1
|
Hossain MT, Hossain MA. Targeting PI3K in cancer treatment: A comprehensive review with insights from clinical outcomes. Eur J Pharmacol 2025; 996:177432. [PMID: 40020984 DOI: 10.1016/j.ejphar.2025.177432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cancer, including cell growth, survival, metabolism, and metastasis. Its major role in tumor growth makes it a key target for cancer therapeutics, offering significant potential to slow tumor progression and enhance patient outcomes. Gain-of-function mutations, gene amplifications, and the loss of regulatory proteins like PTEN are frequently observed in malignancies, contributing to tumor development and resistance to conventional treatments such as chemotherapy and hormone therapy. As a result, PI3K inhibitors have received a lot of interest in cancer research. Several kinds of small-molecule PI3K inhibitors have been developed, including pan-PI3K inhibitors, isoform-specific inhibitors, and dual PI3K/mTOR inhibitors, each targeting a distinct component of the pathway. Some PI3K inhibitors such as idelalisib, copanlisib, duvelisib, alpelisib, and umbralisib have received FDA-approval, and are effective in the treatment of breast cancer and hematologic malignancies. Despite promising results in preclinical and clinical trials, the overall clinical success of PI3K inhibitors has been mixed. While some patients may get substantial advantages, a considerable number of them acquire resistance as a result of feedback activation of alternative pathways, adaptive tumor responses, and treatment-emergent mutations. The resistance mechanisms provide barriers to the sustained efficacy of PI3K-targeted treatments. This study reviews recent advancements in PI3K inhibitors, covering their clinical status, mechanism of action, resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Md Takdir Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
On JL, Ghaderi S, Rittmann C, Hoffmann G, Gier F, Woloschin V, Tu JW, Bhatia S, Kulik A, Niederacher D, Neubauer H, Kurz T, Fehm T, Esser K. Pharmacological Inhibition of MDM2 Induces Apoptosis in p53-Mutated Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1078. [PMID: 39940844 PMCID: PMC11817430 DOI: 10.3390/ijms26031078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast carcinoma subtype lacking efficient therapeutic options. A promising approach in cancer treatment is the pharmacological inhibition of murine double minute 2 (MDM2)-p53 interaction inducing apoptosis in p53 wild-type tumors. However, the role of MDM2 in TNBC with primarily mutant p53 is not well understood. We here selected the clinical-stage MDM2 inhibitors Idasanutlin and Milademetan and investigated their anti-tumoral effects in TNBC. When we analyzed anti-tumor activity in the TNBC cell lines MDA-MB-231, MDA-MB-436, and MDA-MB-468, cellular viability was efficiently reduced, with half maximal inhibitory concentration (IC50) values ranging between 2.00 and 7.62 µM being up to 11-fold lower compared to the well-characterized non-clinical-stage MDM2 inhibitor Nutlin-3a. Furthermore, caspase-3/7 activity was efficiently induced. Importantly, the IC50 values for MDM2 inhibition were equally observed in HCT116 p53+/+ or HCT116 p53-/- cells. Finally, the IC50 was significantly higher in non-malignant MCF-10A cells than in TNBC cells. Taken together, Idasanutlin and Milademetan show a potent anti-tumor activity in TNBC cell culture models by efficiently inducing tumor cell death via apoptosis. This effect was observed despite an inactivating p53 mutation and was apparently independent of p53 expression. Our data suggest that MDM2 is a promising target in TNBC and clinical-stage MDM2 inhibitors should be further evaluated for their potential therapeutic application.
Collapse
Affiliation(s)
- Jasmin Linh On
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Sahel Ghaderi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Carina Rittmann
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Greta Hoffmann
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Franziska Gier
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Vitalij Woloschin
- Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jia-Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Andrea Kulik
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Knud Esser
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany; (J.L.O.)
