1
|
Li H, Peng MX, Yang RX, Chen JX, Wang YM, Wang PX, Hu YH, Pan DY, Liu PQ, Lu J. SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation. Acta Pharmacol Sin 2025; 46:964-975. [PMID: 39753981 PMCID: PMC11950316 DOI: 10.1038/s41401-024-01436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/17/2024] [Indexed: 03/17/2025]
Abstract
Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart. In this study we investigated the role of SNX3 in the development of pathological cardiac hypertrophy and heart failure. We generated abdominal aortic constriction (AAC) rat model and transverse aortic constriction (TAC) mouse model; hypertrophic neonatal rat cardiomyocytes (NRCMs) were induced by exposure to isoproterenol (10 μM). We showed that the expression of SNX3 was significantly upregulated in ISO-treated NRCMs and in the failing heart of AAC rats. Overexpression of SNX3 by intramyocardial injection of Ad-SNX3 induced heart failure in rats, and increased the susceptibility of NRCMs to ISO-induced myocardial injury in vitro. In contrast, conditional knockout of SNX3 in cardiac tissue in mice rescued the detrimental heart function in TAC mice, and knockdown of SNX3 protected against ISO-induced injury in NRCMs and AAC rats. We then conducted immunoprecipitation-based mass spectrometry and localized surface plasmon resonance, and demonstrated a direct interaction between SNX3-retromer and high mobility group box 1 (HMGB1), which mediated the efflux of nuclear HMGB1. Moreover, overexpression of HMGB1 in NRCMs inhibited the pro-hypertrophic effects of SNX3, whereas knockdown of HMGB1 abolished the protective effect of SNX3-deficiency. These results suggest that HMGB1 might be a direct cargo protein of SNX3-retromer, and its interaction with SNX3 promotes its efflux from the nucleus, leading to the pathological development of heart failure.
Collapse
Affiliation(s)
- Hong Li
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ming-Xia Peng
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rui-Xue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Xing Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Mei Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Di-Yi Pan
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Pei-Qing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Hu Y, Zheng Y, Liu C, You Y, Wu Y, Wang P, Wu Y, Ba H, Lu J, Yuan Y, Liu P, Mao Y. Mitochondrial MOF regulates energy metabolism in heart failure via ATP5B hyperacetylation. Cell Rep 2024; 43:114839. [PMID: 39392752 DOI: 10.1016/j.celrep.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
Lysine acetylation is a conserved post-translational modification involved in energy metabolism in mitochondria and heart function. This study investigates the role of mitochondria-localized lysine acetyltransferase MOF (males absent on the first) in heart failure (HF). We find that MOF is upregulated in mitochondria during HF, and overexpression of mitochondria-targeted MOF (mtMOF) in mouse models results in mitochondria dysfunction, cardiac remodeling, and HF. Furthermore, sirtuin 3 (SIRT3) knockout aggravates mtMOF-induced damages, underscoring the role of MOF-catalyzed hyperacetylation in HF. Quantitative lysine acetylome analysis identifies ATP5B as a substrate of MOF. We demonstrate that the acetylation of ATP5B at K201, co-regulated by MOF and SIRT3, impairs mitochondrial respiration and energy metabolism both in vitro and in vivo. These findings suggest that the role of MOF in HF could be attributed to its regulation of ATP5B acetylation. Overall, our results highlight the disruptive impact of mitochondrial MOF on cardiac function and emphasize the significance of enzyme-catalyzed acetylation in mitochondria.
