chemotherapy. Collectively, we report senescence as a heretofore unrecognized hallmark of gastric cancer that impacts patient outcomes and therapeutic efficacy.
Collapse
Affiliation(s)
- Lulin Zhou
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Zubiao Niu
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Yuqi Wang
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - You Zheng
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Yichao Zhu
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Chenxi Wang
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Xiaoyan Gao
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Lihua Gao
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
- DZNE German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China.
| | - Xiaoning Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Qiang Sun
- Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Sciences, 20 Dongda Street, Beijing, 100071, China.
| |
Collapse
|
20
|
A combination approach of pseudotime analysis and mathematical modeling for understanding drug-resistant mechanisms. Sci Rep 2021; 11:18511. [PMID: 34531471 PMCID: PMC8445918 DOI: 10.1038/s41598-021-97887-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer cells acquire drug resistance through the following stages: nonresistant, pre-resistant, and resistant. Although the molecular mechanism of drug resistance is well investigated, the process of drug resistance acquisition remains largely unknown. Here we elucidate the molecular mechanisms underlying the process of drug resistance acquisition by sequential analysis of gene expression patterns in tamoxifen-treated breast cancer cells. Single-cell RNA-sequencing indicates that tamoxifen-resistant cells can be subgrouped into two, one showing altered gene expression related to metabolic regulation and another showing high expression levels of adhesion-related molecules and histone-modifying enzymes. Pseudotime analysis showed a cell transition trajectory to the two resistant subgroups that stem from a shared pre-resistant state. An ordinary differential equation model based on the trajectory fitted well with the experimental results of cell growth. Based on the established model, it was predicted and experimentally validated that inhibition of transition to both resistant subtypes would prevent the appearance of tamoxifen resistance.
Collapse
|
21
|
Miodragović Ð, Qiang W, Sattar Waxali Z, Vitnik Ž, Vitnik V, Yang Y, Farrell A, Martin M, Ren J, O’Halloran TV. Iodide Analogs of Arsenoplatins-Potential Drug Candidates for Triple Negative Breast Cancers. Molecules 2021; 26:molecules26175421. [PMID: 34500854 PMCID: PMC8434261 DOI: 10.3390/molecules26175421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Patients with triple negative breast cancers (TNBCs)—highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors—have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Wenan Qiang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Željko Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Vesna Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Yi Yang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Annie Farrell
- Department of Chemistry, University of Illinois at Urbana Champaign, 102 N. Neil St., Champaign, IL 61820, USA;
| | - Matthew Martin
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
| | - Justin Ren
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Department of Chemistry and Department of Microbiology & Molecular Genetics, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Correspondence: or ; Tel.: +1-847-491-5060; Fax: +1-847-467-1566
| |
Collapse
|
22
|
Delbarre E, Janicki SM. Modulation of H3.3 chromatin assembly by PML: A way to regulate epigenetic inheritance. Bioessays 2021; 43:e2100038. [PMID: 34423467 DOI: 10.1002/bies.202100038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Although the promyelocytic leukemia (PML) protein is renowned for regulating a wide range of cellular processes and as an essential component of PML nuclear bodies (PML-NBs), the mechanisms through which it exerts its broad physiological impact are far from fully elucidated. Here, we review recent studies supporting an emerging view that PML's pleiotropic effects derive, at least partially, from its role in regulating histone H3.3 chromatin assembly, a critical epigenetic mechanism. These studies suggest that PML maintains heterochromatin organization by restraining H3.3 incorporation. Examination of PML's contribution to H3.3 chromatin assembly in the context of the cell cycle and PML-NB assembly suggests that PML represses heterochromatic H3.3 deposition during S phase and that transcription and SUMOylation regulate PML's recruitment to heterochromatin. Elucidating PML' s contributions to H3.3-mediated epigenetic regulation will provide insight into PML's expansive influence on cellular physiology and open new avenues for studying oncogenesis linked to PML malfunction.