- Center for Integrated Oncology (CIO), Aachen, Bonn, Cologne, Düsseldorf (ABCD), Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
3
|
Saleh T, Al Shboul S, Awad H, El-Sadoni M, Alhesa A, Alsharaiah E, Abu Shahin N, Alotaibi MR, Battah A, Azab B. Characterization of BCL-X L , MCL-1, and BAX Protein Expression in Response to Neoadjuvant Chemotherapy in Breast Cancer. Appl Immunohistochem Mol Morphol 2024; 32:189-199. [PMID: 38426376 DOI: 10.1097/pai.0000000000001189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
The use of chemotherapy has improved the overall treatment of breast cancer, which is frequently administered in the form of neoadjuvant chemotherapy (NAC). Apoptosis is an established cell stress response to NAC in preclinical models; however, there is limited understanding of its role in clinical cancer, specifically, its contribution to favorable pathologic responses in breast cancer therapy. Here, we aimed to characterize the change in protein expression of 3 apoptosis-associated biomarkers, namely, BCL-X L , MCL-1, and BAX in breast cancer in response to NAC. For this, we utilized a set of 68 matched invasive breast cancer FFPE samples that were collected before (pre) and after (post) the exposure to NAC therapy that were characterized by incomplete pathologic response. Immunohistochemistry (IHC) analysis suggested that most of the samples show a decrease in the protein expression of all 3 markers following exposure to NAC as 90%, 69%, and 76% of the matched samples exhibited a decrease in expression for BCL-X L , MCL-1, and BAX, respectively. The median H-score of BCL-X L post-NAC was 150/300 compared with 225/300 pre-NAC ( P value <0.0001). The median H-score of MCL-1 declined from 200 pre-NAC to 160 post-NAC ( P value <0.0001). The median H-score of BAX protein expression decreased from 260 pre-NAC to 190 post-NAC ( P value <0.0001). There was no statistically significant association between the expression of these markers and stage, grade, and hormone receptor profiling (luminal status). Collectively, our data indicate that the expression of apoptosis regulatory proteins changes following exposure to NAC in breast cancer tissue, developing a partial pathologic response.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa
| | - Heyam Awad
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
| | - Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
| | - Elham Alsharaiah
- Department of Pathology, King Hussein Medical Center, Royal Medical Service, Amman, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - AbdelKader Battah
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan
- Division of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ
| |
Collapse
|
4
|
Mei W, Mei B, Chang J, Liu Y, Zhou Y, Zhu N, Hu M. Role and regulation of FOXO3a: new insights into breast cancer therapy. Front Pharmacol 2024; 15:1346745. [PMID: 38505423 PMCID: PMC10949727 DOI: 10.3389/fphar.2024.1346745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer is the most common malignancy in the world, particularly affecting female cancer patients. Enhancing the therapeutic strategies for breast cancer necessitates identifying molecular drug targets that effectively eliminate tumor cells. One of these prominent targets is the forkhead and O3a class (FOXO3a), a member of the forkhead transcription factor subfamily. FOXO3a plays a pivotal role in various cellular processes, including apoptosis, proliferation, cell cycle regulation, and drug resistance. It acts as a tumor suppressor in multiple cancer types, although its specific role in cancer remains unclear. Moreover, FOXO3a shows promise as a potential marker for tumor diagnosis and prognosis in breast cancer patients. In addition, it is actively influenced by common anti-breast cancer drugs like paclitaxel, simvastatin, and gefitinib. In breast cancer, the regulation of FOXO3a involves intricate networks, encompassing post-translational modification post-translational regulation by non-coding RNA (ncRNA) and protein-protein interaction. The specific mechanism of FOXO3a in breast cancer urgently requires further investigation. This review aims to systematically elucidate the role of FOXO3a in breast cancer. Additionally, it reviews the interaction of FOXO3a and its upstream and downstream signaling pathway-related molecules to uncover potential therapeutic drugs and related regulatory factors for breast cancer treatment by regulating FOXO3a.
Collapse
Affiliation(s)
- Wenqiu Mei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Bingyin Mei
- Department of Neurology, Ezhou Central Hospital, Ezhou, China
| | - Jing Chang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Abbasi Dezfouli S, Rajendran AP, Claerhout J, Uludag H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023; 13:1559. [PMID: 37892241 PMCID: PMC10605068 DOI: 10.3390/biom13101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In 2020, breast cancer became the most diagnosed cancer worldwide. Conventional chemotherapies have major side effects due to their non-specific activities. Alternatively, short interfering RNA(siRNA)-carrying nanoparticles (NPs) have a high potential to overcome this non-specificity. Lipid-substituted polyethyleneimine (PEI) polymers (lipopolymers) have been reported as efficient non-viral carriers of siRNA. This study aims to engineer novel siRNA/lipopolymer nanocomplexes by incorporating anionic additives to obtain gene silencing through siRNA activity with minimal nonspecific toxicity. We first optimized our polyplexes in GFP+ MDA-MB-231 cells to effectively silence the GFP gene. Inclusion of phosphate buffer with pH 8.0 as complex preparation media and N-Lauroylsarcosine Sodium Salt as additive, achieved ~80% silencing with the least amount of undesired cytotoxicity, which was persistent for at least 6 days. The survivin gene was then selected as a target in MDA-MB-231 cells since there is no strong drug (i.e., small organic molecule) for inhibition of its oncogenic activity. The qRT-PCR, flow cytometry analysis and MTT assay revealed >80% silencing, ~95% cell uptake and >70% cell killing by the same formulation. We conclude that our lipopolymer can be further investigated as a lead non-viral carrier for breast cancer gene therapy.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Amarnath P. Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Jillian Claerhout
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2V2, Canada;
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada;
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2V2, Canada
| |
Collapse
|
6
|
de Paula B, Kieran R, Koh SSY, Crocamo S, Abdelhay E, Muñoz-Espín D. Targeting Senescence as a Therapeutic Opportunity for Triple-Negative Breast Cancer. Mol Cancer Ther 2023; 22:583-598. [PMID: 36752780 PMCID: PMC10157365 DOI: 10.1158/1535-7163.mct-22-0643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Triple-negative breast cancer (TNBC) is associated with an elevated risk of recurrence and poor prognosis. Historically, only chemotherapy was available as systemic treatment, but immunotherapy and targeted therapies currently offer prolonged benefits. TNBC is a group of diseases with heterogeneous treatment sensitivity, and resistance is inevitable and early for a large proportion of the intrinsic subtypes. Although senescence induction by anticancer therapy offers an immediate favorable clinical outcome once the rate of tumor progression reduces, these cells are commonly dysfunctional and metabolically active, culminating in treatment-resistant repopulation associated with worse prognosis. This heterogeneous response can also occur without therapeutic pressure in response to damage or oncogenic stress, playing a relevant role in the carcinogenesis. Remarkably, there is preclinical and exploratory clinical evidence to support a relevant role of senescence in treatment resistance. Therefore, targeting senescent cells has been a scientific effort in many malignant tumors using a variety of targets and strategies, including increasing proapoptotic and decreasing antiapoptotic stimuli. Despite promising results, there are some challenges to applying this technology, including the best schedule of combination, assessment of senescence, specific vulnerabilities, and the best clinical scenarios. This review provides an overview of senescence in TNBC with a focus on future-proofing senotherapy strategies.