Collapse
Affiliation(s)
- Yuehuai Hu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjia Zheng
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Cui Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyu You
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiyang Wu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongjun Ba
- Department of Pediatric Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Xu Z, Li M, Lyu D, Xiao H, Li S, Li Z, Li M, Xiao J, Huang H. Cinnamaldehyde activates AMPK/PGC-1α pathway via targeting GRK2 to ameliorate heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155894. [PMID: 39089090 DOI: 10.1016/j.phymed.2024.155894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND According to recent research, treating heart failure (HF) by inhibiting G protein-coupled receptor kinase 2 (GRK2) to improve myocardial energy metabolism has been identified as a potential approach. Cinnamaldehyde (CIN), a phenylpropyl aldehyde compound, has been demonstrated to exhibit beneficial effects in cardiovascular diseases. However, whether CIN inhibits GRK2 to ameliorate myocardial energy metabolism in HF is still unclear. PURPOSE This study examines the effects of CIN on GRK2 and myocardial energy metabolism to elucidate its underlying mechanism to treat HF. METHODS The isoproterenol (ISO) induced HF model in vivo and in vitro were constructed using Sprague-Dawley (SD) rats and primary neonatal rat cardiomyocytes (NRCMs). Based on this, the effects of CIN on myocardial energy metabolism and GRK2 were investigated. Additionally, validation experiments were conducted after interfering and over-expressing GRK2 in ISO-induced NRCMs to verify the regulatory effect of CIN on GRK2. Furthermore, binding capacity between GRK2 and CIN was explored by Cellular Thermal Shift Assay (CETSA) and Microscale Thermophoresis (MST). RESULTS In vivo and in vitro, CIN significantly improved HF as demonstrated by reversing abnormal changes in myocardial injury markers, inhibiting myocardial hypertrophy and decreasing myocardial fibrosis. Additionally, CIN promoted myocardial fatty acid metabolism to ameliorate myocardial energy metabolism disorder by activating AMPK/PGC-1α signaling pathway. Moreover, CIN reversed the inhibition of myocardial fatty acid metabolism and AMPK/PGC-1α signaling pathway by GRK2 over-expression in ISO-induced NRCMs. Meanwhile, CIN had no better impact on the stimulation of cardiac fatty acid metabolism and the AMPK/PGC-1α signaling pathway in ISO-induced NRCMs when GRK2 was disrupted. Noticeably, CETSA and MST confirmed that CIN binds to GRK2 directly. The binding of CIN and GRK2 promoted the ubiquitination degradation of GRK2 mediated by murine double mimute 2. CONCLUSION This study demonstrates that CIN exerts a protective intervention in HF by targeting GRK2 and promoting its ubiquitination degradation to activate AMPK/PGC-1α signaling pathway, ultimately improving myocardial fatty acid metabolism.
Collapse
Affiliation(s)
- Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China
| | - Minghui Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junhui Xiao
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou 510801, China.
| |
Collapse
|
4
|
Gawargi FI, Mishra PK. MMP9 drives ferroptosis by regulating GPX4 and iron signaling. iScience 2024; 27:110622. [PMID: 39252956 PMCID: PMC11382059 DOI: 10.1016/j.isci.2024.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Ferroptosis, defined by the suppression of glutathione peroxidase-4 (GPX4) and iron overload, is a distinctive form of regulated cell death. Our in-depth research identifies matrix metalloproteinase-9 (MMP9) as a critical modulator of ferroptosis through its influence on GPX4 and iron homeostasis. Employing an innovative MMP9 construct without collagenase activity, we reveal that active MMP9 interacts with GPX4 and glutathione reductase, reducing GPX4 expression and activity. Furthermore, MMP9 suppresses key transcription factors (SP1, CREB1, NRF2, FOXO3, and ATF4), alongside GPX1 and ferroptosis suppressor protein-1 (FSP1), thereby disrupting the cellular redox balance. MMP9 regulates iron metabolism by modulating iron import, storage, and export via a network of protein interactions. LC-MS/MS has identified 83 proteins that interact with MMP9 at subcellular levels, implicating them in ferroptosis regulation. Integrated pathway analysis (IPA) highlights MMP9's extensive influence on ferroptosis pathways, underscoring its potential as a therapeutic target in conditions with altered redox homeostasis and iron metabolism.
Collapse
Affiliation(s)
- Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
5
|
Meng C, Su H, Shu M, Shen F, Lu Y, Wu S, Su Z, Yu M, Yang D. The functional role of m6A demethylase ALKBH5 in cardiomyocyte hypertrophy. Cell Death Dis 2024; 15:683. [PMID: 39294131 PMCID: PMC11410975 DOI: 10.1038/s41419-024-07053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Cardiomyocyte hypertrophy is a major outcome of pathological cardiac hypertrophy. The m6A demethylase ALKBH5 is reported to be associated with cardiovascular diseases, whereas the functional role of ALKBH5 in cardiomyocyte hypertrophy remains confused. We engineered Alkbh5 siRNA (siAlkbh5) and Alkbh5 overexpressing plasmid (Alkbh5 OE) to transfect cardiomyocytes. Subsequently, RNA immunoprecipitation (RIP)-qPCR, MeRIP-qPCR analysis and the dual-luciferase reporter assays were applied to elucidate the regulatory mechanism of ALKBH5 on cardiomyocyte hypertrophy. Our study identified ALKBH5 as a new contributor of cardiomyocyte hypertrophy. ALKBH5 showed upregulation in both phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro and transverse aortic constriction (TAC)/high fat diet (HFD)-induced pathological cardiac hypertrophy in vivo. Knockdown or overexpression of ALKBH5 regulated the occurrence of hypertrophic responses, including the increased cardiomyocyte surface areas and elevation of the hypertrophic marker levels, such as brain natriuretic peptide (BNP) and atrial natriuretic peptide (ANP). Mechanically, we indicated that ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth. Our work highlights the functional role of ALKBH5 in regulating the onset of cardiomyocyte hypertrophy and provides a potential target for hypertrophic heart diseases prevention and treatment. ALKBH5 activated JAK2/STAT3 signaling pathway and mediated m6A demethylation on Stat3 mRNA, but not Jak2 mRNA, resulting in the phosphorylation and nuclear translocation of STAT3, which enhances the transcription of hypertrophic genes (e.g., Nppa) and ultimately leads to the emergence of cardiomyocytes hypertrophic growth.
