1
|
Erickson MA, Johnson RS, Damodarasamy M, MacCoss MJ, Keene CD, Banks WA, Reed MJ. Data-independent acquisition proteomic analysis of the brain microvasculature in Alzheimer's disease identifies major pathways of dysfunction and upregulation of cytoprotective responses. Fluids Barriers CNS 2024; 21:84. [PMID: 39434151 PMCID: PMC11492478 DOI: 10.1186/s12987-024-00581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Brain microvascular dysfunction is an important feature of Alzheimer's disease (AD). To better understand the brain microvascular molecular signatures of AD, we processed and analyzed isolated human brain microvessels by data-independent acquisition liquid chromatography with tandem mass spectrometry (DIA LC-MS/MS) to generate a quantitative dataset at the peptide and protein level. Brain microvessels were isolated from parietal cortex grey matter using protocols that preserve viability for downstream functional studies. Our cohort included 23 subjects with clinical and neuropathologic concordance for Alzheimer's disease, and 21 age-matched controls. In our analysis, we identified 168 proteins whose abundance was significantly increased, and no proteins that were significantly decreased in AD. The most highly increased proteins included amyloid beta, tau, midkine, SPARC related modular calcium binding 1 (SMOC1), and fatty acid binding protein 7 (FABP7). Additionally, Gene Ontology (GO) enrichment analysis identified the enrichment of increased proteins involved in cellular detoxification and antioxidative responses. A systematic evaluation of protein functions using the UniProt database identified groupings into common functional themes including the regulation of cellular proliferation, cellular differentiation and survival, inflammation, extracellular matrix, cell stress responses, metabolism, coagulation and heme breakdown, protein degradation, cytoskeleton, subcellular trafficking, cell motility, and cell signaling. This suggests that AD brain microvessels exist in a stressed state of increased energy demand, and mount a compensatory response to ongoing oxidative and cellular damage that is associated with AD. We also used public RNAseq databases to identify cell-type enriched genes that were detected at the protein level and found no changes in abundance of these proteins between control and AD groups, indicating that changes in cellular composition of the isolated microvessels were minimal between AD and no-AD groups. Using public data, we additionally found that under half of the proteins that were significantly increased in AD microvessels had concordant changes in brain microvascular mRNA, implying substantial discordance between gene and protein levels. Together, our results offer novel insights into the molecular underpinnings of brain microvascular dysfunction in AD.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Harborview Medical Center, 325 9th Avenue, Seattle, WA, 98104, USA.
| |
Collapse
|
2
|
Wang W, Wang Y, Su L, Zhang M, Zhang T, Zhao J, Ma H, Zhang D, Ji F, Jiao RD, Li H, Xu Y, Chen L, Jiao J. Endothelial Cells Mediated by STING Regulate Oligodendrogenesis and Myelination During Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308508. [PMID: 39136074 PMCID: PMC11481185 DOI: 10.1002/advs.202308508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/30/2024] [Indexed: 10/17/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
| | - Yanyan Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Libo Su
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tianyu Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinyue Zhao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongyan Ma
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dongming Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | | | - Hong Li
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Lei Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
3
|
Shi Q, Song G, Song L, Wang Y, Ma J, Zhang L, Yuan E. Unravelling the function of prdm16 in human tumours: A comparative analysis of haematologic and solid tumours. Biomed Pharmacother 2024; 178:117281. [PMID: 39137651 DOI: 10.1016/j.biopha.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Extensive research has shown that PR domain 16 (PRDM16) plays a critical role in adipose tissue metabolism, including processes such as browning and thermogenesis of adipocytes, beigeing of adipocytes, and adipogenic differentiation of myoblasts. These functions have been associated with diseases such as obesity and diabetes. Additionally, PRDM16 has been correlated with various other conditions, including migraines, heterochromatin abnormalities, metabolic syndrome, cardiomyopathy, sarcopenia, nonsyndromic cleft lip, and essential hypertension, among others. However, there is currently no systematic or comprehensive conclusion regarding the mechanism of PRDM16 in human tumours, including haematologic and solid tumours. The aim of this review is to provide an overview of the research progress on PRDM16 in haematologic and solid tumours by incorporating recent literature findings. Furthermore, we explore the prospects of PRDM16 in the precise diagnosis and treatment of human haematologic and solid tumours.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Guangyong Song
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liying Song
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Yu Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Jun Ma
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
4
|
Methi A, Islam MR, Kaurani L, Sakib MS, Krüger DM, Pena T, Burkhardt S, Liebetanz D, Fischer A. A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus After Voluntary Exercise. Mol Neurobiol 2024; 61:5628-5645. [PMID: 38217668 PMCID: PMC11249425 DOI: 10.1007/s12035-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/β-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.