Collapse
Affiliation(s)
- Bruno de Paula
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | - Rosalind Kieran
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Samantha Shui Yuan Koh
- Department of Medicine, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| | - Susanne Crocamo
- Breast Cancer Research Unit, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | - Daniel Muñoz-Espín
- Early Cancer Institute, Department of Oncology, Cambridge University Hospitals Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
7
|
Huang K, Yao H, Yan M, Zhang H, Yuan G, Wang Q, Xue J, Li J, Chen J. A MCL-1-targeted photosensitizer to combat triple-negative breast cancer with enhanced photodynamic efficacy, sensitization to ROS-induced damage, and immune response. J Inorg Biochem 2022; 237:111997. [PMID: 36137402 DOI: 10.1016/j.jinorgbio.2022.111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023]
Abstract
As growth factor receptor-2 (HER-2), progesterone receptor (PR) and estrogen receptor (ER) are scarce in triple-negative breast cancer (TNBC), it is a great challenge to combat TNBC with high tumor specificity and therapeutic efficacy. Most traditional treatments including surgical resection, chemotherapy, and radiotherapy would more or less cause serious side effects and drug resistance. Photodynamic therapy (PDT) has huge potential in the treatment of TNBC for minimal invasiveness, low toxicity, less drug resistance and high spatiotemporal selectivity. Inspired by the advantages of small-molecule-targeted PDT and the sensitization effect of myeloid cell leukemia-1 (MCL-1) inhibitor, a novel photosensitizer BC-Pc was designed by conjugating MCL-1 inhibitor with zinc phthalocyanines. Owning to 3-chloro-6-methyl-1-benzothiophene-2-carboxylic acid (BC) moiety, BC-Pc exhibits the high affinity towards MCL-1 and reduce its self-aggregation in TNBC cells. Therefore, MCL-1 targeted BC-Pc showed remarkable intracellular fluorescence and ROS generation in TNBC cells. Additionally, BC-Pc can selectively sensitize TNBC cells to ROS-induced damage, resulting in improved therapeutic effect to TNBC cells and negligible toxicity to normal cells. More importantly, BC-Pc can effectively inhibit the migration and invasion of TNBC cells, and enhance immune response, all of which will be beneficial to eradicate TNBC. To the best of our knowledge, BC-Pc is the novel MCL-targeted photosensitizer, which owns the amplified ROS-induced lethality and anticancer immune response for TNBC. Overall, our study provides a promising strategy to achieve targeting and highly efficient therapy of TNBC.
Collapse
Affiliation(s)
- Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Huiqiao Yao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Meiqi Yan
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Han Zhang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Gankun Yuan
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Qilu Wang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinyu Li
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, Fujian, China.
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
8
|
McNamara MC, Hosios AM, Torrence ME, Zhao T, Fraser C, Wilkinson M, Kwiatkowski DJ, Henske EP, Wu CL, Sarosiek KA, Valvezan AJ, Manning BD. Reciprocal effects of mTOR inhibitors on pro-survival proteins dictate therapeutic responses in tuberous sclerosis complex. iScience 2022; 25:105458. [PMID: 36388985 PMCID: PMC9663903 DOI: 10.1016/j.isci.2022.105458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
Collapse
Affiliation(s)
- Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron M. Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Ting Zhao
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Meghan Wilkinson
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kristopher A. Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Improved delivery of Mcl-1 and survivin siRNA combination in breast cancer cells with additive siRNA complexes. Invest New Drugs 2022; 40:962-976. [PMID: 35834040 DOI: 10.1007/s10637-022-01282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the influence of commercial transfection reagents (Prime-Fect, Leu-Fect A, and Leu-Fect C) complexed with different siRNAs (CDC20, HSP90, Mcl-1 and Survivin) in MDA-MB-436 breast cancer cells and the impact of incorporating an anionic additive, Trans-Booster, into siRNA formulations for improving in vitro gene silencing and delivery efficiency. Gene silencing was quantitatively analyzed by real-time RT-PCR while cell proliferation and siRNA uptake were evaluated by the MTT assay and flow cytometry, respectively. Amongst the investigated siRNAs and transfection reagents, Mcl-1/Prime-Fect complexes showed the highest inhibition of cell viability and the most effective siRNA delivery. The effect of various formulations on transfection efficiency showed that the additive with 1:1 ratio with siRNA was optimal achieving the lowest cell viability compared to untreated cells and negative control siRNA treatment (p < 0.05). Furthermore, the combination of Mcl-1 and survivin siRNA suppressed the growth of MDA-MB-436 cells more effectively than treatment with the single siRNAs and resulted in cell viability as low as ~ 20% (vs. non-treated cells). This aligned well with the induction of apoptosis as analyzed by flow cytometry, which revealed higher apoptotic cells with the combination treatment group. We conclude that commercial transfection reagents formulated with Mcl-1/Survivin siRNA combination could serve as a potent anti-proliferation agent in the treatment of breast cancers.