Collapse
Affiliation(s)
- Chen Meng
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Haibi Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Meiling Shu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yijie Lu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Shishi Wu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Zhenghua Su
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Mengyao Yu
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| | - Di Yang
- Human Phenome Institute, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Centre, Zhangjiang Fudan International Innovation Center, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Li Y, Wang X, Bi Y, Zhang M, Xiong W, Hu X, Zhang Y, He F. SNX5-Rab11a protects against cardiac hypertrophy through regulating LRP6 membrane translocation. J Mol Cell Cardiol 2024; 194:46-58. [PMID: 38950816 DOI: 10.1016/j.yjmcc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUNDS Pathological cardiac hypertrophy is considered one of the independent risk factors for heart failure, with a rather complex pathogenic machinery. Sorting nexins (SNXs), denoting a diverse family of cytoplasmic- and membrane-associated phosphoinositide-binding proteins, act as a pharmacological target against specific cardiovascular diseases including heart failure. Family member SNX5 was reported to play a pivotal role in a variety of biological processes. However, contribution of SNX5 to the development of cardiac hypertrophy, remains unclear. METHODS Mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy and simulate pathological conditions. TAC model was validated using echocardiography and histological staining. Expression of SNX5 was assessed by western blotting. Then, SNX5 was delivered through intravenous administration of an adeno-associated virus serotype 9 carrying cTnT promoter (AAV9-cTnT-SNX5) to achieve SNX5 cardiac-specific overexpression. To assess the impact of SNX5, morphological analysis, echocardiography, histological staining, hypertrophic biomarkers, and cardiomyocyte contraction were evaluated. To unravel potential molecular events associated with SNX5, interactome analysis, fluorescence co-localization, and membrane protein profile were evaluated. RESULTS Our results revealed significant downregulated protein level of SNX5 in TAC-induced hypertrophic hearts in mice. Interestingly, cardiac-specific overexpression of SNX5 improved cardiac function, with enhanced left ventricular ejection fraction, fraction shortening, as well as reduced cardiac fibrosis. Mechanistically, SNX5 directly bound to Rab11a, increasing membrane accumulation of Rab11a (a Rab GTPase). Afterwards, this intricate molecular interaction upregulated the membrane content of low-density lipoprotein receptor-related protein 6 (LRP6), a key regulator against cardiac hypertrophy. Our comprehensive assessment of siRab11a expression in HL-1 cells revealed its role in antagonism of LRP6 membrane accumulation under SNX5 overexpression. CONCLUSIONS This study revealed that binding of SNX5 with LRP6 triggers their membrane translocation through Rab11a assisting, defending against cardiac remodeling and cardiac dysfunction under pressure overload. These findings provide new insights into the previously unrecognized role of SNX5 in the progression of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yutong Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiang Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Mengjiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Weidong Xiong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolong Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Fei He
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Anhui 230601, China.