Collapse
Affiliation(s)
- Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - David Liebetanz
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany.
| |
Collapse
|
5
|
Kuk SK, Kim K, Lee JI, Pang K. Prognostic DNA mutation and mRNA expression analysis of perineural invasion in oral squamous cell carcinoma. Sci Rep 2024; 14:2427. [PMID: 38287071 PMCID: PMC10825128 DOI: 10.1038/s41598-024-52745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
This study analyzed oral squamous cell carcinoma (OSCC) genomes and transcriptomes in relation to perineural invasion (PNI) and prognosis using Cancer Genome Atlas data and validated these results with GSE41613 data. Gene set enrichment analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes were conducted. We identified 22 DNA mutations associated with both overall survival (OS) and PNI. Among them, TGFBR1 and RPS6KA4 mRNAs were overexpressed, while TYRO3 and GPR137 mRNAs were underexpressed in PNI patients. Among the 141 mRNA genes associated with both OS and PNI, we found overlap with PNI-related DNA mutations, including ZNF43, TEX10, TPSD1, and PSD3. In GSE41613 data, TGFBR1, RPS6KA4, TYRO3, GPR137, TEX10 and TPSD1 mRNAs were expressed differently according to the prognosis. The 22 DNA-mutated genes clustered into nervous system development, regulation of DNA-templated transcription, and transforming growth factor beta binding. GSEA analysis of mRNAs revealed upregulation of hallmarks epithelial mesenchymal transition (EMT), TNFα signaling via NF-κB, and IL2 STAT5 signaling. EMT upregulation aligned with the TGFBR1 DNA mutation, supporting its significance in PNI. These findings suggest a potential role of PNI genes in the prognosis of OSCC, providing insights for diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Su Kyung Kuk
- Division of Biomedical Informatics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kitae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research, Seoul National University, Seoul, Republic of Korea
| | - KangMi Pang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Zeev BB, Smith RS, Tole S, Galande S, Harwell CC, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae001. [PMID: 38595939 PMCID: PMC10914218 DOI: 10.1093/oons/kvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 04/11/2024]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Bidisha Bhattacharya
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Rami Yair Tshuva
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Miri Danan Gotthold
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Saurabh J Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, 3 Dr. Bohr-Gasse, 1030 Vienna, Austria
| | - Bruria Ben Zeev
- Edmond and Lily Safra Pediatric Hospital, Sheba Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Richard Scott Smith
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Chicago, IL 60611, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Department of Life Sciences, Center of Excellence in Epigenetics, Shiv Nadar University, Shiv Nadar IoE, Gautam Buddha Nagar, Uttar Pradesh - 201314, India
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
- Weill Institute for Neuroscience, 1651 4th St, San Francisco, CA94158, USA
- Department of Neurology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - José-Manuel Baizabal
- Department of Biology, Indiana University, 1001 E 3rd St., Bloomington, IN 47405, USA
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
7
|
Massri AJ, Fitzpatrick M, Cunny H, Li JL, Harry GJ. Differential gene expression profiling implicates altered network development in rat postnatal day 4 cortex following 4-Methylimidazole (4-MeI) induced maternal seizures. Neurotoxicol Teratol 2023; 100:107301. [PMID: 37783441 PMCID: PMC10843020 DOI: 10.1016/j.ntt.