Collapse
|
10
|
Ni Z, Xu S, Yu Z, Ye Z, Li R, Chen C, Yang J, Liu H, Zhou Z, Zhang X. Comparison of dual mTORC1/2 inhibitor AZD8055 and mTORC1 inhibitor rapamycin on the metabolism of breast cancer cells using proton nuclear magnetic resonance spectroscopy metabolomics. Invest New Drugs 2022; 40:1206-1215. [PMID: 36063263 DOI: 10.1007/s10637-022-01268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Dual mTORC1/2 inhibitors may be more effective than mTORC1 inhibitor rapamycin. Nevertheless, their metabolic effects on breast cancer cells have not been reported. We compared the anti-proliferative capacity of rapamycin and a novel mTORC1/2 dual inhibitor (AZD8055) in two breast cancer cell lines (MDA-MB-231 and MDA-MB-453) and analyzed their metabolic effects using proton nuclear magnetic resonance (1H NMR) spectroscopy-based metabolomics. We found that AZD8055 more strongly inhibited breast cancer cell proliferation than rapamycin. The half-inhibitory concentration of AZD8055 in breast cancer cells was almost one-tenth that of rapamycin. We identified 22 and 23 metabolites from the 1H NMR spectra of MDA-MB-231 and MDA-MB-453 cells. The patterns of AZD8055- and rapamycin-treated breast cancer cells differed significantly; we then selected the metabolites that contributed to these differences. For inhibiting glycolysis and reducing glucose consumption, AZD8055 was likely to be more potent than rapamycin. For amino acids metabolism, although AZD8055 has a broad effect as rapamycin, their effects in degrees were not exactly the same. AZD8055 and rapamycin displayed cell-specific metabolic effects on breast cancer cells, a finding that deserves further study. These findings help fill the knowledge gap concerning dual mTORC1/2 inhibitors and provide a theoretical basis for their development.
Collapse
Affiliation(s)
- Zhitao Ni
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shaolin Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheng Yu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongjiang Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongqi Li
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chuang Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huamin Liu
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziye Zhou
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiuhua Zhang
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Hu QG, Yang Z, Chen JW, Kazobinka G, Tian L, Li WC. MiR-183-5p-PNPT1 Axis Enhances Cisplatin-induced Apoptosis in Bladder Cancer Cells. Curr Med Sci 2022; 42:785-796. [PMID: 35788944 DOI: 10.1007/s11596-022-2580-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE It has been reported that intrinsic apoptosis is associated with the progression of bladder cancer (BC). Recent evidence suggests that polyribonucleotide nucleotidyltransferase 1 (PNPT1) is a pivotal mediator involved in RNA decay and cell apoptosis. However, the regulation and roles of PNPT1 in bladder cancer remain largely unclear. METHODS The upstream miRNA regulators were predicted by in silico analysis. The expression levels of PNPT1 were evaluated by real-time PCR, Western blotting, and immunohistochemistry (IHC), while miR-183-5p levels were evaluated by qPCR in BC cell lines and tissues. In vitro and in vivo assays were performed to investigate the function of miR-183-5p and PNPT1 in apoptotic RNA decay and the tumorigenic capability of bladder cancer cells. RESULTS PNPT1 expression was decreased in BC tissues and cell lines. Overexpression of PNPT1 significantly promoted cisplatin-induced intrinsic apoptosis of BC cells, whereas depletion of PNPT1 potently alleviated these effects. Moreover, oncogenic miR-183-5p directly targeted the 3' UTR of PNPT1 and reversed the tumor suppressive role of PNPT1. Intriguingly, miR-183-5p modulated not only PNPT1 but also Bcl2 modifying factor (BMF) to inhibit the mitochondrial outer membrane permeabilization (MOMP) in BC cells. CONCLUSION Our results provide new insight into the mechanisms underlying intrinsic apoptosis in BC, suggesting that the miR-183-5p-PNPT1 regulatory axis regulates the apoptosis of BC cells and might represent a potential therapeutic avenue for the treatment of BC.