| |
Collapse
|
7
|
Huang S, Zou F, Zhou H, He J. SNX3 Promotes Doxorubicin-Induced Cardiomyopathy by Regulating GPX4-Mediated Ferroptosis. Int J Med Sci 2024; 21:1629-1639. [PMID: 39006843 PMCID: PMC11241105 DOI: 10.7150/ijms.95466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Fan Zou
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| | - Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinyuan He
- Department of Cardio-Thoracic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, 510630, Guangzhou, China
| |
Collapse
|
8
|
Debashish Biswal, Songbiao Li. Transcription Factors in Cardiac Remodeling: Latest Advances. CYTOL GENET+ 2024; 58:234-245. [DOI: 10.3103/s0095452724030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025]
|
9
|
Yu W, Hu Y, Liu Z, Guo K, Ma D, Peng M, Wang Y, Zhang J, Zhang X, Wang P, Zhang J, Liu P, Lu J. Sorting nexin 3 exacerbates doxorubicin-induced cardiomyopathy via regulation of TFRC-dependent ferroptosis. Acta Pharm Sin B 2023; 13:4875-4892. [PMID: 38045054 PMCID: PMC10692393 DOI: 10.1016/j.apsb.2023.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 12/05/2023] Open
Abstract
The clinical utilization of doxorubicin (Dox) in various malignancies is restrained by its major adverse effect: irreversible cardiomyopathy. Extensive studies have been done to explore the prevention of Dox cardiomyopathy. Currently, ferroptosis has been shown to participate in the incidence and development of Dox cardiomyopathy. Sorting Nexin 3 (SNX3), the retromer-associated cargo binding protein with important physiological functions, was identified as a potent therapeutic target for cardiac hypertrophy in our previous study. However, few study has shown whether SNX3 plays a critical role in Dox-induced cardiomyopathy. In this study, a decreased level of SNX3 in Dox-induced cardiomyopathy was observed. Cardiac-specific Snx3 knockout (Snx3-cKO) significantly alleviated cardiomyopathy by downregulating Dox-induced ferroptosis significantly. SNX3 was further demonstrated to exacerbate Dox-induced cardiomyopathy via induction of ferroptosis in vivo and in vitro, and cardiac-specific Snx3 transgenic (Snx3-cTg) mice were more susceptible to Dox-induced ferroptosis and cardiomyopathy. Mechanistically, SNX3 facilitated the recycling of transferrin 1 receptor (TFRC) via direct interaction, disrupting iron homeostasis, increasing the accumulation of iron, triggering ferroptosis, and eventually exacerbating Dox-induced cardiomyopathy. Overall, these findings established a direct SNX3-TFRC-ferroptosis positive regulatory axis in Dox-induced cardiomyopathy and suggested that targeting SNX3 provided a new effective therapeutic strategy for Dox-induced cardiomyopathy through TFRC-dependent ferroptosis.
Collapse
Affiliation(s)
- Wenjing Yu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehuai Hu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kaiteng Guo
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dinghu Ma
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingxia Peng
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuemei Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaolei Zhang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Panxia Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiguo Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Peiqing Liu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Shandong First Medical University & Shangdong Academy of Medical Sciences, Taian 271016, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Men L, Guo J, Cao Y, Huang B, Wang Q, Huo S, Wang M, Peng D, Peng L, Shi W, Li S, Lin L, Lv J. IL-6/gp130/STAT3 signaling contributed to the activation of the PERK arm of the unfolded protein response in response to chronic β-adrenergic stimulation. Free Radic Biol Med 2023; 205:163-174. [PMID: 37307935 DOI: 10.1016/j.freeradbiomed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Prolonged activation of the PERK branch of the unfolded protein response (UPR) promotes cardiomyocytes apoptosis in response to chronic β-adrenergic stimulation. STAT3 plays a critical role in β-adrenergic functions in the heart. However, whether STAT3 contributed to β-adrenoceptor-mediated PERK activation and how β-adrenergic signaling activates STAT3 remains unclear. This study aimed to investigate whether STAT3-Y705 phosphorylation contributed to the PERK arm activation in cardiomyocytes and if IL-6/gp130 signaling was involved in the chronic β-AR-stimulation-induced STAT3 and PERK arm activation. We found that the PERK phosphorylation was positively associated with STAT3 activation. Wild-type STAT3 plasmids transfection activated the PERK/eIF2α/ATF4/CHOP pathway in cardiomyocytes while dominant negative Y705F STAT3 plasmids caused no obvious effect on PERK signaling. Stimulation with isoproterenol produced a significant increase in the level of IL-6 in the cardiomyocyte's supernatants, while IL-6 silence inhibited PERK phosphorylation but failed to attenuate STAT3 activation in response to isoproterenol stimulation. Gp130 silence attenuated isoproterenol-induced STAT3 activation and PERK phosphorylation. Inhibiting IL-6/gp130 pathway by bazedoxifene and inhibiting STAT3 by stattic both reversed isoproterenol-induced STAT3-Y705 phosphorylation, ROS production, PERK activation, IRE1α activation, and cardiomyocytes apoptosis in vitro. Bazedoxifene (5 mg/kg/day by oral gavage once a day) exhibited similar effect as carvedilol (10 mg/kg/day by oral gavage once a day) on attenuating chronic isoproterenol (30 mg/kg by abdominal injection once a day, 7 days) induced cardiac systolic dysfunction, cardiac hypertrophy and fibrosis in C57BL/6 mice. Meanwhile, bazedoxifene attenuates isoproterenol-induced STAT3-Y705 phosphorylation, PERK/eIF2α/ATF4/CHOP activation, IRE1α activation, and cardiomyocytes apoptosis to a similar extend as carvedilol in the cardiac tissue of mice. Our results showed that chronic β-adrenoceptor-mediated stimulation activated the STAT3 and PERK arm of the UPR at least partially via IL-6/gp130 pathway. Bazedoxifene has great potential to be used as an alternative to conventional β-blockers to attenuate β-adrenoceptor-mediated maladaptive UPR.
