1
|
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D, Grewal AS. Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem 2025; 159:108388. [PMID: 40107036 DOI: 10.1016/j.bioorg.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Anti-cancer drug's cytotoxicity is determined by their ability to induce predetermined cell demise, commonly called apoptosis. The cancer-causing cells are able to evade cell death, which has been affiliated with both malignancy as well as resistance to cancer treatments. In order to avoid cell death, cancerous tumour cells often produce an abundance of anti-apoptotic proteins, becoming "dependent" on them. Consequently, protein inhibitors of cell death may prove to be beneficial as pharmacological targets for the future creation of cancer therapies. This article examines the molecular routes of apoptosis, its clinical manifestations, anti-cancer therapy options that target the intrinsic mechanism of apoptosis, proteins that prevent cell death, and members of the B-lymphoma-2 subset. In addition, novel approaches to cell death are highlighted, including how curcumin mitigates chemotherapy-induced apoptosis in healthy tissues and the various ways melatonin modifies apoptosis to improve cancer treatment efficacy, particularly through the TNF superfamily. Cancer treatment-induced increases in anti-apoptotic proteins lead to drug resistance; yet, ligands that trigger cell death by inhibiting these proteins are expected to improve chemotherapy's efficacy. The potential of frequency-modulated dietary phytochemicals as a cancer therapeutic pathway, including autophagy and apoptosis, is also explored. This approach may be more efficient than inhibition alone in overcoming drug resistance. Consequently, this method has the potential to allow for lower medication concentrations, reducing cytotoxicity and unwanted side effects.
Collapse
Affiliation(s)
- Benu Chaudhary
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Preeti Arya
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Parveen Kumar
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Deepak Singla
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | |
Collapse
|
2
|
Boroujeni AF, Ates-Alagoz Z. Pioneering the Battle Against Breast Cancer: The Promise of New Bcl-2 Family. Anticancer Agents Med Chem 2025; 25:164-178. [PMID: 39313901 DOI: 10.2174/0118715206320224240910054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
Collapse
Affiliation(s)
- Ali Farhang Boroujeni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Fitzgerald MC, O'Halloran PJ, Kerrane SA, Ní Chonghaile T, Connolly NMC, Murphy BM. The identification of BCL-XL and MCL-1 as key anti-apoptotic proteins in medulloblastoma that mediate distinct roles in chemotherapy resistance. Cell Death Dis 2023; 14:705. [PMID: 37898609 PMCID: PMC10613306 DOI: 10.1038/s41419-023-06231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Medulloblastoma is the most common malignant paediatric brain tumour, representing 20% of all paediatric intercranial tumours. Current aggressive treatment protocols and the use of radiation therapy in particular are associated with high levels of toxicity and significant adverse effects, and long-term sequelae can be severe. Therefore, improving chemotherapy efficacy could reduce the current reliance on radiation therapy. Here, we demonstrated that systems-level analysis of basal apoptosis protein expression and their signalling interactions can differentiate between medulloblastoma cell lines that undergo apoptosis in response to chemotherapy, and those that do not. Combining computational predictions with experimental BH3 profiling, we identified a therapeutically-exploitable dependence of medulloblastoma cells on BCL-XL, and experimentally validated that BCL-XL targeting, and not targeting of BCL-2 or MCL-1, can potentiate cisplatin-induced cytotoxicity in medulloblastoma cell lines with low sensitivity to cisplatin treatment. Finally, we identified MCL-1 as an anti-apoptotic mediator whose targeting is required for BCL-XL inhibitor-induced apoptosis. Collectively, our study identifies that BCL-XL and MCL-1 are the key anti-apoptotic proteins in medulloblastoma, which mediate distinct protective roles. While BCL-XL has a first-line role in protecting cells from apoptosis basally, MCL-1 represents a second line of defence that compensates for BCL-XL upon its inhibition. We provide rationale for the further evaluation of BCL-XL and MCL-1 inhibitors in the treatment of medulloblastoma, and together with current efforts to improve the cancer-specificity of BCL-2 family inhibitors, these novel treatment strategies have the potential to improve the future clinical management of medulloblastoma.
Collapse
Affiliation(s)
- Marie-Claire Fitzgerald
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Philip J O'Halloran
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Sean A Kerrane
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Triona Ní Chonghaile
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Niamh M C Connolly
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland
| | - Brona M Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 31A York Street, Dublin, D02 YN77, Ireland.
- National Children's Research Centre at the Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland.
| |
Collapse
|
4
|
Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current Advances and Future Strategies for BCL-2 Inhibitors: Potent Weapons against Cancers. Cancers (Basel) 2023; 15:4957. [PMID: 37894324 PMCID: PMC10605442 DOI: 10.3390/cancers15204957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Targeting the intrinsic apoptotic pathway regulated by B-cell lymphoma-2 (BCL-2) antiapoptotic proteins can overcome the evasion of apoptosis in cancer cells. BCL-2 inhibitors have evolved into an important means of treating cancers by inducing tumor cell apoptosis. As the most extensively investigated BCL-2 inhibitor, venetoclax is highly selective for BCL-2 and can effectively inhibit tumor survival. Its emergence and development have significantly influenced the therapeutic landscape of hematological malignancies, especially in chronic lymphocytic leukemia and acute myeloid leukemia, in which it has been clearly incorporated into the recommended treatment regimens. In addition, the considerable efficacy of venetoclax in combination with other agents has been demonstrated in relapsed and refractory multiple myeloma and certain lymphomas. Although venetoclax plays a prominent antitumor role in preclinical experiments and clinical trials, large individual differences in treatment outcomes have been characterized in real-world patient populations, and reduced drug sensitivity will lead to disease recurrence or progression. The therapeutic efficacy may vary widely in patients with different molecular characteristics, and key genetic mutations potentially result in differential sensitivities to venetoclax. The identification and validation of more novel biomarkers are required to accurately predict the effectiveness of BCL-2 inhibition therapy. Furthermore, we summarize the recent research progress relating to the use of BCL-2 inhibitors in solid tumor treatment and demonstrate that a wealth of preclinical models have shown promising results through combination therapies. The applications of venetoclax in solid tumors warrant further clinical investigation to define its prospects.