Collapse
Affiliation(s)
- Qing-Gang Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Yang
- Department of Urology, Luoshan County People's Hospital, Xinyang, 464000, China
| | - Jia-Wei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gallina Kazobinka
- Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, 378, Burundi
| | - Liang Tian
- Department of Urology, Wuhan Red Cross Hospital, Wuhan, 430015, China.
| | - Wen-Cheng Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Pesch AM, Chandler BC, Michmerhuizen AR, Carter HM, Hirsh NH, Wilder-Romans K, Liu M, Ward T, Ritter CL, Nino CA, Jungles KM, Pierce LJ, Rae JM, Speers CW. Bcl-xL inhibition radiosensitizes PIK3CA/PTEN wild-type triple negative breast cancers with low Mcl-1 expression. CANCER RESEARCH COMMUNICATIONS 2022; 2:679-693. [PMID: 36381235 PMCID: PMC9648413 DOI: 10.1158/2767-9764.crc-22-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 04/18/2023]
Abstract
Patients with radioresistant breast cancers, including a large percentage of women with triple negative breast cancer (TNBC), demonstrate limited response to radiation (RT) and increased locoregional recurrence; thus, strategies to increase the efficacy of RT in TNBC are critically needed. We demonstrate that pan Bcl-2 family inhibition (ABT-263, rER: 1.52-1.56) or Bcl-xL specific inhibition (WEHI-539, A-1331852; rER: 1.31-2.00) radiosensitized wild-type PIK3CA/PTEN TNBC (MDA-MB-231, CAL-120) but failed to radiosensitize mutant PIK3CA/PTEN TNBC (rER: 0.90 - 1.07; MDA-MB-468, CAL-51, SUM-159). Specific inhibition of Bcl-2 or Mcl-1 did not induce radiosensitization, regardless of PIK3CA/PTEN status (rER: 0.95 - 1.07). In wild-type PIK3CA/PTEN TNBC, pan Bcl-2 family inhibition or Bcl-xL specific inhibition with RT led to increased levels of apoptosis (p < 0.001) and an increase in cleaved PARP and cleaved caspase 3. CRISPR-mediated PTEN knockout in wild-type PIK3CA/PTEN MDA-MB-231 and CAL-120 cells induced expression of pAKT/Akt and Mcl-1 and abolished Bcl-xL inhibitor-mediated radiosensitization (rER: 0.94 - 1.07). Similarly, Mcl-1 overexpression abolished radiosensitization in MDA-MB-231 and CAL-120 cells (rER: 1.02 - 1.04) but transient MCL1 knockdown in CAL-51 cells promoted Bcl-xL-inhibitor mediated radiosensitization (rER 2.35 ± 0.05). In vivo, ABT-263 or A-1331852 in combination with RT decreased tumor growth and increased tumor tripling time (p < 0.0001) in PIK3CA/PTEN wild-type TNBC cell line and patient-derived xenografts. Collectively, this study provides the preclinical rationale for early phase clinical trials testing the safety, tolerability, and efficacy of Bcl-xL inhibition and RT in women with wild-type PIK3CA/PTEN wild-type TNBC at high risk for recurrence.
Collapse
Affiliation(s)
- Andrea M. Pesch
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Benjamin C. Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Anna R. Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Hannah M. Carter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Nicole H. Hirsh
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tanner Ward
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Cassandra L. Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Charles A. Nino
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Kassidy M. Jungles
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - James M. Rae
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
13
|
Lou J, Lv JX, Zhang YP, Liu ZJ. OSI-027 inhibits the tumorigenesis of colon cancer through mediation of c-Myc/FOXO3a/PUMA axis. Cell Biol Int 2022; 46:1204-1214. [PMID: 35293663 DOI: 10.1002/cbin.11792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/16/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Colon cancer is a gastrointestinal malignancy which is one of the leading causes of tumor-associated deaths. It has been reported that mTOR can lead to the progression of colon cancer. However, the mechanism by which mTOR inhibitor (OSI-027) mediates the tumorigenesis of colon cancer remains largely unknown. Cell function of colon cancer was investigated by CCK-8 flow cytometry and TUNEL staining. In addition, qRT-PCR and western blot were used to investigate the mechanism underlying the function of OSI-027 in colon cancer. OSI-027 dose-dependently reduced colon cancer cell viability through inducing the cell apoptosis. In addition, OSI-027 induced the apoptosis of colon cancer cells via upregulation of PUMA. OSI-027 promoted the expression of PUMA by activation of FOXO3a, and c-Myc knockdown partially increased FOXO3a and PUMA level. Moreover, OSI-027 attenuated the tumor growth of colon cancer through mediation of mTOR/c-Myc/FOXO3a axis. OSI-027 attenuates colon cancer progression through mediation of c-Myc/FOXO3a/PUMA axis. Thereby, this research might shed new insights on exploring the strategies against colon cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Lou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - Jian-Xin Lv
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - You-Ping Zhang
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang Province, China
| | - Zhan-Ju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
14
|
