1
|
Kou C, Zhao X, Fan X, Sun R, Wang W, Qi M, Zhu L, Lin X, Yu J. Rnf40 Exacerbates Hypertension-Induced Cerebrovascular Endothelial Barrier Dysfunction by Ubiquitination and Degradation of Parkin. CNS Neurosci Ther 2025; 31:e70210. [PMID: 39777866 PMCID: PMC11707429 DOI: 10.1111/cns.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
AIMS We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment. METHODS We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs). We also evaluated the cerebrovascular endothelial barrier function, cerebral blood flow, and cognitive performance. RESULTS We observed reduced mitophagy in cerebrovascular endothelial cells of SHRs compared with that in Wistar-Kyoto rats. Rnf40 facilitated K48-linked polyubiquitination and degradation of Parkin, thereby inhibiting mitophagy. In the Rnf40-deficient SHR model, knocking down Rnf40 restored mitophagy in cerebrovascular endothelial cells. Additionally, levels of tight junction proteins and cerebrovascular endothelial barrier function improved following Rnf40 downregulation. Rnf40 depletion also improved global cognitive performance and restored cerebral blood flow in SHRs. CONCLUSION Our findings suggest that increased Rnf40 levels exacerbate hypertension-induced cerebrovascular endothelial barrier dysfunction by ubiquitinating Parkin.
Collapse
Affiliation(s)
- Chengkun Kou
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Xu Zhao
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Xin Fan
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Runmin Sun
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Wenting Wang
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Miaomiao Qi
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Lulu Zhu
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Xin Lin
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Jing Yu
- Hypertension Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
2
|
Zhang J, Liu H, Liu Y, Luo E, Liu S. Unlocking the potential of histone modification in regulating bone metabolism. Biochimie 2024; 227:286-298. [PMID: 39154977 DOI: 10.1016/j.biochi.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Bone metabolism plays a crucial role in maintaining normal bone tissue homeostasis and function. Imbalances between bone formation and resorption can lead to osteoporosis, osteoarthritis, and other bone diseases. The dynamic and complex process of bone remodeling is driven by various factors, including epigenetics. Histone modification, one of the most important and well-studied components of epigenetic regulation, has emerged as a promising area of research in bone metabolism. Different histone proteins and modification sites exert diverse effects on osteogenesis and osteoclastogenesis. In this review, we summarize recent progress in understanding histone modifications in bone metabolism, including specific modification sites and potential regulatory enzymes. Comprehensive knowledge of histone modifications in bone metabolism could reveal new therapeutic targets and treatment strategies for bone diseases.
Collapse
Affiliation(s)
- Jiayuan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Yadav P, Tanweer S, Garg M, Verma M, Khan AS, Rahman SS, Ali A, Grover S, Kumar P, Kamthan M. Structural inscrutabilities of Histone (H2BK123) monoubiquitination: A systematic review. Int J Biol Macromol 2024; 280:135977. [PMID: 39322127 DOI: 10.1016/j.ijbiomac.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Histone H2B monoubiquitination in budding yeast is a highly conserved post-translational modification. It is involved in normal functions of the cells like DNA Repair, RNA Pol II activation, trans-histone H3K and H79K methylation, meiosis, vesicle budding, etc. Deregulation of H2BK123ub can lead to the activation of proto-oncogenes and is also linked to neurodegenerative and heart diseases. Recent discoveries have enhanced the mechanistic underpinnings of H2BK123ub. For the first time, the Rad6's acidic tail has been implicated in histone recognition and interaction with Bre1's RBD domain. The non-canonical backside of Rad6 showed inhibition in polyubiquitination activity. Bre1 domains RBD and RING play a role in site-specific ubiquitination. The role of single Alaline residue in Rad6 activity. Understanding the mechanism of ubiquitination before moving to therapeutic applications is important. Current advancements in this field indicate the creation of novel therapeutic approaches and a foundation for further study.