Collapse
Affiliation(s)
- Jiaxuan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - David C. S. Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Quan Zhao
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing 210008, China; (J.X.); (X.D.); (P.X.)
| |
Collapse
|
5
|
Ghanem A, Ali MA, Elkady MA, Abdel Mageed SS, El Hassab MA, El-Ashrey MK, Mohammed OA, Doghish AS. Rumex vesicarius L. boosts the effectiveness of sorafenib in triple-negative breast cancer by downregulating BCl2, mTOR, and JNK, and upregulating p21 expression. Pathol Res Pract 2023; 250:154807. [PMID: 37696244 DOI: 10.1016/j.prp.2023.154807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 μM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.
Collapse
Affiliation(s)
- Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Mohamed K El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
6
|
de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E, Muñoz-Espín D. Targeting Senescence as a Therapeutic Opportunity for Triple-Negative Breast Cancer. Mol Cancer Ther 2023; 22:583-598. [PMID: 36752780 PMCID: PMC10157365 DOI: 10.1158/1535-7163.mct-22-0643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with an elevated risk of recurrence and poor prognosis. Historically, only chemotherapy was available as systemic treatment, but immunotherapy and targeted therapies currently offer prolonged benefits. TNBC is a group of diseases with heterogeneous treatment sensitivity, and resistance is inevitable and early for a large proportion of the intrinsic subtypes. Although senescence induction by anticancer therapy offers an immediate favorable clinical outcome once the rate of tumor progression reduces, these cells are commonly dysfunctional and metabolically active, culminating in treatment-resistant repopulation associated with worse prognosis. This heterogeneous response can also occur without therapeutic pressure in response to damage or oncogenic stress, playing a relevant role in the carcinogenesis. Remarkably, there is preclinical and exploratory clinical evidence to support a relevant role of senescence in treatment resistance. Therefore, targeting senescent cells has been a scientific effort in many malignant tumors using a variety of targets and strategies, including increasing proapoptotic and decreasing antiapoptotic stimuli. Despite promising results, there are some challenges to applying this technology, including the best schedule of combination, assessment of senescence, specific vulnerabilities, and the best clinical scenarios. This review provides an overview of senescence in TNBC with a focus on future-proofing senotherapy strategies.
Collapse
Affiliation(s)
- Bruno de Paula
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Rosalind Kieran
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Samantha Shui Yuan Koh
- Department of Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Susanne Crocamo
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
7
|
Yao Q, Zhang H, Standish C, Grube J, Mañas A, Xiang J. Expression profile of the proapoptotic protein Bax in the human brain. Histochem Cell Biol 2023; 159:209-220. [PMID: 35951115 DOI: 10.1007/s00418-022-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
Bax is a well-known universal proapoptotic protein. Bax protein is detected in almost all human organs, and its expression levels can be correlated with disease progression and therapeutic efficacy in certain settings. Interestingly, increasing evidence has shown that mature neuronal cell death is often not typical apoptosis. Most results on the expression of Bax proteins (predominantly Baxα) in the human brain come from disease-oriented studies, and the data on Bax protein expression in the normal brain are limited and lack consistency due to many variable factors. Here, we analyzed Bax RNA and protein expression data from multiple databases and performed immunostaining of over 80 samples from 25 healthy subjects across 7 different brain regions. We found that Bax protein expression was heterogeneous across brain regions and individual subjects. Both neurons and glial cells, such as astrocytes, could be Bax positive, but Bax positivity appeared to be highly selective, even within the same cell type in the same region. Furthermore, Bax proteins could be localized in the cytosol (evenly spread or concentrated to one region), nucleus or nucleolus depending on the cell type. Such variation and distribution in Bax expression suggest that Bax may function differently in the human brain than in other organs.
Collapse
Affiliation(s)
- Qi Yao
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Huaiyuan Zhang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Collin Standish
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Joshua Grube
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Adriana Mañas
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Jialing Xiang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA.
| |
Collapse
|
8
|
Jovankić JV, Nikodijević DD, Milutinović MG, Nikezić AG, Kojić VV, Cvetković AM, Cvetković DM. Potential of Orlistat to induce apoptotic and antiangiogenic effects as well as inhibition of fatty acid synthesis in breast cancer cells. Eur J Pharmacol 2023; 939:175456. [PMID: 36528070 DOI: 10.1016/j.ejphar.2022.175456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Breast cancer as most often women's cancer is the second cause of mortality worldwide. Research interest increased in testing non-standard drugs to suppress breast cancer progression and become significant supplements in anticancer therapy. The anti-obesity drug Orlistat showed significant ability for modulation of cancer cell metabolism via antiproliferative, proapoptotic, antiangiogenic, antimetastatic, and hypolipidemic effects. The anticancer potential of Orlistat was evaluated by cytotoxicity (MTT assay), type of cell death (AO/EB double staining), determination of redox status parameters (superoxide, hydrogen peroxide, lipid peroxidation, reduced glutathione), and total lipid levels with colorimetric methods, as well on angiogenesis-related (VEGF, MMP-9, CXCR4/CXCL12) and fatty acid synthesis-related (ACLY, ACC, FASN) parameters on gene and protein levels (immunocytochemistry and qPCR). Based on obtained results Orlistat induces significant cytotoxic, proapoptotic, and anti-angiogenic effects in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells, without significant cytotoxic effects on normal MRC-5 cells. It decreased total lipid levels and changed redox status parameters and cancer cell metabolism via suppression of genes and proteins involved and fatty acid synthesis. Based on showed, Orlistat may be an important supplement in antiangiogenic therapy against breast cancer with no side effects on normal cells, making it a good candidate for future clinical trials.