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Compromised maternal health leading to maternal seizures can have adverse effects on the healthy development of offspring. This may be the result of inflammation, hypoxia-ischemia, and altered GABA signaling. The current study examined cortical tissue from F2b (2nd litter of the 2nd generation) postnatal day 4 (PND4) offspring of female Harlan SD rats chronically exposed to the seizuregenic compound, 4-Methylimidazole (0, 750, or 2500 ppm 4-MeI). Maternal seizures were evident only at 2500 ppm 4-MeI. GABA related gene expression as examined by qRT-PCR and whole genome microarray showed no indication of disrupted GABA or glutamatergic signaling. Canonical pathway hierarchical clustering and multi-omics combinatory genomic (CNet) plots of differentially expressed genes (DEG) showed alterations in genes associated with regulatory processes of cell development including neuronal differentiation and synaptogenesis. Functional enrichment analysis showed a similarity of cellular processes across the two exposure groups however, the genes comprising each cluster were primarily unique rather than shared and often showed different directionality. A dose-related induction of cytokine signaling was indicated however, pathways associated with individual cytokine signaling were not elevated, suggesting an alternative involvement of cytokine signaling. Pathways related to growth process and cell signaling showed a negative activation supporting an interpretation of disruption or delay in developmental processes at the 2500 ppm 4-MeI exposure level with maternal seizures. Thus, while GABA signaling was not altered as has been observed with maternal seizures, the pattern of DEG suggested a potential for alteration in neuronal network formation.
Collapse
Affiliation(s)
- Abdull J Massri
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mackenzie Fitzpatrick
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Office of the Scientific Director, Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Suresh V, Bhattacharya B, Tshuva RY, Danan Gotthold M, Olender T, Bose M, Pradhan SJ, Ben Zeev B, Smith RS, Tole S, Galande S, Harwell C, Baizabal JM, Reiner O. PRDM16 co-operates with LHX2 to shape the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553065. [PMID: 37609127 PMCID: PMC10441425 DOI: 10.1101/2023.08.12.553065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.
Collapse
|
9
|
Zhao F, Guo X, Li X, Liu F, Fu Y, Sun X, Yang Z, Zhang Z, Qin Z. Identification and Expressional Analysis of Putative PRDI-BF1 and RIZ Homology Domain-Containing Transcription Factors in Mulinia lateralis. BIOLOGY 2023; 12:1059. [PMID: 37626944 PMCID: PMC10451705 DOI: 10.3390/biology12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks.
Collapse
Affiliation(s)
- Feng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaolin Guo
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xixi Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Fang Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Yifan Fu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Xiaohan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (F.Z.); (X.G.); (X.L.); (F.L.); (Y.F.); (X.S.); (Z.Y.); (Z.Z.)
| |
Collapse
|
10
|
Thompson M, Sakabe M, Verba M, Hao J, Meadows SM, Lu QR, Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol 2023; 14:1165379. [PMID: 37324380 PMCID: PMC10267475 DOI: 10.3389/fphys.2023.1165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression. However, the mechanisms of how endothelial cells (ECs) in the artery maintain their arterial characteristics remain unclear. Here, we show that PRDM16 (positive regulatory domain-containing protein 16), a zinc finger transcription factor, is expressed in arterial ECs, but not venous ECs in developing embryos and neonatal retinas. Endothelial-specific deletion of Prdm16 induced ectopic venous marker expression in the arterial ECs and reduced vascular smooth muscle cell (vSMC) recruitment around arteries. Whole-genome transcriptome analysis using isolated brain ECs show that the expression of Angpt2 (encoding ANGIOPOIETIN2, which inhibits vSMC recruitment) is upregulated in the Prdm16 knockout ECs. Conversely, forced expression of PRDM16 in venous ECs is sufficient to induce arterial gene expression and repress the ANGPT2 level. Together, these results reveal an arterial cell-autonomous function for PRDM16 in suppressing venous characteristics in arterial ECs.