Collapse
Affiliation(s)
- Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sana Tanweer
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Jiang C, Ruan Y, Li J, Huang J, Xiao M, Xu H. Tissue expression and promoter activity analysis of the porcine TNFSF11 gene. Theriogenology 2024; 226:277-285. [PMID: 38954996 DOI: 10.1016/j.theriogenology.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Tumour necrosis factor (TNF) superfamily member 11 (TNFSF11), also known as RANKL, plays a crucial role in regulating several physiological and pathological activities. Additionally, it is a vital factor in bone physiology, and the sex hormone progesterone regulates the expansion of stem cells and the proliferation of mammary epithelial cells. It is essential for animal growth and reproductive physiological processes. This study aimed to evaluate the tissue-specific expression characteristics and promoter activity of the TNFSF11 gene in pigs. As a result, the study examined the presence of TNFSF11 expression in the tissues of Xiangsu pigs at 0.6 and 12 months of age. Moreover, the core promoter region of TNFSF11 was also identified by utilizing a combination of bioinformatic prediction and dual-luciferase activity tests. Finally, the effect of transcription factors on the transcriptional activity of the core promoter region was determined using site-directed mutagenesis. TNFSF11 was uniformly expressed in all tissues; however, its expression in muscles was comparatively low. The core promoter region of TNFSF11 was located in the -555 to -1 region. The prediction of the transcription start site of TNFSF11 gene-2000 ∼ + 500bp showed that there was a CpG site in 17 ∼ + 487bp. Analysis of mutations in the transcription factor binding sites revealed that mutations in the Stat5b, Myog, Trl, and EN1 binding sites had significant effects on the transcriptional activity of the TNFSF11 gene, particularly following the EN1 binding site mutation (P < 0.001). This study provides insights into both the tissue-specific expression patterns of TNFSF11 in the tissues of Xiangsu pigs and the potential regulatory effects of transcription factors on its promoter activity. These results may be helpful for future research aimed at clarifying the expression and role of the porcine TNFSF11 gene.
Collapse
Affiliation(s)
- Chuanmei Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Jifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
5
|
Ekstrom TL, Hussain S, Bedekovics T, Ali A, Paolini L, Mahmood H, Rosok RM, Koster J, Johnsen SA, Galardy PJ. USP44 Overexpression Drives a MYC-Like Gene Expression Program in Neuroblastoma through Epigenetic Reprogramming. Mol Cancer Res 2024; 22:812-825. [PMID: 38775808 PMCID: PMC11372370 DOI: 10.1158/1541-7786.mcr-23-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024]
Abstract
Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN amplification. The subset of patients with tumors expressing high levels of USP44 had significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that are regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Thomas L. Ekstrom
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Family Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Lucia Paolini
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Hina Mahmood
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Raya M. Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Jan Koster
- Department of CEMM, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
6
|
Lu W, Zheng C, Zhang H, Cheng P, Miao S, Wang H, He T, Fan J, Hu Y, Liu H, Jia L, Hao X, Luo Z, Xu J, Jie Q, Yang L. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast-osteoblast coupling. Cell Mol Life Sci 2023; 80:171. [PMID: 37261512 PMCID: PMC11071711 DOI: 10.1007/s00018-023-04821-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclast-osteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclast-osteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.
Collapse
Affiliation(s)
- Weiguang Lu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Zheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongyang Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huanbo Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ting He
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Jing Fan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaqian Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - He Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liyuan Jia
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
- Research Center for Skeletal Developmental Deformity and Injury Repair, College of Life Science and Medicine, Northwest University, Xi'an, China.
- Clinical Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi'an, China.
| | - Liu Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
7
|
Jinteng L, Peitao X, Wenhui Y, Guiwen Y, Feng Y, Xiaojun X, Zepeng S, Jiajie L, Yunshu C, Zhaoqiang Z, Yipeng Z, Zhikun L, Pei F, Qian C, Dateng L, Zhongyu X, Yanfeng W, Huiyong S. BMAL1-TTK-H2Bub1 loop deficiency contributes to impaired BM-MSC-mediated bone formation in senile osteoporosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:568-585. [PMID: 36910712 PMCID: PMC9996134 DOI: 10.1016/j.omtn.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During the aging process, the reduced osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) results in decreased bone formation, which contributes to senile osteoporosis. Previous studies have confirmed that interrupted circadian rhythm plays an indispensable role in age-related disease. However, the mechanism underlying the impaired osteogenic differentiation of BM-MSCs during aging and its relationship with interrupted circadian rhythm remains unclear. In this study, we confirmed that the circadian rhythm was interrupted in aging mouse skeletal systems. The level of the core rhythm component BMAL1 but not that of CLOCK in the osteoblast lineage was decreased in senile osteoporotic specimens from both human and mouse. BMAL1 targeted TTK as a circadian-controlled gene to phosphorylate MDM2 and regulate H2Bub1 level, while H2Bub1 in turn regulated the expression of BMAL1. The osteogenic capacity of BM-MSCs was maintained by a positive loop formed by BMAL1-TTK-MDM2-H2Bub1. Furthermore, we demonstrated that using bone-targeting recombinant adeno-associated virus 9 (rAAV9) to enhance Bmal1 or Ttk might have a therapeutic effect on senile osteoporosis and delays bone repair in aging mice. In summary, our study indicated that targeting the BMAL1-TTK-MDM2-H2Bub1 axis via bone-targeting rAAV9 might be a promising strategy for the treatment of senile osteoporosis.