Collapse
Affiliation(s)
- Jovana V Jovankić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena G Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Aleksandra G Nikezić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Vesna V Kojić
- University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put Dr Goldmana 4, Sremska Kamenica, 21204, Serbia
| | - Aleksandar M Cvetković
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela M Cvetković
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| |
Collapse
|
9
|
Kealey J, Düssmann H, Llorente-Folch I, Niewidok N, Salvucci M, Prehn JHM, D’Orsi B. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: A single cell study. Front Cell Dev Biol 2022; 10:893677. [PMID: 36238683 PMCID: PMC9550869 DOI: 10.3389/fcell.2022.893677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Somatic mutations in genes involved in oncogenic signaling pathways, including KRAS and TP53, rewire the metabolic machinery in cancer cells. We here set out to determine, at the single cell level, metabolic signatures in human colon cancer cells engineered to express combinations of activating KRAS gene mutations and TP53 gene deletions. Specifically, we explored how somatic mutations in these genes and substrate availability (lactate, glucose, substrate deprivation) from the extracellular microenvironment affect bioenergetic parameters, including cellular ATP, NADH and mitochondrial membrane potential dynamics. Employing cytosolic and mitochondrial FRET-based ATP probes, fluorescent NADH sensors, and the membrane-permeant cationic fluorescent probe TMRM in HCT-116 cells as a model system, we observed that TP53 deletion and KRAS mutations drive a shift in metabolic signatures enabling lactate to become an efficient metabolite to replenish both ATP and NADH following nutrient deprivation. Intriguingly, cytosolic, mitochondrial and overall cellular ATP measurements revealed that, in WT KRAS cells, TP53 deficiency leads to an enhanced ATP production in the presence of extracellular lactate and glucose, and to the greatest increase in ATP following a starvation period. On the other hand, oncogenic KRAS in TP53-deficient cells reversed the alterations in cellular ATP levels. Moreover, cell population measurements of mitochondrial and glycolytic metabolism using a Seahorse analyzer demonstrated that WT KRAS TP53-silenced cells display an increase of the basal respiration and tightly-coupled mitochondria, in the presence of glucose as substrate, compared to TP53 competent cells. Furthermore, cells possessing oncogenic KRAS, independently of TP53 status, showed less pronounced mitochondrial membrane potential changes in response to metabolic nutrients. Furthermore, analysis of cytosolic and mitochondrial NADH levels revealed that the simultaneous presence of TP53 deletion and oncogenic KRAS showed the most pronounced alteration in cytosolic and mitochondrial NADH during metabolic stress. In conclusion, our findings demonstrate how activating KRAS mutation and loss of TP53 remodel cancer metabolism and lead to alterations in bioenergetics under metabolic stress conditions by modulating cellular ATP production, NADH oxidation, mitochondrial respiration and function.
Collapse
Affiliation(s)
- James Kealey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Universidad Rey Juan Carlos, Alcorcon-Madrid, Spain
| | - Natalia Niewidok
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
- *Correspondence: Jochen H. M. Prehn, ; Beatrice D’Orsi,
| |
Collapse
|
10
|
An integrative systems biology approach to overcome venetoclax resistance in acute myeloid leukemia. PLoS Comput Biol 2022; 18:e1010439. [PMID: 36099249 PMCID: PMC9469948 DOI: 10.1371/journal.pcbi.1010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
The over-expression of the Bcl-2 protein is a common feature of many solid cancers and hematological malignancies, and it is typically associated with poor prognosis and resistance to chemotherapy. Bcl-2-specific inhibitors, such as venetoclax, have recently been approved for the treatment of chronic lymphocytic leukemia and small lymphocytic lymphoma, and they are showing promise in clinical trials as a targeted therapy for patients with relapsed or refractory acute myeloid leukemia (AML). However, successful treatment of AML with Bcl-2-specific inhibitors is often followed by the rapid development of drug resistance. An emerging paradigm for overcoming drug resistance in cancer treatment is through the targeting of mitochondrial energetics and metabolism. In AML in particular, it was recently observed that inhibition of mitochondrial translation via administration of the antibiotic tedizolid significantly affects mitochondrial bioenergetics, activating the integrated stress response (ISR) and subsequently sensitizing drug-resistant AML cells to venetoclax. Here we develop an integrative systems biology approach to acquire a deeper understanding of the molecular mechanisms behind this process, and in particular, of the specific role of the ISR in the commitment of cells to apoptosis. Our multi-scale mathematical model couples the ISR to the intrinsic apoptosis pathway in venetoclax-resistant AML cells, includes the metabolic effects of treatment, and integrates RNA, protein level, and cellular viability data. Using the mathematical model, we identify the dominant mechanisms by which ISR activation helps to overcome venetoclax resistance, and we study the temporal sequencing of combination treatment to determine the most efficient and robust combination treatment protocol. In this work, we develop a multi-scale systems biology approach to study the mechanisms by which the integrated stress response (ISR) activation helps to overcome venetoclax resistance in acute myeloid leukemia (AML). The multi-scale model enables the integration of RNA-level, protein-level, and cellular viability and proliferation data. The model developed in this work can predict several important features of the resistant AML cell lines that are consistent with experimental data. Further, our integrative systems biology approach led to the determination of the optimal combination treatment protocol.
Collapse
|
11
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
12
|
Vianello C, Cocetta V, Catanzaro D, Dorn GW, De Milito A, Rizzolio F, Canzonieri V, Cecchin E, Roncato R, Toffoli G, Quagliariello V, Di Mauro A, Losito S, Maurea N, Scaffa C, Sales G, Scorrano L, Giacomello M, Montopoli M. Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis 2022; 13:398. [PMID: 35459212 PMCID: PMC9033831 DOI: 10.1038/s41419-022-04741-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is commonly used to treat a multitude of tumors including sarcomas, ovarian and cervical cancers. Despite recent investigations allowed to improve chemotherapy effectiveness, the molecular mechanisms underlying the development of CDDP resistance remain a major goal in cancer research. Here, we show that mitochondrial morphology and autophagy are altered in different CDDP resistant cancer cell lines. In CDDP resistant osteosarcoma and ovarian carcinoma, mitochondria are fragmented and closely juxtaposed to the endoplasmic reticulum; rates of mitophagy are also increased. Specifically, levels of the mitophagy receptor BNIP3 are higher both in resistant cells and in ovarian cancer patient samples resistant to platinum-based treatments. Genetic BNIP3 silencing or pharmacological inhibition of autophagosome formation re-sensitizes these cells to CDDP. Our study identifies inhibition of BNIP3-driven mitophagy as a potential therapeutic strategy to counteract CDDP resistance in ovarian carcinoma and osteosarcoma.