Collapse
Affiliation(s)
- Erwan Delbarre
- Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Susan M Janicki
- Drexel University Thomas R. Kline School of Law, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Tang D, Luo Y, Jiang Y, Hu P, Peng H, Wu S, Zhang G, Wang Y. LncRNA KCNQ1OT1 activated by c-Myc promotes cell proliferation via interacting with FUS to stabilize MAP3K1 in acute promyelocytic leukemia. Cell Death Dis 2021; 12:795. [PMID: 34404765 PMCID: PMC8371007 DOI: 10.1038/s41419-021-04080-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Uncontrolled proliferation is the hallmark of cancer cells. Previous studies mainly focused on the role of protein-coding genes in cancer cell proliferation. Emerging evidence showed that long non-coding RNAs (lncRNAs) also play critical roles in cancer cell proliferation and growth. LncRNA KCNQ1OT1 is found to contribute to carcinogenesis, but its role in acute promyelocytic leukemia (APL) is unclear. In this study, by analyzing data from Gene Expression Omnibus, The Cancer Genome Atlas database and our clinical samples, we found that KCNQ1OT1 was selectively highly expressed in APL. Functional assays demonstrated that knockdown of KCNQ1OT1 reduced APL cell proliferation and increased apoptosis. Further evidence showed that KCNQ1OT1 was mainly located in the cytoplasm of APL patient-derived NB4 cells and APL patient bone marrow samples. Mechanistically, KCNQ1OT1 bound to RNA binding protein FUS, and silencing either KCNQ1OT1 or FUS reduced the expression level and stability of MAP3K1 mRNA. Whereas KCNQ1OT1 and FUS did not affect each other. Importantly, knockdown of MAP3K1 impaired APL cell proliferation. Finally, c-Myc transactivated KCNQ1OT1 in APL cells through binding to its promoter while knockdown of c-Myc decreased KCNQ1OT1 expression. Our results not only revealed that c-Myc transactivated KCNQ1OT1 and upregulated KCNQ1OT1 promoted APL cell proliferation, but also demonstrated that KCNQ1OT1 bound to FUS to synergistically stabilize MAP3K1 mRNA, thus facilitating APL cell proliferation. This study established a previously unidentified role of KCNQ1OT1 in the development of APL, and KCNQ1OT1 may serve as a potential therapeutic target for APL.
Collapse
Affiliation(s)
- Doudou Tang
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Yujiao Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yafeng Jiang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Piao Hu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Shangjie Wu
- Department of Respiratory and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Centre for Evidence-based Medicine, Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yewei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Su X, Feng C, Wang S, Shi L, Gu Q, Zhang H, Lan X, Zhao Y, Qiang W, Ji M, Hou P. The noncoding RNAs SNORD50A and SNORD50B-mediated TRIM21-GMPS interaction promotes the growth of p53 wild-type breast cancers by degrading p53. Cell Death Differ 2021; 28:2450-2464. [PMID: 33742136 PMCID: PMC8329294 DOI: 10.1038/s41418-021-00762-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Small nucleolar RNA SNORD50A and SNORD50B (SNORD50A/B) has been reported to be recurrently deleted and function as a putative tumor suppressor in different types of cancer by binding to and suppressing the activity of the KRAS oncoproteins. Its deletion correlates with poorer patient survival. However, in this study, we surprisingly found that SNORD50A/B loss predicted a better survival in breast cancer patients carrying wild-type p53. Functional studies showed that SNORD50A/B deletion strongly inhibited the proliferation, migration, invasion and tumorigenic potential, and induced cell cycle arrest and apoptosis in p53 wild-type breast cancer cells, while exerted the opposite effects in p53 mutated breast cancer cells. This was also supported by ectopically expressing SNORD50A/B in both p53 wild-type and mutated breast cancer cells. Mechanistically, SNORD50A/B clearly enhances the interaction between E3 ubiquitin ligase TRIM21 and its substrate GMPS by forming a complex among them, thereby promoting GMPS ubiquitination and its subsequent cytoplasmic sequestration. SNORD50A/B deletion in p53 wild-type breast cancer cells will release GMPS and induce the translocation of GMPS into the nucleus, where GMPS can recruit USP7 and form a complex with p53, thereby decreasing p53 ubiquitination, stabilizing p53 proteins, and inhibiting malignant phenotypes of cancer cells. Altogether, the present study first reports that SNORD50A/B plays an oncogenic role in p53 wild-type breast cancers by mediating TRIM21-GMPS interaction.