Collapse
Affiliation(s)
- Michael Thompson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Masahide Sakabe
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Verba
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Li J, Godoy MI, Zhang AJ, Diamante G, Ahn IS, Cebrian-Silla A, Alvarez-Buylla A, Yang X, Novitch BG, Zhang Y. Prdm16 and Vcam1 regulate the postnatal disappearance of embryonic radial glia and the ending of cortical neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528567. [PMID: 36824905 PMCID: PMC9949035 DOI: 10.1101/2023.02.14.528567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Embryonic neural stem cells (NSCs, i.e., radial glia) in the ventricular-subventricular zone (V-SVZ) generate the majority of neurons and glia in the forebrain. Postnatally, embryonic radial glia disappear and a subpopulation of radial glia transition into adult NSCs. As this transition occurs, widespread neurogenesis in brain regions such as the cerebral cortex ends. The mechanisms that regulate the postnatal disappearance of radial glia and the ending of embryonic neurogenesis remain poorly understood. Here, we show that PR domain-containing 16 (Prdm16) promotes the disappearance of radial glia and the ending of neurogenesis in the cerebral cortex. Genetic deletion of Prdm16 from NSCs leads to the persistence of radial glia in the adult V-SVZ and prolonged postnatal cortical neurogenesis. Mechanistically, Prdm16 induces the postnatal reduction in Vascular Cell Adhesion Molecule 1 (Vcam1). The postnatal disappearance of radial glia and the ending of cortical neurogenesis occur normally in Prdm16-Vcam1 double conditional knockout mice. These observations reveal novel molecular regulators of the postnatal disappearance of radial glia and the ending of embryonic neurogenesis, filling a key knowledge gap in NSC biology.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Marlesa I. Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | - Alice J. Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
| | | | - In Sook Ahn
- Department of Integrative Biology and Physiology, UCLA
| | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, Department of Neurological Surgery, University of California, San Francisco, San Francisco, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA
- Brain Research Institute at UCLA
- Institute for Quantitative and Computational Biosciences at UCLA
- Molecular Biology Institute at UCLA
| | - Bennett G. Novitch
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Department of Neurobiology, UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), USA
- Brain Research Institute at UCLA
- Molecular Biology Institute at UCLA
- Intellectual and Developmental Disabilities Research Center at UCLA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA
| |
Collapse
|
12
|
Jiang N, Yang M, Han Y, Zhao H, Sun L. PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Front Pharmacol 2022; 13:870250. [PMID: 35462933 PMCID: PMC9024053 DOI: 10.3389/fphar.2022.870250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Given that obesity and diabetes have been major public health concerns and that disease morbidities have been rising continuously, effective treatment for these diseases is urgently needed. Because adipose tissue metabolism is involved in the progression of obesity and diabetes, it might be efficient to target adipocyte metabolic pathways. Positive regulatory domain zinc finger region protein 16 (PRDM16), a transcription factor that is highly expressed in adipocytes, plays a key role in adipose tissue metabolism, such as the browning and thermogenesis of adipocytes, the beigeing of adipocytes, the adipogenic differentiation of myoblasts, and the conversion of visceral adipocytes to subcutaneous adipocytes. Furthermore, clinical and basic studies have shown that the expression of PRDM16 is associated with obesity and diabetes and that PRDM16 signaling participates in the treatment of the two diseases. For example, metformin promotes thermogenesis and alleviates obesity by activating the AMPK/αKG/PRDM16 signaling pathway; rosiglitazone alleviates obesity under the synergistic effect of PRDM16; resveratrol plays an antiobesity role by inducing the expression of PRDM16; liraglupeptide improves insulin resistance by inducing the expression of PRDM16; and mulberry leaves play an anti-inflammatory and antidiabetes role by activating the expression of brown fat cell marker genes (including PRDM16). In this review, we summarize the evidence of PRDM16 involvement in the progression of obesity and diabetes and that PRDM16 may be a promising therapy for obesity and diabetes.