Collapse
Affiliation(s)
- Li Jinteng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Xu Peitao
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Yu Wenhui
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Ye Guiwen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Ye Feng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Xu Xiaojun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Su Zepeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Lin Jiajie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Che Yunshu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zhang Zhaoqiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Zeng Yipeng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Li Zhikun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Feng Pei
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Cao Qian
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Li Dateng
- Department of Statistical Science, Southern Methodist University, Dallas, TX, USA
| | - Xie Zhongyu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Wu Yanfeng
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| | - Shen Huiyong
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, P.R. China
| |
Collapse
|
8
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Ahmad M, Stirmlinger N, Jan I, Stifel U, Lee S, Weingandt M, Kelp U, Bockmann J, Ignatius A, Böckers TM, Tuckermann J. Downregulation of the Autism Spectrum Disorder Gene Shank2 Decreases Bone Mass in Male Mice. JBMR Plus 2022; 7:e10711. [PMID: 36751416 PMCID: PMC9893268 DOI: 10.1002/jbm4.10711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Mutations of the postsynaptic scaffold protein Shank2 lead to autism spectrum disorders (ASD). These patients frequently suffer from higher fracture risk. Here, we investigated whether Shank2 directly regulates bone mass. We show that Shank2 is expressed in bone and that Shank2 levels are increased during osteoblastogenesis. Knockdown of Shank2 by siRNA targeting the encoding regions for PDZ and SAM domain inhibits osteoblastogenesis of primary murine calvarial osteoblasts. Shank2 knockout mice (Shank2 -/-) have a decreased bone mass due to reduced osteoblastogenesis and bone formation, whereas bone resorption remains unaffected. Induced pluripotent stem cells (iPSCs)-derived osteoblasts from a loss-of-function Shank2 mutation in a patient showed a significantly reduced osteoblast differentiation potential. Moreover, silencing of known Shank2 interacting proteins revealed that a majority of them promote osteoblast differentiation. From this we conclude that Shank2 and interacting proteins known from the central nervous system are decisive regulators in osteoblast differentiation. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | | | - Irfana Jan
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Marcel Weingandt
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Ulrike Kelp
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell BiologyUlm UniversityUlmGermany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm UniversityUlmGermany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| |
Collapse
|
10
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
11
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
12
|
Krüger BT, Steppe L, Vettorazzi S, Haffner-Luntzer M, Lee S, Dorn AK, Ignatius A, Tuckermann J, Ahmad M. Inhibition of Cdk5 Ameliorates Skeletal Bone Loss in Glucocorticoid-Treated Mice. Biomedicines 2022; 10:404. [PMID: 35203613 PMCID: PMC8962259 DOI: 10.3390/biomedicines10020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, their long-term use leads to glucocorticoid-induced osteoporosis, increasing morbidity and mortality. Both anabolic and anti-resorptive drugs are used to counteract GC-induced bone loss, however, they are expensive and/or have major side effects. Therefore, identifying new targets for cost-effective, small-molecule inhibitors is essential. We recently identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation and showed that its inhibition with roscovitine promoted osteoblastogenesis, thus improving the skeletal bone mass and fracture healing. Here, we assessed whether Cdk5 knockdown or inhibition could also reverse the GC-mediated suppression of osteoblast differentiation, bone loss, and fracture healing. We first demonstrated that Cdk5 silencing abolished the dexamethasone (Dex)-induced downregulation of alkaline phosphatase (Alp) activity, osteoblast-specific marker gene expression (Runx2, Sp7, Alpl, and Bglap), and mineralization. Similarly, Cdk5 inhibition rescued Dex-induced suppression of Alp activity. We further demonstrated that Cdk5 inhibition reversed prednisolone (Pred)-induced bone loss in mice, due to reduced osteoclastogenesis rather than improved osteoblastogenesis. Moreover, we revealed that Cdk5 inhibition failed to improve Pred-mediated impaired fracture healing. Taken together, we demonstrated that Cdk5 inhibition with roscovitine ameliorated GC-mediated bone loss but did not reverse GC-induced compromised fracture healing in mice.