Collapse
Affiliation(s)
- Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Cao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Zhang H, Guo Q, Feng G, Shen X, Feng X, Guo Y, Wang S, Zhong X. Lnc-PXMP4-2-4 alleviates myocardial cell damage by activating the JAK2/STAT3 signaling pathway. Heliyon 2023; 9:e18649. [PMID: 37560637 PMCID: PMC10407674 DOI: 10.1016/j.heliyon.2023.e18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of long non-coding lnc-PXMP4-2-4 on myocardial cell damage caused by acute myocardial infarction (AMI). METHODS Peripheral blood mononuclear cells (PBMC) were collected from 24 patients with AMI on the day of admission, the first day after percutaneous coronary intervention (PCI) and the third day after surgery, and 24 patients with clinical control group. Real-time quantitative PCR(QRT-PCR) was used to detect the expression of related genes. Then in human cardiomyocytes (AC16), Cell Counting Kit-8 (CCK-8) was used to determine cell viability, lactate dehydrogenase release assay (LDH) was used to determine the release of lactate dehydrogenase, PCR was used to detect the expression of genes, cell death was detected by flow cytometry, and the expression of related proteins was measured by Western blot. The effect of lnc-PXMP4-2-4 was further studied by silencing and overexpressing lnc-PXMP4-2-4. RESULTS Compared with clinical control group, the expression of lnc-PXMP4-2-4 in PBMC of AMI patients was significantly higher than it. Compared with pre-operation, the expression of lnc-PXMP4-2-4 was significantly up-regulated on day 1 after PCI, and recovered to pre-operation level on day 3 after surgery. In AC16 cells, lnc-PXMP4-2-4 inhibited the proliferation of AC16, promoted the release of LDH and increased cell death, aggravated the cardiomyocyte injury caused by H2O2, and inhibited the expression of JAK2 and STAT3 mRNA and protein. The up-regulation of lnc-PXMP-4-2-4 had the opposite effect. In addition, the inhibition of the signal pathway by JAK2/STAT3 pathway inhibitor AG490 partially weakened the enhanced viability of AC16 cells, decreased LDH release and apoptosis induced by lnc-PXMP4-2-4 overexpression, increased Bcl-2 expression and down-regulated Bax expression. CONCLUSION Therefore, we conclude that lnc-PXMP4-2-4 protects cardiomyocytes from injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Qinlin Guo
- Department of Endocrine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Guiju Feng
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xinxin Feng
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, People's Republic of China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Shouyan Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| |
Collapse
|
12
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
13
|
Li C, Zhang X, Li J, Liang L, Zeng J, Wen M, Pan L, Lv D, Liu M, Cheng Y, Huang H. Ginsenoside Rb1 promotes the activation of PPARα pathway via inhibiting FADD to ameliorate heart failure. Eur J Pharmacol 2023; 947:175676. [PMID: 37001580 DOI: 10.1016/j.ejphar.2023.175676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Ginsenoside Rb1 (GRb1), a dammarane-type triterpene saponin compound mainly distributed in ginseng (Panax ginseng), has been demonstrated to ameliorate cardiovascular diseases. However, it remains unclear whether GRb1 alleviates heart failure (HF) by maintaining cardiac energy metabolism balance. Therefore, this work aimed to investigate the cardiac benefits of GRb1 against cardiac energy deficit and explore its mechanism of action. METHODS AND RESULTS Isoproterenol (ISO) induced HF Sprague-Dawley rats were administrated with GRb1 or fenofibrate for 6 weeks. ISO-induced primary neonatal rat cardiomyocytes (NRCMs) were used as the in vitro model. In vivo, GRb1 significantly improved the structural and metabolic disorder, as demonstrated by the restoration of cardiac function, inhibition of cardiac hypertrophy and fibrosis, and increased adenosine triphosphate (ATP) generation. In vitro, GRb1 effectively protected mitochondrial function and scavenged excessive reactive oxygen species. Moreover, in ISO-induced NRCMs, GRb1 significantly inhibited the abnormal upregulation of Fas-associated death domain (FADD), promoted transcriptional activation of peroxisome proliferator-activated receptor-alpha (PPARα), improved the aberrant expression of cardiac energy metabolism-related enzymes and cardiac fatty acid oxidation, and subsequently increased the synthesis of ATP. Noticeably, GRb1 could inhibit the increased binding between FADD and PPARα, which contributed to the activation of PPARα. Furthermore, GRb1 strengthened the thermal stabilization of FADD and might bind to FADD directly. CONCLUSIONS Collectively, it's part of the in-depth mechanism of GRb1's cardio-protection that GRb1 could directly bind to FADD and counteract its negative role in the transcription of PPARα thus ameliorating cardiac energy derangement and HF.