Collapse
Affiliation(s)
- Caterina Vianello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Daniela Catanzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Angelo De Milito
- Sprint Bioscience, Huddinge, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172, Venice, Italy
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, 33081, Aviano, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Simona Losito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Cono Scaffa
- Gynecologic Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
- Department of Biomedical Sciences, Via Ugo Bassi 58B, 35131, Padova, Italy.
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131, Padova, Italy.
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129, Padova, Italy.
| |
Collapse
|
13
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Karpagam S, Mamindla A, Kumar Sali V, Niranjana RS, Periasamy VS, Alshatwi AA, Akbarsha MA, Rajendiran V. Folic acid-conjugated mixed-ligand copper(II) complexes as promising cytotoxic agents for triple-negative breast cancers: A case study using MDA-MB-231 cell. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
17
|
Lindner AU, Salvucci M, McDonough E, Cho S, Stachtea X, O'Connell EP, Corwin AD, Santamaria-Pang A, Carberry S, Fichtner M, Van Schaeybroeck S, Laurent-Puig P, Burke JP, McNamara DA, Lawler M, Sood A, Graf JF, Rehm M, Dunne PD, Longley DB, Ginty F, Prehn JHM. An atlas of inter- and intra-tumor heterogeneity of apoptosis competency in colorectal cancer tissue at single-cell resolution. Cell Death Differ 2021; 29:806-817. [PMID: 34754079 PMCID: PMC8990071 DOI: 10.1038/s41418-021-00895-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Cancer cells’ ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million individual cells, and quantification of 18 cell lineage and apoptosis proteins. We identified an enrichment for BCL2 in immune, and BAK, SMAC, and XIAP in cancer cells. Ordinary differential equation-based modeling of apoptosis sensitivity at single-cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity in apoptosis susceptibility generated. Systems modeling at single-cell resolution identified an enhanced sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation compared to immune and stromal cells, but showed significant inter- and intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Andreas Ulrich Lindner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | - Xanthi Stachtea
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Emer P O'Connell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Department of Surgery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | - Steven Carberry
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Sandra Van Schaeybroeck
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, CNRS, Université de Paris, Sorbonne Université, USPC, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - John P Burke
- Department of Surgery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Surgery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.,Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Mark Lawler
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Anup Sood
- GE Research, Niskayuna, NY, 12309, USA
| | | | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philip D Dunne
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Daniel B Longley
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | | | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland. .,Centre of Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv 2021; 5:3152-3162. [PMID: 34424320 DOI: 10.1182/bloodadvances.2020003276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/18/2021] [Indexed: 11/20/2022] Open
Abstract
Antibody-drug conjugates directed against tumor-specific targets have allowed targeted delivery of highly potent chemotherapy to malignant cells while sparing normal cells. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein with limited expression on normal adult tissues and is overexpressed on the surface of malignant cells in mantle cell lymphoma, acute lymphocytic leukemia with t(1;19)(q23;p13) translocation, and chronic lymphocytic leukemia. This differential expression makes ROR1 an attractive target for antibody-drug conjugate therapy, especially in malignancies such as mantle cell lymphoma and acute lymphocytic leukemia, in which systemic chemotherapy remains the gold standard. Several preclinical and phase 1 clinical studies have established the safety and effectiveness of anti-ROR1 monoclonal antibody-based therapies. Herein we describe a humanized, first-in-class anti-ROR1 antibody-drug conjugate, huXBR1-402-G5-PNU, which links a novel anti-ROR1 antibody (huXBR1-402) to a highly potent anthracycline derivative (PNU). We found that huXBR1-402-G5-PNU is cytotoxic to proliferating ROR1+ malignant cells in vitro and suppressed leukemia proliferation and extended survival in multiple models of mice engrafted with human ROR1+ leukemia. Lastly, we show that the B-cell lymphoma 2 (BCL2)-dependent cytotoxicity of huXBR1-402-G5-PNU can be leveraged by combined treatment strategies with the BCL2 inhibitor venetoclax. Together, our data present compelling preclinical evidence for the efficacy of huXBR1-402-G5-PNU in treating ROR1+ hematologic malignancies.
Collapse
|
19
|
Rigamonti L, Reginato F, Ferrari E, Pigani L, Gigli L, Demitri N, Kopel P, Tesarova B, Heger Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans 2021; 49:14626-14639. [PMID: 33057512 DOI: 10.1039/d0dt03038d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper(ii) complexes of general formula [Cu(GL)(Cl)] (1-3, G = OMe, H and NO2, respectively), bearing tridentate Schiff base ligands (GL-) and a chloride as a fourth labile one, are here reported. The Schiff bases derive from the monocondensation of ethylenediamine and substituted salicylaldehyde, where the electronic properties are modulated by the releasing or withdrawing power of the G group. The compounds were structurally characterized through single crystal Synchrotron X-ray diffraction experiments in the solid state, revealing that 1 (OMe) and 2 (H) adopt a dimeric assembly [Cu(μ-Cl)(GL)]2 through apical interaction of the chloride ions of two monomeric units, while 3 embraces a 1D polymeric chain structure [Cu(μ-Cl)(NO2L)]n with a similar bridging fashion, all supported by extended intramolecular or intrachain hydrogen bonds. The redox properties of the complexes were also studied by cyclic voltammetry with no marked effect of the substituent on the potential of the CuII/CuI redox system. UV/Vis spectroscopic studies in mimicked physiological conditions highlighted the intactness and stability of the coordinated NNO tridentate ligand in 1-3 and the lability of the coordinated chloride ion with the formation of the aquo-complexes [Cu(GL)(H2O)]+ in aqueous solution, as confirmed by conductance measurements with a 1 : 1 electrolyte molar conductivity. In vitro tests on cell viability were conducted on malignant cell lines typical for their poor prognosis and curability, revealing time-dependent and differential cytotoxicity given by the substituent G. All compounds were capable of formation of intracellular reactive oxygen species and DNA intercalation, acting as nuclease and producing double-strand DNA breaks. This is especially effective for 3 (NO2), which revealed the highest anticancer activity against malignant triple-negative breast cancer MDA-MB-231 cells, with a two-to-four-fold cytotoxicity enhancement with respect to 1 (OMe) and 2 (H), and, most important, substantial differentiation of cytotoxicity with respect to healthy endothelial HUVEC cell line.