Collapse
|
13
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
A review of migraine genetics: gathering genomic and transcriptomic factors. Hum Genet 2021; 141:1-14. [PMID: 34686893 DOI: 10.1007/s00439-021-02389-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023]
Abstract
Migraine is a common and complex neurologic disorder that affects approximately 15-18% of the general population. Although the cause of migraine is unknown, some genetic studies have focused on unravelling rare and common variants underlying the pathophysiological mechanisms of this disorder. This review covers the advances in the last decade on migraine genetics, throughout the history of genetic methodologies used, including recent application of next-generation sequencing techniques. A thorough review of the literature interweaves the genomic and transcriptomic factors that will allow a better understanding of the mechanisms underlying migraine pathophysiology, concluding with the clinical utility landscape of genetic information and future consideration to creating a new frontier toward advancing the field of personalized medicine.
Collapse
|
15
|
Tesfaye M, Chatterjee S, Zeng X, Joseph P, Tekola-Ayele F. Impact of depression and stress on placental DNA methylation in ethnically diverse pregnant women. Epigenomics 2021; 13:1485-1496. [PMID: 34585950 DOI: 10.2217/epi-2021-0192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the association between placental genome-wide methylation at birth and antenatal depression and stress during pregnancy. Methods: We examined the association between placental genome-wide DNA methylation (n = 301) and maternal depression and stress assessed at six gestation periods during pregnancy. Correlation between DNA methylation at the significantly associated CpGs and expression of nearby genes in the placenta was tested. Results: Depression and stress were associated with methylation of 16 CpGs and two CpGs, respectively, at a 5% false discovery rate. Methylation levels at two of the CpGs associated with depression were significantly associated with expression of ADAM23 and CTDP1, genes implicated in neurodevelopment and neuropsychiatric diseases. Conclusion: Placental epigenetic changes linked to antenatal depression suggest potential fetal brain programming. Clinical trial registration number: NCT00912132 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Markos Tesfaye
- Section of Sensory Science & Metabolism (SenSMet), National Institute on Alcohol Abuse & Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paule Joseph
- Section of Sensory Science & Metabolism (SenSMet), National Institute on Alcohol Abuse & Alcoholism & National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| |
Collapse
|
16
|
Fli1 + cells transcriptional analysis reveals an Lmo2-Prdm16 axis in angiogenesis. Proc Natl Acad Sci U S A 2021; 118:2008559118. [PMID: 34330825 DOI: 10.1073/pnas.2008559118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg( f li1:EGFP) y1 , we identified two endothelial cell populations, high-fli1 + and low-fli1 +, by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1 -) with these two (fli1 +) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1 - and low-fli1 + cells, high-fli1 + cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1 + cells at the expense of high-fli1 + cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31+) cells compared with CD31- cells isolated from l mo2-mutants (l mo2-mut) embryos. Chromatin immunoprecipitation-PCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16 This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair.