Collapse
Affiliation(s)
- Benjamin Thilo Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Lena Steppe
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| | - Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, Ulm University, Helmholtzstrasse 14, 89081 Ulm, Germany; (B.T.K.); (L.S.); (M.H.-L.)
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Helmholtzstrasse 8/1, 89081 Ulm, Germany; (S.V.); (S.L.); (A.-K.D.)
| |
Collapse
|
13
|
Epoxymicheliolide directly targets histone H2B to inhibit neuroinflammation via recruiting E3 ligase RNF20. Pharmacol Res 2022; 177:106093. [PMID: 35074526 DOI: 10.1016/j.phrs.2022.106093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023]
Abstract
Monoubiquitination plays a critical role as one of the largest histone post-translational modifications (PTMs). Recent study has revealed that histone H2B monoubiquitination (H2Bub1) at a unique lysine 120 (K120) is widely involved in the development of inflammation progression. However, small-molecules directly targeting H2B to exert anti-inflammation effects via editing monoubiquitination have not been hitherto reported. In this study, we first discover a natural small-molecule epoxymicheliolide (ECL), which directly binds to H2B to inhibit microglia-mediated neuroinflammation in vitro and in vivo. Mechanism study suggests that ECL covalently modifies a previously undisclosed lysine 46 (K46) in H2B, and recruits E3 ubiquitin ligase RNF20 to promote H2Bub1 at K120. ChIP-seq and transcriptomics further reveal that ECL-mediated H2Bub1 markedly disrupts the AP-1 recruitment to proinflammatory gene promoters for microglia inactivation. Collectively, our findings suggests that K46 of H2B serves as a promising pharmacological target to develop small-molecule drugs against microglia-mediated neuroinflammation, and ECL represents a valuable lead compound for neuroinflammation via regulating histone monoubiquitination.
Collapse
|
14
|
Epigenetic modifications of histones during osteoblast differentiation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194780. [PMID: 34968769 DOI: 10.1016/j.bbagrm.2021.194780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.
Collapse
|
15
|
Sun P, Huang T, Huang C, Wang Y, Tang D. Role of histone modification in the occurrence and development of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:964103. [PMID: 36093077 PMCID: PMC9458911 DOI: 10.3389/fendo.2022.964103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic degenerative bone disease characterized by low bone mass and damage to bone microarchitecture, which increases bone fragility and susceptibility to fracture. The risk of osteoporosis increases with age; with the aging of the global population, osteoporosis is becoming more prevalent, adding to the societal healthcare burden. Histone modifications such as methylation, acetylation, ubiquitination, and ADP-ribosylation are closely related to the occurrence and development of osteoporosis. This article reviews recent studies on the role of histone modifications in osteoporosis. The existing evidence indicates that therapeutic targeting of these modifications to promote osteogenic differentiation and bone formation may be an effective treatment for this disease.
Collapse
Affiliation(s)
- Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingrui Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongjun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yongjun Wang, ; Dezhi Tang,
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yongjun Wang, ; Dezhi Tang,
| |
Collapse
|
16
|
Kosinsky RL, Zerche M, Kutschat AP, Nair A, Ye Z, Saul D, von Heesen M, Friton JJ, Schwarzer AC, Paglilla N, Sheikh SZ, Wegwitz F, Sun Z, Ghadimi M, Newberry RD, Sartor RB, Faubion WA, Johnsen SA. RNF20 and RNF40 regulate vitamin D receptor-dependent signaling in inflammatory bowel disease. Cell Death Differ 2021; 28:3161-3175. [PMID: 34088983 PMCID: PMC8563960 DOI: 10.1038/s41418-021-00808-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Despite the identification of several genetic factors linked to increased susceptibility to inflammatory bowel disease (IBD), underlying molecular mechanisms remain to be elucidated in detail. The ubiquitin ligases RNF20 and RNF40 mediate the monoubiquitination of histone H2B at lysine 120 (H2Bub1) and were shown to play context-dependent roles in the development of inflammation. Here, we aimed to examine the function of the RNF20/RNF40/H2Bub1 axis in intestinal inflammation in IBD patients and mouse models. For this purpose, intestinal sections from IBD patients were immunohistochemically stained for H2Bub1. Rnf20 or Rnf40 were conditionally deleted in the mouse intestine and mice were monitored for inflammation-associated symptoms. Using mRNA-seq and chromatin immunoprecipitation (ChIP)-seq, we analyzed underlying molecular pathways in primary intestinal epithelial cells (IECs) isolated from these animals and confirmed these findings in IBD resection specimens using ChIP-seq.The majority (80%) of IBD patients displayed a loss of H2Bub1 levels in inflamed areas and the intestine-specific deletion of Rnf20 or Rnf40 resulted in spontaneous colorectal inflammation in mice. Consistently, deletion of Rnf20 or Rnf40 promoted IBD-associated gene expression programs, including deregulation of various IBD risk genes in these animals. Further analysis of murine IECs revealed that H3K4me3 occupancy and transcription of the Vitamin D Receptor (Vdr) gene and VDR target genes is RNF20/40-dependent. Finally, these effects were confirmed in a subgroup of Crohn's disease patients which displayed epigenetic and expression changes in RNF20/40-dependent gene signatures. Our findings reveal that loss of H2B monoubiquitination promotes intestinal inflammation via decreased VDR activity thereby identifying RNF20 and RNF40 as critical regulators of IBD.