Collapse
Affiliation(s)
- Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Francesco Reginato
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Laura Pigani
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Lara Gigli
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra Synchrotron Trieste, Strada Statale 14 - km 163.5 - Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, CZ-61300, Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612-00 Brno, Czech Republic
| |
Collapse
|
20
|
Manjunath M, Choudhary B. Triple-negative breast cancer: A run-through of features, classification and current therapies. Oncol Lett 2021; 22:512. [PMID: 33986872 PMCID: PMC8114477 DOI: 10.3892/ol.2021.12773] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide. Triple-negative breast cancer (TNBC) is characterized by the lack of expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. It is the most aggressive subtype of breast cancer and accounts for 12-20% of all breast cancer cases. TNBC is associated with younger age of onset, greater metastatic potential, higher incidence of relapse, and lower overall survival rates. Based on molecular phenotype, TNBC has been classified into six subtypes (BL1, BL2, M, MES, LAR, and IM). TNBC treatment is challenging due to its heterogeneity, highly invasive nature, and relatively poor therapeutics response. Chemotherapy and radiotherapy are conventional strategies for the treatment of TNBC. Recent research in TNBC and mechanistic understanding of disease pathogenesis using cutting-edge technologies has led to the unfolding of new lines of therapies that have been incorporated into clinical practice. Poly (ADP-ribose) polymerase and immune checkpoint inhibitors have made their way to the current TNBC treatment paradigm. This review focuses on the classification, features, and treatment progress in TNBC. Histological subtypes connected to recurrence, molecular classification of TNBC, targeted therapy for early and advanced TNBC, and advances in non-coding RNA in therapy are the key highlights in this review.
Collapse
Affiliation(s)
- Meghana Manjunath
- Department of Biotechnology, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka 560100, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bibha Choudhary
- Department of Biotechnology, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka 560100, India
| |
Collapse
|
21
|
BCL(X)L and BCL2 increase the metabolic fitness of breast cancer cells: a single-cell imaging study. Cell Death Differ 2021; 28:1512-1531. [PMID: 33328572 PMCID: PMC8166899 DOI: 10.1038/s41418-020-00683-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/28/2023] Open
Abstract
The BCL2 family of proteins regulate apoptosis by controlling mitochondrial outer membrane permeability. However, the effects on mitochondrial structure and bioenergetics have also been reported. Here we comprehensively characterized the effects of BCL2 and BCL(X)L on cellular energetics in MCF7 breast cancer cells using time-lapse confocal single-cell imaging and mitochondrial and cytosolic FRET reporters. We found that BCL2 and BCL(X)L increase the metabolic robustness of MCF7 cells, and that this was associated with increased mitochondrial NAD(P)H and ATP levels. Experiments with the F1F0 synthase inhibitor oligomycin demonstrated that BCL2 and in particular BCL(X)L, while not affecting ATP synthase activity, more efficiently coupled the mitochondrial proton motive force with ATP production. This metabolic advantage was associated with an increased resistance to nutrient deprivation and enhanced clonogenic survival in response to metabolic stress, in the absence of profound effects on cell death. Our data suggest that a primary function of BCL(X)L and BCL2 overexpression in tumor cells is to increase their resistance to metabolic stress in the tumor microenvironment, independent of cell death signaling.
Collapse
|
22
|
Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A, Magalhães KG. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci 2021; 28:26. [PMID: 33840390 PMCID: PMC8040227 DOI: 10.1186/s12929-021-00724-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1β and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Susan Costantini
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | - Mickaël Rialland
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
- UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Rebe Cedric
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, 21000, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
| | - Alfredo Budillon
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
23
|
It's time to die: BH3 mimetics in solid tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118987. [PMID: 33600840 DOI: 10.1016/j.bbamcr.2021.118987] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
The removal of cells by apoptosis is an essential process regulating tissue homeostasis. Cancer cells acquire the ability to circumvent apoptosis and survive in an unphysiological tissue context. Thereby, the Bcl-2 protein family plays a key role in the initiation of apoptosis, and overexpression of the anti-apoptotic Bcl-2 proteins is one of the molecular mechanisms protecting cancer cells from apoptosis. Recently, small molecules targeting the anti-apoptotic Bcl-2 family proteins have been identified, and with venetoclax the first of these BH3 mimetics has been approved for the treatment of leukemia. In solid tumors the anti-apoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL are frequently overexpressed or genetically amplified. In this review, we summarize the role of Mcl-1 and Bcl-xL in solid tumors and compare the different BH3 mimetics targeting Mcl-1 or Bcl-xL.
Collapse
|
24
|
McKenna S, García-Gutiérrez L, Matallanas D, Fey D. BAX and SMAC regulate bistable properties of the apoptotic caspase system. Sci Rep 2021; 11:3272. [PMID: 33558564 PMCID: PMC7870884 DOI: 10.1038/s41598-021-82215-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/07/2020] [Indexed: 01/30/2023] Open
Abstract
The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.