Collapse
Affiliation(s)
- Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linjie Pan
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lv
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Liu
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, 510405, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Sun H, Bai J, Sun Y, Zhen D, Fu D, Wang Y, Wei C. Oxymatrine attenuated isoproterenol-induced heart failure via the TLR4/NF-κB and MAPK pathways in vivo and in vitro. Eur J Pharmacol 2023; 941:175500. [PMID: 36627098 DOI: 10.1016/j.ejphar.2023.175500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Oxymatrine (OMT) is a quinoline alkaloid isolated from the root of the Sophora flavescens that has a variety of biological activities. However, the effect and potential mechanism of OMT on isoproterenol (ISO)-induced heart failure (HF) are not clear. In this study, we found that OMT improved the survival of HL-1 cells induced by ISO. We also demonstrated that OMT significantly inhibited the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). OMT decreased the levels of the TLR4 and reduced the phosphorylation levels of nuclear factor-κB (NF-κB) inhibitor (IκB), p65, c-Jun N-terminal kinases (JNK) and p38. The inhibitory effect of the TLR4 inhibitor TAK242 on HL-1 cells was evaluated. The results showed that the effect of OMT on the phosphorylation levels of IκBα and p65 was enhanced in HL-1 cells treated with TAK242. Using animal models, OMT significantly reduced ISO-induced cardiac injury, myocardial necrosis, interstitial edema, and fibrosis. In addition, OMT attenuated TNF-α and IL-6 and inhibited the expression of TLR4/NF-κB and MAPK pathway-related proteins. This finding suggests that OMT may alleviate HF by interfering with the TLR4/NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Haijuan Sun
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Jingjing Bai
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yuting Sun
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Dong Zhen
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Danni Fu
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China
| | - Yu Wang
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| | - Chengxi Wei
- Inner Mongolia Minzu University, Tongliao, Inner Mongolia, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, PR China.
| |
Collapse
|
15
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
16
|
SENP1 Protects Against Pressure Overload‐Induced Cardiac Remodeling and Dysfunction Via Inhibiting STAT3 Signaling. J Am Heart Assoc 2022; 11:e027004. [DOI: 10.1161/jaha.122.027004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background
SENP1 (sentrin/small ubiquitin‐like modifier‐specific protease 1) has emerged as a significant modulator involved in the pathogenesis of a variety of human diseases, especially cancer. However, the regulatory roles of SENP1 in cardiovascular biology and diseases remain controversial. Our current study aims to clarify the function and regulation of SENP1 in pressure overload‐induced cardiac remodeling and dysfunction.
Methods and Results
We used a preclinical mouse model of transverse aortic constriction coupled with in vitro studies in neonatal rat cardiomyocytes to study the role of SENP1 in cardiac hypertrophy. Gene delivery system was used to knockdown or overexpress SENP1 in vivo. Here, we observed that SENP1 expression was significantly augmented in murine hearts following transverse aortic constriction as well as neonatal rat cardiomyocytes treated with phenylephrine or angiotensin II. Cardiac‐specific SENP1 knockdown markedly exacerbated transverse aortic constriction‐induced cardiac hypertrophy, systolic dysfunction, fibrotic response, and cellular apoptosis. In contrast, adenovirus‐mediated SENP1 overexpression in murine myocardium significantly attenuated cardiac remodeling and dysfunction following chronic pressure overload. Mechanistically, JAK2 (Janus kinase 2) and STAT3 (signal transducer and activator of transcription 3) acted as new interacting partners of SENP1 in this process. SENP1‐JAK2/STAT3 interaction suppressed STAT3 nuclear translocation and activation, ultimately inhibiting the transcription of prohypertrophic genes and the initiation of hypertrophic response. Furthermore, cardiomyocyte‐specific STAT3 knockout mice were generated to validate the underlying mechanisms, and the results showed that STAT3 ablation blunted the cardiac hypertrophy‐promoting effects of SENP1 deficiency. Additionally, pharmacological inhibition of SENP1 by Momordin Ic amplified cardiac remodeling post‐transverse aortic constriction.