Collapse
|
17
|
Finger AM, Jäschke S, Del Olmo M, Hurwitz R, Granada AE, Herzel H, Kramer A. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. SCIENCE ADVANCES 2021; 7:7/30/eabg5174. [PMID: 34301601 PMCID: PMC8302137 DOI: 10.1126/sciadv.abg5174] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/08/2021] [Indexed: 05/04/2023]
Abstract
Coupling between cell-autonomous circadian oscillators is crucial to prevent desynchronization of cellular networks and disruption of circadian tissue functions. While neuronal oscillators within the mammalian central clock, the suprachiasmatic nucleus, couple intercellularly, coupling among peripheral oscillators is controversial and the molecular mechanisms are unknown. Using two- and three-dimensional mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo, we show that peripheral oscillators couple via paracrine pathways. We identify transforming growth factor-β (TGF-β) as peripheral coupling factor that mediates paracrine phase adjustment of molecular clocks through transcriptional regulation of core-clock genes. Disruption of TGF-β signaling causes desynchronization of oscillator networks resulting in reduced amplitude and increased sensitivity toward external zeitgebers. Our findings reveal an unknown mechanism for peripheral clock synchrony with implications for rhythmic organ functions and circadian health.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sebastian Jäschke
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marta Del Olmo
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Robert Hurwitz
- Max Planck Institute for Infection Biology, Biochemistry-Protein Purification Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Adrián E Granada
- Charité-Universitätsmedizin, Charité Comprehensive Cancer Center, Laboratory of Systems Oncology, Charitéplatz 1, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Berlin, 69120, Heidelberg, Germany
| | - Hanspeter Herzel
- Charité and Humboldt Universität zu Berlin, Institute for Theoretical Biology, Laboratory of Theoretical Chronobiology, Philippstraße 13, 10115 Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Institute for Medical Immunology, Laboratory of Chronobiology, Charitéplatz 1, 10117 Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
18
|
Xu W, Li C, Ma B, Lu Z, Wang Y, Jiang H, Luo Y, Yang Y, Wang X, Liao T, Ji Q, Wang Y, Wei W. Identification of Key Functional Gene Signatures Indicative of Dedifferentiation in Papillary Thyroid Cancer. Front Oncol 2021; 11:641851. [PMID: 33996555 PMCID: PMC8113627 DOI: 10.3389/fonc.2021.641851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Differentiated thyroid cancer (DTC) is the most common type of thyroid cancer. Many of them can relapse to dedifferentiated thyroid cancer (DDTC) and exhibit different gene expression profiles. The underlying mechanism of dedifferentiation and the involved genes or pathways remained to be investigated. Methods: A discovery cohort obtained from patients who received surgical resection in the Fudan University Shanghai Cancer Center (FUSCC) and two validation cohorts derived from Gene Expression Omnibus (GEO) database were used to screen out differentially expressed genes in the dedifferentiation process. Weighted gene co-expression network analysis (WGCNA) was constructed to identify modules highly related to differentiation. Gene Set Enrichment Analysis (GSEA) was used to identify pathways related to differentiation, and all differentially expressed genes were grouped by function based on the GSEA and literature reviewing data. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to control the number of variables in each group. Next, we used logistic regression to build a gene signature in each group to indicate differentiation status, and we computed receiver operating characteristic (ROC) curve to evaluate the indicative performance of each signature. Results: A total of 307 upregulated and 313 downregulated genes in poorly differentiated thyroid cancer (PDTC) compared with papillary thyroid cancer (PTC) and normal thyroid (NT) were screened out in FUSCC cohort and validated in two GEO cohorts. WGCNA of 620 differential genes yielded the seven core genes with the highest correlation with thyroid differentiation score (TDS). Furthermore, 395 genes significantly correlated with TDS in univariate logistic regression analysis were divided into 11 groups. The areas under the ROC curve (AUCs) of the gene signature of group transcription and epigenetic modification, signal and substance transport, extracellular matrix (ECM), and metabolism in the training set [The Cancer Genome Atlas (TCGA) cohort] and validation set (combined GEO cohort) were both >0.75. The gene signature based on group transcription and epigenetic modification, cilia formation and movement, and proliferation can reflect the patient's disease recurrence state. Conclusion: The dedifferentiation of DTC is affected by a variety of mechanisms including many genes. The gene signature of group transcription and epigenetic modification, signal and substance transport, ECM, and metabolism can be used as biomarkers for DDTC.
Collapse
Affiliation(s)
- Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cuiwei Li
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongyi Jiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
20
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|