Zhang B, Yan YY, Gu YQ, Teng F, Lin X, Zhou XL, Che JX, Dong XW, Zhou LX, Lin NM. Inhibition of TRIM32 by ibr-7 treatment sensitizes pancreatic cancer cells to gemcitabine via mTOR/p70S6K pathway. J Cell Mol Med 2021; 26:515-526. [PMID: 34921503 PMCID: PMC8743670 DOI: 10.1111/jcmm.17109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most notorious diseases for being asymptomatic at early stage and high mortality rate thereafter. However, either chemotherapy or targeted therapy has rarely achieved success in recent clinical trials for pancreatic cancer. Novel therapeutic regimens or agents are urgently in need. Ibr‐7 is a novel derivative of ibrutinib, displaying superior antitumour activity in pancreatic cancer cells than ibrutinib. In vitro studies showed that ibr‐7 greatly inhibited the proliferation of BxPC‐3, SW1990, CFPAC‐1 and AsPC‐1 cells via the induction of mitochondrial‐mediated apoptosis and substantial suppression of mTOR/p70S6K pathway. Moreover, ibr‐7 was able to sensitize pancreatic cancer cells to gemcitabine through the efficient repression of TRIM32, which was positively correlated with the proliferation and invasiveness of pancreatic cancer cells. Additionally, knockdown of TRIM32 diminished mTOR/p70S6K activity in pancreatic cancer cells, indicating a positive feedback loop between TRIM32 and mTOR/p70S6K pathway. To conclude, this work preliminarily explored the role of TRIM32 in the malignant properties of pancreatic cancer cells and evaluated the possibility of targeting TRIM32 to enhance effectiveness of gemcitabine, thereby providing a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bo Zhang
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - You-You Yan
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang-Qin Gu
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Teng
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu Lin
- Department of Thoracic Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Lu Zhou
- Hangzhou Hezheng Pharmaceutical Co. Ltd, Hangzhou, Zhejiang, China
| | - Jin-Xin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Wu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Li-Xin Zhou
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neng-Ming Lin
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Abbas HA, Mohanty V, Wang R, Huang Y, Liang S, Wang F, Zhang J, Qiu Y, Hu CW, Qutub AA, Dail M, Bolen CR, Daver N, Konopleva M, Futreal A, Chen K, Wang L, Kornblau SM. Decoupling Lineage-Associated Genes in Acute Myeloid Leukemia Reveals Inflammatory and Metabolic Signatures Associated With Outcomes. Front Oncol 2021; 11:705627. [PMID: 34422660 PMCID: PMC8372368 DOI: 10.3389/fonc.2021.705627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with variable responses to therapy. Cytogenetic and genomic features are used to classify AML patients into prognostic and treatment groups. However, these molecular characteristics harbor significant patient-to-patient variability and do not fully account for AML heterogeneity. RNA-based classifications have also been applied in AML as an alternative approach, but transcriptomic grouping is strongly associated with AML morphologic lineages. We used a training cohort of newly diagnosed AML patients and conducted unsupervised RNA-based classification after excluding lineage-associated genes. We identified three AML patient groups that have distinct biological pathways associated with outcomes. Enrichment of inflammatory pathways and downregulation of HOX pathways were associated with improved outcomes, and this was validated in 2 independent cohorts. We also identified a group of AML patients who harbored high metabolic and mTOR pathway activity, and this was associated with worse clinical outcomes. Using a comprehensive reverse phase protein array, we identified higher mTOR protein expression in the highly metabolic group. We also identified a positive correlation between degree of resistance to venetoclax and mTOR activation in myeloid and lymphoid cell lines. Our approach of integrating RNA, protein, and genomic data uncovered lineage-independent AML patient groups that share biologic mechanisms and can inform outcomes independent of commonly used clinical and demographic variables; these groups could be used to guide therapeutic strategies.
Collapse
Affiliation(s)
- Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuefan Huang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Biostatistics & Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Computer Science, Rice University, Houston, TX, United States
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yihua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chenyue W Hu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amina A Qutub
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Monique Dail
- Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, United States
| | - Christopher R Bolen
- Oncology Bioinformatics, Genentech Inc, South San Francisco, CA, United States
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Daniels VW, Zoeller JJ, van Gastel N, McQueeney KE, Parvin S, Potter DS, Fell GG, Ferreira VG, Yilma B, Gupta R, Spetz J, Bhola PD, Endress JE, Harris IS, Carrilho E, Sarosiek KA, Scadden DT, Brugge JS, Letai A. Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Sci Signal 2021; 14:14/686/eabc7405. [PMID: 34103421 DOI: 10.1126/scisignal.abc7405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.