Collapse
Affiliation(s)
| | - Maria Zerche
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Ana Patricia Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Asha Nair
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Maximilian von Heesen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica J Friton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ana Carolina Schwarzer
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Nadia Paglilla
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Rodney D Newberry
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
Pant A, Paul E, Niebur GL, Vahdati A. Integration of mechanics and biology in computer simulation of bone remodeling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:33-45. [PMID: 33965425 DOI: 10.1016/j.pbiomolbio.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Bone remodeling is a complex physiological process that spans across multiple spatial and temporal scales and is regulated by both mechanical and hormonal cues. An imbalance between bone resorption and bone formation in the process of bone remodeling may lead to various bone pathologies. One powerful and non-invasive approach to gain new insights into mechano-adaptive bone remodeling is computer modeling and simulation. Recent findings in bone physiology and advances in computer modeling have provided a unique opportunity to study the integration of mechanics and biology in bone remodeling. Our objective in this review is to critically appraise recent advances and developments and discuss future research opportunities in computational bone remodeling approaches that enable integration of mechanics and cellular and molecular pathways. Based on the critical appraisal of the relevant recent published literature, we conclude that multiscale in silico integration of personalized bone mechanics and mechanobiology combined with data science and analytics techniques offer the potential to deepen our knowledge of bone remodeling and provide ample opportunities for future research.
Collapse
Affiliation(s)
- Anup Pant
- Multi-disciplinary Mechanics and Modeling Laboratory, Department of Engineering, East Carolina University, Greenville, NC 27858, USA
| | - Elliot Paul
- Multi-disciplinary Mechanics and Modeling Laboratory, Department of Engineering, East Carolina University, Greenville, NC 27858, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ali Vahdati
- Multi-disciplinary Mechanics and Modeling Laboratory, Department of Engineering, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
18
|
Wegwitz F, Prokakis E, Pejkovska A, Kosinsky RL, Glatzel M, Pantel K, Wikman H, Johnsen SA. The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death Dis 2020; 11:873. [PMID: 33070155 PMCID: PMC7568723 DOI: 10.1038/s41419-020-03081-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
The HER2-positive breast cancer subtype (HER2+-BC) displays a particularly aggressive behavior. Anti-HER2 therapies have significantly improved the survival of patients with HER2+-BC. However, a large number of patients become refractory to current targeted therapies, necessitating the development of new treatment strategies. Epigenetic regulators are commonly misregulated in cancer and represent attractive molecular therapeutic targets. Monoubiquitination of histone 2B (H2Bub1) by the heterodimeric ubiquitin ligase complex RNF20/RNF40 has been described to have tumor suppressor functions and loss of H2Bub1 has been associated with cancer progression. In this study, we utilized human tumor samples, cell culture models, and a mammary carcinoma mouse model with tissue-specific Rnf40 deletion and identified an unexpected tumor-supportive role of RNF40 in HER2+-BC. We demonstrate that RNF40-driven H2B monoubiquitination is essential for transcriptional activation of RHO/ROCK/LIMK pathway components and proper actin-cytoskeleton dynamics through a trans-histone crosstalk with histone 3 lysine 4 trimethylation (H3K4me3). Collectively, this work demonstrates a previously unknown essential role of RNF40 in HER2+-BC, revealing the H2B monoubiquitination axis as a possible tumor context-dependent therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anastasija Pejkovska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute for Neuropathology, University of Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|