Collapse
Affiliation(s)
- Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
25
|
O’Farrell AC, Jarzabek MA, Lindner AU, Carberry S, Conroy E, Miller IS, Connor K, Shiels L, Zanella ER, Lucantoni F, Lafferty A, White K, Meyer Villamandos M, Dicker P, Gallagher WM, Keek SA, Sanduleanu S, Lambin P, Woodruff HC, Bertotti A, Trusolino L, Byrne AT, Prehn JHM. Implementing Systems Modelling and Molecular Imaging to Predict the Efficacy of BCL-2 Inhibition in Colorectal Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12102978. [PMID: 33066609 PMCID: PMC7602510 DOI: 10.3390/cancers12102978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to chemotherapy often results from dysfunctional apoptosis, however multiple proteins with overlapping functions regulate this pathway. We sought to determine whether an extensively validated, deterministic apoptosis systems model, 'DR_MOMP', could be used as a stratification tool for the apoptosis sensitiser and BCL-2 antagonist, ABT-199 in patient-derived xenograft (PDX) models of colorectal cancer (CRC). Through quantitative profiling of BCL-2 family proteins, we identified two PDX models which were predicted by DR_MOMP to be sufficiently sensitive to 5-fluorouracil (5-FU)-based chemotherapy (CRC0344), or less responsive to chemotherapy but sensitised by ABT-199 (CRC0076). Treatment with ABT-199 significantly improved responses of CRC0076 PDXs to 5-FU-based chemotherapy, but showed no sensitisation in CRC0344 PDXs, as predicted from systems modelling. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) scans were performed to investigate possible early biomarkers of response. In CRC0076, a significant post-treatment decrease in mean standard uptake value was indeed evident only in the combination treatment group. Radiomic CT feature analysis of pre-treatment images in CRC0076 and CRC0344 PDXs identified features which could phenotypically discriminate between models, but were not predictive of treatment responses. Collectively our data indicate that systems modelling may identify metastatic (m)CRC patients benefitting from ABT-199, and that 18F-FDG-PET could independently support such predictions.
Collapse
Affiliation(s)
- Alice C. O’Farrell
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Monika A. Jarzabek
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Andreas U. Lindner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Steven Carberry
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Liam Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Eugenia R. Zanella
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Federico Lucantoni
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Adam Lafferty
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kieron White
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Mariangela Meyer Villamandos
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Patrick Dicker
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
- Correspondence: ; Tel.: +353-1-402-2255
| |
Collapse
|
26
|
Abstract
For over three decades, a mainstay and goal of clinical oncology has been the development of therapies promoting the effective elimination of cancer cells by apoptosis. This programmed cell death process is mediated by several signalling pathways (referred to as intrinsic and extrinsic) triggered by multiple factors, including cellular stress, DNA damage and immune surveillance. The interaction of apoptosis pathways with other signalling mechanisms can also affect cell death. The clinical translation of effective pro-apoptotic agents involves drug discovery studies (addressing the bioavailability, stability, tumour penetration, toxicity profile in non-malignant tissues, drug interactions and off-target effects) as well as an understanding of tumour biology (including heterogeneity and evolution of resistant clones). While tumour cell death can result in response to therapy, the selection, growth and dissemination of resistant cells can ultimately be fatal. In this Review, we present the main apoptosis pathways and other signalling pathways that interact with them, and discuss actionable molecular targets, therapeutic agents in clinical translation and known mechanisms of resistance to these agents.
Collapse
Affiliation(s)
| | - Wafik S El-Deiry
- The Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Lee S, Hu Y, Loo SK, Tan Y, Bhargava R, Lewis MT, Wang XS. Landscape analysis of adjacent gene rearrangements reveals BCL2L14-ETV6 gene fusions in more aggressive triple-negative breast cancer. Proc Natl Acad Sci U S A 2020; 117:9912-9921. [PMID: 32321829 PMCID: PMC7211963 DOI: 10.1073/pnas.1921333117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 10 to 20% of breast cancer, with chemotherapy as its mainstay of treatment due to lack of well-defined targets, and recent genomic sequencing studies have revealed a paucity of TNBC-specific mutations. Recurrent gene fusions comprise a class of viable genetic targets in solid tumors; however, their role in breast cancer remains underappreciated due to the complexity of genomic rearrangements in this cancer. Our interrogation of the whole-genome sequencing data for 215 breast tumors catalogued 99 recurrent gene fusions, 57% of which are cryptic adjacent gene rearrangements (AGRs). The most frequent AGRs, BCL2L14-ETV6, TTC6-MIPOL1, ESR1-CCDC170, and AKAP8-BRD4, were preferentially found in the more aggressive forms of breast cancers that lack well-defined genetic targets. Among these, BCL2L14-ETV6 was exclusively detected in TNBC, and interrogation of four independent patient cohorts detected BCL2L14-ETV6 in 4.4 to 12.2% of TNBC tumors. Interestingly, these fusion-positive tumors exhibit more aggressive histopathological features, such as gross necrosis and high tumor grade. Amid TNBC subtypes, BCL2L14-ETV6 is most frequently detected in the mesenchymal entity, accounting for ∼19% of these tumors. Ectopic expression of BCL2L14-ETV6 fusions induce distinct expression changes from wild-type ETV6 and enhance cell motility and invasiveness of TNBC and benign breast epithelial cells. Furthermore, BCL2L14-ETV6 fusions prime partial epithelial-mesenchymal transition and endow resistance to paclitaxel treatment. Together, these data reveal AGRs as a class of underexplored genetic aberrations that could be pathological in breast cancer, and identify BCL2L14-ETV6 as a recurrent gene fusion in more aggressive form of TNBC tumors.
Collapse
Affiliation(s)
- Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Yiheng Hu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Suet Kee Loo
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Ying Tan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rohit Bhargava
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Michael T Lewis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232;
- Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
28
|
Babu Varukattu N, Lin W, Vivek R, Rejeeth C, Sabarathinam S, Yao Z, Zhang H. Targeted and Intrinsic Activity of HA-Functionalized PEI-Nanoceria as a Nano Reactor in Potential Triple-Negative Breast Cancer Treatment. ACS APPLIED BIO MATERIALS 2020; 3:186-196. [PMID: 35019435 DOI: 10.1021/acsabm.9b00577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although there has been considerable achievement in the field of breast cancer therapeutics, tackling the disturbing issue of highly potent triple-negative breast cancer (TNBC) still remains a hurdle in cancer therapeutics. Here, for the first time we propose a poly(ethylenimine) (PEI)-mediated approach for the synthesis of hyaluronic acid (HA) tagged cerium oxide nanoparticles (CePEI-NPs) as a therapeutic agent in TNBC. Primarily, the formulated HA-CePEI-NPs upon treatment displayed superior anticancer effect by exhibiting the loss of mitochondrial membrane potential (MMP). These particles acted as a nano reactor by the generation of reactive oxygen species (ROS) during the treatment. We further evaluated the caspase activity which divulgated the activation of caspases-3 and -9 while there was a decrease in the level of Bcl-2. The treatment also resulted in the release of cytochrome c (Cyt c), and in addition, features such as pynknosis and G2/M phase arrest were also noted. Hence the nano reactor property of nano ceria in activating mitochondrial-mediated intrinsic apoptosis highlights its promising role as a nano drug for therapeutic applications in TNBC.