Collapse
Affiliation(s)
- Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Jason J Zoeller
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nick van Gastel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kelley E McQueeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Danielle S Potter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Geoffrey G Fell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vinícius G Ferreira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rajat Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan Spetz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Patrick D Bhola
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Isaac S Harris
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.,Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13568-250, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas, SP 13083-970, Brazil
| | - Kristopher A Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joan S Brugge
- Ludwig Center at Harvard, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Ludwig Center at Harvard, Boston, MA 02215, USA
| |
Collapse
|
18
|
Castel P, Toska E, Engelman JA, Scaltriti M. The present and future of PI3K inhibitors for cancer therapy. NATURE CANCER 2021; 2:587-597. [PMID: 35118422 PMCID: PMC8809509 DOI: 10.1038/s43018-021-00218-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Phosphoinositide-3- kinase (PI3K) signaling regulates cellular proliferation, survival and metabolism, and its aberrant activation is one of the most frequent oncogenic events across human cancers. In the last few decades, research focused on the development of PI3K inhibitors, from preclinical tool compounds to the highly specific medicines approved to treat patients with cancer. Herein we discuss current paradigms for PI3K inhibitors in cancer therapy, focusing on clinical data and mechanisms of action. We also discuss current limitations in the use of PI3K inhibitors including toxicities and mechanisms of resistance, with specific emphasis on approaches aimed to improve their efficacy.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
19
|
Saoudaoui S, Bernard M, Cardin GB, Malaquin N, Christopoulos A, Rodier F. mTOR as a senescence manipulation target: A forked road. Adv Cancer Res 2021; 150:335-363. [PMID: 33858600 DOI: 10.1016/bs.acr.2021.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence, cancer and aging are highly interconnected. Among many important molecular machines that lie at the intersection of this triad, the mechanistic (formerly mammalian) target of rapamycin (mTOR) is a central regulator of cell metabolism, proliferation, and survival. The mTOR signaling cascade is essential to maintain cellular homeostasis in normal biological processes or in response to stress, and its dysregulation is implicated in the progression of many disorders, including age-associated diseases. Accordingly, the pharmacological implications of mTOR inhibition using rapamycin or others rapalogs span the treatment of various human diseases from immune disorders to cancer. Importantly, rapamycin is one of the only known pan-species drugs that can extend lifespan. The molecular and cellular mechanisms explaining the phenotypic consequences of mTOR are vast and heavily studied. In this review, we will focus on the potential role of mTOR in the context of cellular senescence, a tumor suppressor mechanism and a pillar of aging. We will explore the link between senescence, autophagy and mTOR and discuss the opportunities to exploit senescence-associated mTOR functions to manipulate senescence phenotypes in age-associated diseases and cancer treatment.
Collapse
Affiliation(s)
- Sarah Saoudaoui
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Monique Bernard
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada
| | - Apostolos Christopoulos
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Otolaryngology-Head and Neck Surgery Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada; Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médicine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
20
|
It's time to die: BH3 mimetics in solid tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118987. [PMID: 33600840 DOI: 10.1016/j.bbamcr.2021.118987] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
The removal of cells by apoptosis is an essential process regulating tissue homeostasis. Cancer cells acquire the ability to circumvent apoptosis and survive in an unphysiological tissue context. Thereby, the Bcl-2 protein family plays a key role in the initiation of apoptosis, and overexpression of the anti-apoptotic Bcl-2 proteins is one of the molecular mechanisms protecting cancer cells from apoptosis. Recently, small molecules targeting the anti-apoptotic Bcl-2 family proteins have been identified, and with venetoclax the first of these BH3 mimetics has been approved for the treatment of leukemia. In solid tumors the anti-apoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL are frequently overexpressed or genetically amplified. In this review, we summarize the role of Mcl-1 and Bcl-xL in solid tumors and compare the different BH3 mimetics targeting Mcl-1 or Bcl-xL.
Collapse
|
21
|
Ruibin J, Bo J, Danying W, Jianguo F, Linhui G. Cardamonin induces G2/M phase arrest and apoptosis through inhibition of NF-κB and mTOR pathways in ovarian cancer. Aging (Albany NY) 2020; 12:25730-25743. [PMID: 33234722 PMCID: PMC7803546 DOI: 10.18632/aging.104184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Cardamonin, a natural chalcone, is reported to induce apoptosis and inhibit cancer cell growth. However, the mechanisms underlying the therapeutic effects of cardamonin remain to be established. Here, we have focused on cardamonin-induced apoptosis in ovarian cancer cells, both in vitro and in vivo. The effects of cardamonin on cell cycle patterns and apoptotic responses of cells were assessed in this study. Western blot was employed to determine the effects of cardamonin on expression of cell cycle- and apoptosis-related proteins. Our results indicate that cardamonin suppresses cancer cell growth by inducing G2/M phase arrest and apoptosis through targeted inhibition of NF-κB and mTOR pathways. The collective findings provide novel insights into the pathways responsible for the anticancer effects of cardamonin and support its potential utility as a clinical therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Jiang Ruibin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jin Bo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Wan Danying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Feng Jianguo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Gu Linhui
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
22
|
Vivo-Llorca G, Candela-Noguera V, Alfonso M, García-Fernández A, Orzáez M, Sancenón F, Martínez-Máñez R. MUC1 Aptamer-Capped Mesoporous Silica Nanoparticles for Navitoclax Resistance Overcoming in Triple-Negative Breast Cancer. Chemistry 2020; 26:16318-16327. [PMID: 32735063 DOI: 10.1002/chem.202001579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. In the last years, navitoclax has emerged as a possible treatment for TNBC. Nevertheless, rapid navitoclax resistance onset has been observed thorough Mcl-1 overexpression. As a strategy to overcome Mcl-1-mediated resistance, herein we present a controlled drug co-delivery system based on mesoporous silica nanoparticles (MSNs) targeted to TNBC cells. The nanocarrier is loaded with navitoclax and the Mcl-1 inhibitor S63845 and capped with a MUC1-targeting aptamer (apMUC1-MSNs(Nav/S63845)). The apMUC1-capped nanoparticles effectively target TNBC cell lines and successfully induce apoptosis, overcoming navitoclax resistance. Moreover, navitoclax encapsulation protects platelets against apoptosis. These results point apMUC1-gated MSNs as suitable BH3 mimetics nanocarriers in the targeted treatment of MUC1-expressing TNBC.