Collapse
Affiliation(s)
- Xi Su
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chao Feng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Liang Shi
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qingqing Gu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Haihong Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinhui Lan
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuelei Zhao
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Wei Qiang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
25
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
26
|
Macedo-da-Silva J, Santiago VF, Rosa-Fernandes L, Marinho CRF, Palmisano G. Protein glycosylation in extracellular vesicles: Structural characterization and biological functions. Mol Immunol 2021; 135:226-246. [PMID: 33933815 DOI: 10.1016/j.molimm.2021.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed particles involved in intercellular communication, delivery of biomolecules from donor to recipient cells, cellular disposal and homeostasis, potential biomarkers and drug carriers. The content of EVs includes DNA, lipids, metabolites, proteins, and microRNA, which have been studied in various diseases, such as cancer, diabetes, pregnancy, neurodegenerative, and cardiovascular disorders. EVs are enriched in glycoconjugates and exhibit specific glycosignatures. Protein glycosylation is a co- and post-translational modification (PTM) that plays an important role in the expression and function of exosomal proteins. N- and O-linked protein glycosylation has been mapped in exosomal proteins. The purpose of this review is to highlight the importance of glycosylation in EVs proteins. Initially, we describe the main PTMs in EVs with a focus on glycosylation. Then, we explore glycan-binding proteins describing the main findings of studies that investigated the glycosylation of EVs in cancer, pregnancy, infectious diseases, diabetes, mental disorders, and animal fluids. We have highlighted studies that have developed innovative methods for studying the content of EVs. In addition, we present works related to lipid glycosylation. We explored the content of studies deposited in public databases, such as Exocarta and Vesiclepedia. Finally, we discuss analytical methods for structural characterization of glycoconjugates and present an overview of the critical points of the study of glycosylation EVs, as well as perspectives in this field.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Verônica F Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
27
|
Qin Y, Yuan H, Chen X, Yang X, Xing Z, Shen Y, Dong W, An S, Qi Y, Wu H. SUMOylation Wrestles With the Occurrence and Development of Breast Cancer. Front Oncol 2021; 11:659661. [PMID: 33968766 PMCID: PMC8097099 DOI: 10.3389/fonc.2021.659661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
28
|
The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021; 13:v13020239. [PMID: 33546431 PMCID: PMC7913651 DOI: 10.3390/v13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Nuclear domains 10 (ND10), a.k.a. promyelocytic leukemia nuclear bodies (PML-NBs), are membraneless subnuclear domains that are highly dynamic in their protein composition in response to cellular cues. They are known to be involved in many key cellular processes including DNA damage response, transcription regulation, apoptosis, oncogenesis, and antiviral defenses. The diversity and dynamics of ND10 residents enable them to play seemingly opposite roles under different physiological conditions. Although the molecular mechanisms are not completely clear, the pro- and anti-cancer effects of ND10 have been well established in tumorigenesis. However, in herpesvirus research, until the recently emerged evidence of pro-viral contributions, ND10 nuclear bodies have been generally recognized as part of the intrinsic antiviral defenses that converge to the incoming viral DNA to inhibit the viral gene expression. In this review, we evaluate the newly discovered pro-infection influences of ND10 in various human herpesviruses and analyze their molecular foundation along with the traditional antiviral functions of ND10. We hope to shed light on the explicit role of ND10 in both the lytic and latent cycles of herpesvirus infection, which is imperative to the delineation of herpes pathogenesis and the development of prophylactic/therapeutic treatments for herpetic diseases.
Collapse
|
29
|
Shahrouzi P, Astobiza I, Cortazar AR, Torrano V, Macchia A, Flores JM, Niespolo C, Mendizabal I, Caloto R, Ercilla A, Camacho L, Arreal L, Bizkarguenaga M, Martinez-Chantar ML, Bustelo XR, Berra E, Kiss-Toth E, Velasco G, Zabala-Letona A, Carracedo A. Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers (Basel) 2020; 12:2593. [PMID: 32932846 PMCID: PMC7565426 DOI: 10.3390/cancers12092593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.
Collapse
Affiliation(s)
- Parastoo Shahrouzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Alice Macchia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Juana M. Flores
- Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (C.N.); (E.K.-T.)
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Ruben Caloto
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Laura Camacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| | - Leire Arreal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Maider Bizkarguenaga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
| | - Maria L. Martinez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain
| | - Xose R. Bustelo
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Edurne Berra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (C.N.); (E.K.-T.)
| | - Guillermo Velasco
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos, 28040 Madrid, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (P.S.); (I.A.); (A.R.C.); (V.T.); (A.M.); (I.M.); (A.E.); (L.C.); (L.A.); (M.B.); (M.L.M.-C.); (E.B.); (A.Z.-L.)
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), 28029 Madrid, Spain; (R.C.); (X.R.B.)
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
30
|
Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and Targeted Therapy. Trends Cancer 2020; 6:889-906. [PMID: 32527650 DOI: 10.1016/j.trecan.2020.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
Abstract
Targeted therapy has become increasingly important in cancer therapy. For example, targeting the promyelocytic leukemia PML protein in leukemia has proved to be an effective treatment. PML is the core component of super-assembled structures called PML nuclear bodies (NBs). Although this nuclear megaDalton complex was first observed in the 1960s, the mechanism of its assembly remains poorly understood. We review recent breakthroughs in the PML field ranging from a revised assembly mechanism to PML-driven genome organization and carcinogenesis. In addition, we highlight that oncogenic oligomerization might also represent a promising target in the treatment of leukemias and solid tumors.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodan Ma
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenyu Wu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|