Conclusions
Our study provided evidence that SENP1 protected against pressure overload‐induced cardiac remodeling and dysfunction via inhibiting STAT3 signaling. SENP1 supplementation might constitute a new promising treatment against cardiac hypertrophy. Notably, cardiovascular side effects should be seriously considered while applying systemic SENP1 blockers to suppress tumors.
Collapse
|
17
|
Jiang W, Ma C, Bai J, Du X. Macrophage SAMSN1 protects against sepsis-induced acute lung injury in mice. Redox Biol 2022; 56:102432. [PMID: 35981417 PMCID: PMC9418554 DOI: 10.1016/j.redox.2022.102432] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Inflammation and oxidative stress contribute to the progression of sepsis-induced acute lung injury (ALI). SAM domain, SH3 domain and nuclear localization signals 1 (SAMSN1) is a signaling adaptor protein, and mainly regulates inflammatory response of various immune cells. The present study generates macrophage-specific SAMSN1-knockout (Samsn1MKO) and SAMSN1-transgenic (Samsn1MTG) mice to investigate its role and mechanism in sepsis-induced ALI. METHODS Samsn1MKO and Samsn1MTG mice were exposed to lipopolysaccharide (LPS) instillation or cecal ligation and puncture (CLP) surgery to induce sepsis-induced ALI. Bone marrow transplantation, cellular depletion and non-invasive adoptive transfer of bone marrow-derived macrophages (BMDMs) were performed to validate the role of macrophage SAMSN1 in sepsis-induced ALI in vivo. Meanwhile, BMDMs were isolated from Samsn1MKO or Samsn1MTG mice to further clarify the role of SAMSN1 in vitro. RESULTS Macrophage SAMSN1 expression was increased in response to LPS stimulation, and negatively correlated with LPS-induced ALI in mice. Macrophage SAMSN1 deficiency exacerbated, while macrophage SAMSN1 overexpression ameliorated LPS-induced inflammation, oxidative stress and ALI in mice and in BMDMs. Mechanistically, we found that macrophage SAMSN1 overexpression prevented LPS-induced ALI though activating AMP-activated protein kinase α2 (AMPKα2) in vivo and in vitro. Further studies revealed that SAMSN1 directly bound to growth factor receptor bound protein 2-associated protein 1 (GAB1) to prevent its protein degradation, and subsequently enhanced protein kinase A (PKA)/AMPKα2 activation in a protein tyrosine phosphatase, non-receptor type 11 (PTPN11, also known as SHP2)-dependent manner. Moreover, we observed that macrophage SAMSN1 overexpression diminished CLP-induced ALI in mice. CONCLUSION Our study documents the protective role of macrophage SAMSN1 against sepsis-induced inflammation, oxidative stress and ALI through activating AMPKα2 in a GAB1/SHP2/PKA pathway, and defines it as a promising biomarker and therapeutic target to treat sepsis-induced ALI.