Collapse
Affiliation(s)
- Nipun Babu Varukattu
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041,China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041,China
| | - Raju Vivek
- Bio-nano Therapeutics Research Laboratory, School of Life Sciences, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Chandrababu Rejeeth
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanmugam Sabarathinam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Zhimeng Yao
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, Guangdong 510632, China
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, Guangdong 510632, China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong 515041,China
| |
Collapse
|
29
|
Systems biology analysis identifies molecular determinants of chemotherapy-induced diarrhoea. J Mol Med (Berl) 2019; 98:149-159. [PMID: 31848663 DOI: 10.1007/s00109-019-01864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Chemotherapy-induced diarrhoea (CID) is a common dose-limiting adverse event in patients with cancer. Here, we hypothesise that chemotherapy evokes apoptosis in normal gut epithelium, contributes to CID and that patients with increased risk of CID can be identified using a systems model of BCL-2 protein interactions (DR_MOMP) that calculates the sensitivity of cells to undergo apoptosis. Normal adjacent gut epithelium tissue was collected during resection surgery from a cohort of 35 patients with stage II-III colorectal cancer (CRC) who were subsequently treated with capecitabine, XELOX or FOLFOX. Clinical follow-up, type and grade of adverse events during adjuvant chemotherapy were recorded. The level of five BCL-2 proteins required for the calculation of the DR_MOMP score was quantified together with 62 additional signalling proteins related to apoptotic pathways. Odds ratios for the occurrence of diarrhoea were determined using multinomial logistic regression (MLR). Patients treated with capecitabine who had a DR_MOMP score equal or higher than the mean had a significantly lower frequency of diarrhoea significantly compared to patients below the mean. High DR_MOMP scores indicate high apoptosis resistance. No statistical difference was observed in patients treated with XELOX or FOLFOX. Using MLR, we found that levels of apoptosis-related proteins caspase-8, p53 and XIAP statistically interacted with the DR_MOMP stress dose. Markers of MAPK signalling were prognostic for diarrhoea independently of DR_MOMP. In conclusion, apoptosis sensitivity and MAPK signalling status of the adjacent normal gut epithelium of chemotherapy-naïve patients represent promising biomarkers to identify patients with CRC with increased risk of CID.
Collapse
|
30
|
Salvucci M, Zakaria Z, Carberry S, Tivnan A, Seifert V, Kögel D, Murphy BM, Prehn JHM. System-based approaches as prognostic tools for glioblastoma. BMC Cancer 2019; 19:1092. [PMID: 31718568 PMCID: PMC6852738 DOI: 10.1186/s12885-019-6280-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The evasion of apoptosis is a hallmark of cancer. Understanding this process holistically and overcoming apoptosis resistance is a goal of many research teams in order to develop better treatment options for cancer patients. Efforts are also ongoing to personalize the treatment of patients. Strategies to confirm the therapeutic efficacy of current treatments or indeed to identify potential novel additional options would be extremely beneficial to both clinicians and patients. In the past few years, system medicine approaches have been developed that model the biochemical pathways of apoptosis. These systems tools incorporate and analyse the complex biological networks involved. For their successful integration into clinical practice, it is mandatory to integrate systems approaches with routine clinical and histopathological practice to deliver personalized care for patients. RESULTS We review here the development of system medicine approaches that model apoptosis for the treatment of cancer with a specific emphasis on the aggressive brain cancer, glioblastoma. CONCLUSIONS We discuss the current understanding in the field and present new approaches that highlight the potential of system medicine approaches to influence how glioblastoma is diagnosed and treated in the future.
Collapse
Affiliation(s)
- Manuela Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Zaitun Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Steven Carberry
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Amanda Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Volker Seifert
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Donat Kögel
- Department of Neurosurgery, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - Brona M. Murphy
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Jochen H. M. Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
31
|
Li N, Piao J, Wang X, Kim KY, Bae JY, Ren X, Lin Z. Paip1 Indicated Poor Prognosis in Cervical Cancer and Promoted Cervical Carcinogenesis. Cancer Res Treat 2019; 51:1653-1665. [PMID: 31010277 PMCID: PMC6790838 DOI: 10.4143/crt.2018.544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose This study was aimed to investigate the role of poly(A)-binding protein-interacting protein 1 (Paip1) in cervical carcinogenesis. Materials and Methods The expression of Paip1 in normal cervical epithelial tissues and cervical cancer (CC) tissues were detected by immunohistochemistry. In vivo and in vitro assays were performed to validate effect of Paip1 on CC progression. Results Paip1 was found to be up-regulated in CC, which was linked with shorter survival. Knockdown of Paip1 inhibited cell growth, induced apoptosis and cell cycle arrest in CC cells, whereas its overexpression reversed these effects. The in vivo tumor model confirmed the pro-tumor role of Paip1 in CC growth. Conclusion Altogether, the investigation demonstrated the clinical significance of Paip1 expression, which prompted that the up-regulated of Paip1 can presumably be a potential prognostic and progression marker for CC.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Xinyue Wang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Ki-Yeol Kim
- Brain Korea 21 Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of the Science and Technology, Department of Jilin Province, Yanji, China
| |
Collapse
|
32
|