Collapse
Affiliation(s)
- Gema Vivo-Llorca
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València y, Centro de, Investigación Príncipe Felipe, València, Spain
| | - Vicente Candela-Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València y, Centro de, Investigación Príncipe Felipe, València, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València y, Centro de, Investigación Príncipe Felipe, València, Spain.,Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, Valencia, 46012, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València y, Centro de, Investigación Príncipe Felipe, València, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular, y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, València, Spain.,Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.,Unidad Mixta UPV-CIPF de Investigación en Mecanismos de, Enfermedades y Nanomedicina, Universitat Politècnica de València y, Centro de, Investigación Príncipe Felipe, València, Spain
| |
Collapse
|
23
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
24
|
Zhang B, Wang L, Zhang Q, Yan Y, Jiang H, Hu R, Zhou X, Liu X, Feng J, Lin N. The Ibr-7 derivative of ibrutinib exhibits enhanced cytotoxicity against non-small cell lung cancer cells via targeting of mTORC1/S6 signaling. Mol Oncol 2019; 13:946-958. [PMID: 30663221 PMCID: PMC6441926 DOI: 10.1002/1878-0261.12454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib is a small molecule drug that targets Bruton's tyrosine kinase in B-cell malignancies and is highly efficient at killing mantle cell lymphoma and chronic lymphocytic leukemia. However, the anti-cancer activity of ibrutinib against solid tumors, such as non-small cell lung cancer (NSCLC), remains low. To improve the cytotoxicity of ibrutinib towards lung cancer, we synthesized a series of ibrutinib derivatives, of which Ibr-7 exhibited superior anti-cancer activity to ibrutinib, especially against epithelial growth factor receptor (EGFR) wild-type NSCLC cell lines. Ibr-7 was observed to dramatically suppress the mammalian target of Rapamycin complex 1 (mTORC1)/S6 signaling pathway, which is only slightly affected by ibrutinib, thus accounting for the superior anti-cancer activity of Ibr-7 towards NSCLC. Ibr-7 was shown to overcome the elevation of Mcl-1 caused by ABT-199 mono-treatment, and thus exhibited a significant synergistic effect when combined with ABT-199. In conclusion, we used a molecular substitution method to generate a novel ibrutinib derivative, termed Ibr-7, which exhibits enhanced anti-cancer activity against NSCLC cells as compared with the parental compound.
Collapse
Affiliation(s)
- Bo Zhang
- Translational Medicine Research CenterAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Affiliated Hangzhou First People's HospitalZhejiang Chinese Medical UniversityHangzhouChina
| | - Linling Wang
- Translational Medicine Research CenterAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Affiliated Hangzhou First People's HospitalZhejiang Chinese Medical UniversityHangzhouChina
- Shaoxing Hospital of Traditional Chinese MedicineShaoxingChina
| | - Qi Zhang
- Translational Medicine Research CenterAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Youyou Yan
- Translational Medicine Research CenterAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Affiliated Hangzhou First People's HospitalZhejiang Chinese Medical UniversityHangzhouChina
| | - Hong Jiang
- Department of Thoracic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Runlei Hu
- Department of Thoracic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | | | | | - Jianguo Feng
- Cancer Research InstituteZhejiang Cancer HospitalHangzhouChina
| | - Nengming Lin
- Translational Medicine Research CenterAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Affiliated Hangzhou First People's HospitalZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
25
|
García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci 2018; 19:E3950. [PMID: 30544835 PMCID: PMC6321604 DOI: 10.3390/ijms19123950] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, REDISSEC, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Elisabet Pérez-Ruiz
- Oncology Department, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Research Unit, REDISSEC, Hospital Costa del Sol, Universidad de Málaga, Autovía A-7 km 187, 29603 Marbella, Málaga, Spain.
| |
Collapse
|