Collapse
Affiliation(s)
- Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xianjin Du
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Yarmohammadi F, Hayes AW, Karimi G. Sorting nexins as a promising therapeutic target for cardiovascular disorders: An updated overview. Exp Cell Res 2022; 419:113304. [PMID: 35931142 DOI: 10.1016/j.yexcr.2022.113304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
Sorting nexins (SNXs) are involved in sorting the protein cargo within the endolysosomal system. Recently, several studies have shown the role of SNXs in cardiovascular pathology. SNXs exert both physiologic and pathologic functions in the cardiovascular system by regulating protein sorting and trafficking, maintaining protein homeostasis, and participating in multiple signaling pathways. SNX deficiency results in blood pressure response to dopamine 5 receptor [D5R] stimulation. SNX knockout protected against atherosclerosis lesions by suppressing foam cell formation. Moreover, SNXs can act as endogenous anti-arrhythmic agents via maintenance of calcium homeostasis. Overexpression SNXs also can reduce cardiac fibrosis in atrial fibrillation. The SNX-STAT3 interaction in cardiac cells promoted heart failure. SNXs may have the potential to act as a pharmacological target against specific cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL,, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Single Shot vs. Cocktail: A Comparison of Mono- and Combinative Application of miRNA-Targeted Mesyl Oligonucleotides for Efficient Antitumor Therapy. Cancers (Basel) 2022; 14:cancers14184396. [PMID: 36139555 PMCID: PMC9496860 DOI: 10.3390/cancers14184396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Current approaches to the treatment of oncological diseases are still suffering from a lack of efficiency and selectivity and are accompanied by pronounced non-specific toxic effects. This study evaluated the antitumor potential of highly selective multitarget antisense downregulation of small non-coding RNA molecules—microRNAs—where dysregulation in cells frequently triggers oncotransformation and tumor development. We report herein that combinations of recently developed mesyl phosphoramidate oligonucleotides, targeted to multifunctional miRNA regulators miR-17, miR-21 and miR-155, exhibited potent synergistic antiproliferative and antimigrative effects on highly aggressive tumor cells. Furthermore, the significant antitumor activity of a cocktail of three antisense oligonucleotides targeted to miR-21, miR-17, and miR-155 almost completely suppressed lymphosarcoma RLS40 tumor growth and exerted prominent antimetastatic effects in a melanoma B16 model. Such treatment elicited no sign of in vivo toxicity and even exhibited remedial effects on the liver of tumor-bearing mice. Abstract Rational combinations of sequence-specific inhibitors of pro-oncogenic miRNAs can efficiently interfere with specific tumor survival pathways, offering great promise for targeted therapy of oncological diseases. Herein, we uncovered the potential of multicomponent therapy by double or triple combinations of highly potent mesyl phosphoramidate (µ) antisense oligodeoxynucleotides targeted to three proven pro-oncogenic microRNAs—miR-17, miR-21, and miR-155. A strong synergism in the inhibition of proliferation and migration of B16 melanoma cells was demonstrated in vitro for pairs of µ-oligonucleotides, which resulted in vivo in profound inhibition (up to 85%) of lung metastases development after intravenous injection of µ-oligonucleotide-transfected B16 cells in mice. A clear benefit of µ-21-ON/µ-17-ON and µ-17-ON/µ-155-ON/µ-21-ON combination antitumor therapy was shown for the lymphosarcoma RLS40 solid tumor model. In vivo administration of the µ-17-ON/µ-155-ON/µ-21-ON cocktail into RLS40-bearing mice elicited fourfold delay of tumor growth as a result of strong inhibition of tumor mitotic activity. It was discovered that the cocktail of µ-21-ON/µ-17-ON/µ-155-ON led to a twofold decrease in total destructive changes in murine liver, which indicates both the reduction in toxic tumor burden and the absence of specific toxicity of the proposed therapy.
Collapse
|
20
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
21
|
Shu H, Hang W, Peng Y, Nie J, Wu L, Zhang W, Wang DW, Zhou N. Trimetazidine Attenuates Heart Failure by Improving Myocardial Metabolism via AMPK. Front Pharmacol 2021; 12:707399. [PMID: 34603021 PMCID: PMC8479198 DOI: 10.3389/fphar.2021.707399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Energic deficiency of cardiomyocytes is a dominant cause of heart failure. An antianginal agent, trimetazidine improves the myocardial energetic supply. We presumed that trimetazidine protects the cardiomyocytes from the pressure overload-induced heart failure through improving the myocardial metabolism. C57BL/6 mice were subjected to transverse aortic constriction (TAC). After 4 weeks of TAC, heart failure was observed in mice manifested by an increased left ventricular (LV) chamber dimension, an impaired LV ejection fraction evaluated by echocardiography analysis, which were significantly restrained by the treatment of trimetazidine. Trimetazidine restored the mitochondrial morphology and function tested by cardiac transmission electron microscope and mitochondrial dynamic proteins analysis. Positron emission tomography showed that trimetazidine significantly elevated the glucose uptake in TAC mouse heart. Trimetazidine restrained the impairments of the insulin signaling in TAC mice and promoted the translocation of glucose transporter type IV (GLUT4) from the storage vesicle to membrane. However, these cardioprotective effects of trimetazidine in TAC mice were notably abolished by compound C (C.C), a specific AMPK inhibitor. The enlargement of neonatal rat cardiomyocyte induced by mechanical stretch, together with the increased expression of hypertrophy-associated proteins, mitochondria deformation and dysfunction were significantly ameliorated by trimetazidine. Trimetazidine enhanced the isolated cardiomyocyte glucose uptake in vitro. These benefits brought by trimetazidine were also removed with the presence of C.C. In conclusion, trimetazidine attenuated pressure overload-induced heart failure through improving myocardial mitochondrial function and glucose uptake via AMPK.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|