Zhou Y, Liu H, Xue R, Tang W, Zhang S. BH3 Mimetic ABT-199 Enhances the Sensitivity of Gemcitabine in Pancreatic Cancer in vitro and in vivo. Dig Dis Sci 2018; 63:3367-3375. [PMID: 30155839 DOI: 10.1007/s10620-018-5253-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer is an aggressive malignancy with poor prognosis. Gemcitabine is the standard chemotherapeutic drug used to treat the disease; however, it has a low response rate. Therefore, there is an urgent need to develop new and safe therapies to enhance sensitivity to gemcitabine in treating pancreatic cancer. METHODS The synergistic effect of gemcitabine combined with specific B cell CLL/lymphoma 2 (Bcl-2) inhibitor ABT-199 against pancreatic cancer was tested using cell viability, cell cycle, and apoptosis assays in vitro and in an MIA Paca-2 xenograft model in vivo. Its underlying mechanism was explored using western blotting analysis of Bcl-2 family proteins. RESULTS ABT-199 not only enhanced the effect of gemcitabine on cell growth inhibition but also promoted gemcitabine-induced apoptosis in pancreatic cancer cell lines. Gemcitabine decreased the expression of anti-apoptotic protein Mcl-1 but increased the expression of anti-apoptotic protein Bcl-2. ABT-199 downregulated the gemcitabine-induced production of Bcl-2 and increased the expression of pro-apoptotic protein Bcl-2 interacting protein (BIM). Mouse xenograft experiments also confirmed the synergistic effect of gemcitabine and ABT-199 on tumor growth inhibition and the induction of tumor cell apoptosis. CONCLUSION Our results indicated that ABT-199 improved the anti-tumor effect of gemcitabine on pancreatic cancer by downregulating gemcitabine-induced overexpression of Bcl-2. ABT-199 has already been investigated in phase 3 clinical trials for chronic lymphocytic leukemia; therefore, it may serve as a potential drug to improve the sensitivity of pancreatic cancer to gemcitabine.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Ruyi Xue
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Wenqing Tang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Shuncai Zhang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
33
|
Monroe JD, Millay MH, Patty BG, Smith ME. The curcuminoid, EF-24, reduces cisplatin-mediated reactive oxygen species in zebrafish inner ear auditory and vestibular tissues. J Clin Neurosci 2018; 57:152-156. [PMID: 30243600 DOI: 10.1016/j.jocn.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Cisplatin is a widely used chemotherapy drug that can damage auditory and vestibular tissue and cause hearing and balance loss through the intracellular release of reactive oxygen species (ROS). Curcumin has anticancer efficacy and can also counteract cisplatin's damaging effect against sensory tissue by scavenging intracellular ROS, but curcumin's applicability is limited due to its low bioavailability. EF-24 is a synthetic curcumin analog that is more bioavailable than curcumin and can target cancer, but its effects against cisplatin-mediated ROS in auditory and vestibular tissue is currently unknown. In this study, we employed a novel zebrafish inner ear tissue culture system to determine if EF-24 counteracted cisplatin-mediated ROS release in two sensory endorgans, the saccule and the utricle. The zebrafish saccule is associated with auditory function and the utricle with vestibular function. Trimmed endorgans were placed in tissue culture media with a fluorescent reactive oxygen species indicator dye, and intracellular ROS release was measured using a spectrophotometer. We found that cisplatin treatment significantly increased ROS compared to controls, but that EF-24 treatment did not alter or even decreased ROS. Importantly, when equimolar cisplatin and EF-24 treatments are combined, ROS did not increase compared to controls. This suggests that EF-24 may be able to prevent intracellular ROS caused by cisplatin treatment in inner ear tissue.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, United States
| | - Matthew H Millay
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, United States
| | - Blaine G Patty
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, United States
| | - Michael E Smith
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, United States.
| |
Collapse
|
34
|
Low cleaved caspase-7 levels indicate unfavourable outcome across all breast cancers. J Mol Med (Berl) 2018; 96:1025-1037. [DOI: 10.1007/s00109-018-1675-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
|
35
|
Hantusch A, Rehm M, Brunner T. Counting on Death – Quantitative aspects of Bcl‐2 family regulation. FEBS J 2018; 285:4124-4138. [DOI: 10.1111/febs.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Hantusch
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| | - Markus Rehm
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Systems Medicine Royal College of Surgeons in Ireland Dublin 2 Ireland
- Institute of Cell Biology and Immunology University of Stuttgart Germany
- Stuttgart Research Center Systems Biology University of Stuttgart Germany
| | - Thomas Brunner
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| |
Collapse
|
36
|
Lucantoni F, Düssmann H, Llorente-Folch I, Prehn JHM. BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose. Oncotarget 2018; 9:26046-26063. [PMID: 29899841 PMCID: PMC5995245 DOI: 10.18632/oncotarget.25433] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display differences regarding their engagement of glycolytic vs. mitochondrial oxidative phosphorylation (OXPHOS) pathway. Triple negative breast cancer, an aggressive form of breast cancer, is characterized by elevated glycolysis, while estrogen receptor positive breast cancer cells rely predominantly on OXPHOS. BCL2 proteins control the process of mitochondrial outer membrane permeabilization during apoptosis, but also regulate cellular bioenergetics. Because BCL2 proteins are overexpressed in breast cancer and targetable by selective antagonists, we here analysed the effect of BCL2 and BCL(X)L selective inhibitors, Venetoclax and WEHI-539, on mitochondrial bioenergetics and cell death. Employing single cell imaging using a FRET-based mitochondrial ATP sensor, we found that MCF7 breast cancer cells supplied with mitochondrial substrates reduced their mitochondrial ATP production when treated with Venetoclax or WEHI-539 at concentrations that per se did not induce cell death. Treatments with lower concentrations of both inhibitors also reduced the length of the mitochondrial network and the dynamics, as evaluated by quantitative confocal microscopy. We next tested the hypothesis that mitochondrial ATP production inhibition with BCL2 or BCL(X)L antagonists was synthetically lethal when combined with glycolysis inhibition. Treatment with 2-deoxy-D-glucose in combination with Venetoclax or WEHI-539 synergistically reduced the cellular bioenergetics of ER+ and TNBC breast cancer cells and abolished their clonogenic potential. Synthetic lethality was also observed when cultures were grown in 3D spheres. Our findings demonstrate that BCL2 antagonists exert potent effects on cancer metabolism independent of cell death-inducing effects, and demonstrate a synthetic lethality when these are applied in combination with glycolysis inhibitors.
Collapse
Affiliation(s)
- Federico Lucantoni
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Heiko Düssmann
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Center for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|