1
|
Nemčovičová I, Lopušná K, Štibrániová I, Benedetti F, Berti F, Felluga F, Drioli S, Vidali M, Katrlík J, Pažitná L, Holazová A, Blahutová J, Lenhartová S, Sláviková M, Klempa B, Ondrejovič M, Chmelová D, Legerská B, Miertuš S, Klacsová M, Uhríková D, Kerti L, Frecer V. Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J Enzyme Inhib Med Chem 2024; 39:2301772. [PMID: 38221792 PMCID: PMC10791089 DOI: 10.1080/14756366.2024.2301772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.
Collapse
Affiliation(s)
- Ivana Nemčovičová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Lopušná
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alena Holazová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Blahutová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simona Lenhartová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
- ICARST n.o, Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lukáš Kerti
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Maddaloni M, Farra R, Dapas B, Felluga F, Benedetti F, Berti F, Drioli S, Vidali M, Cemazar M, Kamensek U, Brancolini C, Murano E, Maremonti F, Grassi M, Biasin A, Rizzolio F, Cavarzerani E, Scaggiante B, Bulla R, Balduit A, Ricci G, Zito G, Romano F, Bonin S, Azzalini E, Baj G, Tierno D, Grassi G. In Vitro and In Vivo Evaluation of the Effects of Drug 2c and Derivatives on Ovarian Cancer Cells. Pharmaceutics 2024; 16:664. [PMID: 38794326 PMCID: PMC11125437 DOI: 10.3390/pharmaceutics16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION Our data strongly support the potential therapeutic value of 2c/derivatives in OC.
Collapse
Affiliation(s)
- Marianna Maddaloni
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Fabio Benedetti
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Mattia Vidali
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (F.F.); (F.B.); (F.B.); (S.D.); (M.V.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (M.C.); (U.K.)
| | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy;
| | | | - Francesca Maremonti
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127 Trieste, Italy; (M.G.); (A.B.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127 Trieste, Italy; (M.G.); (A.B.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy;
| | - Enrico Cavarzerani
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (G.B.)
| | - Andrea Balduit
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (A.B.); (G.R.); (G.Z.); (F.R.)
| | - Serena Bonin
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Eros Azzalini
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (R.B.); (G.B.)
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, 34149 Trieste, Italy; (M.M.); (R.F.); (B.D.); (F.M.); (B.S.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (S.B.); (E.A.)
| |
Collapse
|
3
|
Arai S, Gao Y, Yu Z, Xie L, Wang L, Zhang T, Nouri M, Chen S, Asara JM, Balk SP. A carboxy-terminal ubiquitylation site regulates androgen receptor activity. Commun Biol 2024; 7:25. [PMID: 38182874 PMCID: PMC10770046 DOI: 10.1038/s42003-023-05709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Degradation of unliganded androgen receptor (AR) in prostate cancer cells can be prevented by proteasome inhibition, but this is associated with only modest increases in polyubiquitylated AR. An inhibitor (VLX1570) of the deubiquitylases associated with the proteasome did not increase ubiquitylation of unliganded AR, indicating that AR is not targeted by these deubiquitylases. We then identified a series of AR ubiquitylation sites, including a not previously identified site at K911, as well as methylation sites and previously identified phosphorylation sites. Mutagenesis of K911 increases AR stability, chromatin binding, and transcriptional activity. We further found that K313, a previously reported ubiquitylation site, could also be methylated and acetylated. Mutagenesis of K313, in combination with K318, increases AR transcriptional activity, indicating that distinct posttranslational modifications at K313 differentially regulate AR activity. Together these studies expand the spectrum of AR posttranslational modifications, and indicate that the K911 site may regulate AR turnover on chromatin.
Collapse
Affiliation(s)
- Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yanfei Gao
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyang Yu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lisha Xie
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liyang Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tengfei Zhang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Tierno D, Azzalini E, Farra R, Drioli S, Felluga F, Lazzarino M, Grassi G, Dapas B, Bonin S. Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment. Int J Mol Sci 2023; 24:7230. [PMID: 37108391 PMCID: PMC10139025 DOI: 10.3390/ijms24087230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (D.T.); (E.A.)
| | - Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (D.T.); (E.A.)
| | - Rossella Farra
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy; (R.F.); (G.G.); (B.D.)
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (S.D.); (F.F.)
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy; (S.D.); (F.F.)
| | - Marco Lazzarino
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (IOM), 34149 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy; (R.F.); (G.G.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy; (R.F.); (G.G.); (B.D.)
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy; (D.T.); (E.A.)
| |
Collapse
|
5
|
Iuliano L, Dalla E, Picco R, Mallavarapu S, Minisini M, Malavasi E, Brancolini C. Proteotoxic stress-induced apoptosis in cancer cells: understanding the susceptibility and enhancing the potency. Cell Death Dis 2022; 8:407. [PMID: 36195608 PMCID: PMC9531228 DOI: 10.1038/s41420-022-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Showmeya Mallavarapu
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Eleonora Malavasi
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy.
| |
Collapse
|
6
|
Gubat J, Selvaraju K, Sjöstrand L, Kumar Singh D, Turkina MV, Schmierer B, Sabatier P, Zubarev RA, Linder S, D’Arcy P. Comprehensive Target Screening and Cellular Profiling of the Cancer-Active Compound b-AP15 Indicate Abrogation of Protein Homeostasis and Organelle Dysfunction as the Primary Mechanism of Action. Front Oncol 2022; 12:852980. [PMID: 35530310 PMCID: PMC9076133 DOI: 10.3389/fonc.2022.852980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins. We show that exposure to b-AP15 results in increased association of the chaperones VCP/p97/Cdc48 and BAG6 with proteasomes. Comparisons between the gene expression profile generated by b-AP15 to those elicited by siRNA showed that knock-down of the proteasome-associated deubiquitinase (DUB) USP14 is the closest related to drug response. USP14 is a validated target for b-AP15 and we show that b-AP15 binds covalently to two cysteines, Cys203 and Cys257, in the ubiquitin-binding pocket of the enzyme. Consistent with this, deletion of USP14 resulted in decreased sensitivity to b-AP15. Targeting of USP14 was, however, found to not fully account for the observed proteasome inhibition. In search for additional targets, we utilized genome-wide CRISPR/Cas9 library screening and Proteome Integral Solubility Alteration (PISA) to identify mechanistically essential genes and b-AP15 interacting proteins respectively. Deletion of genes encoding mitochondrial proteins decreased the sensitivity to b-AP15, suggesting that mitochondrial dysfunction is coupled to cell death induced by b-AP15. Enzymes known to be involved in Phase II detoxification such as aldo-ketoreductases and glutathione-S-transferases were identified as b-AP15-targets using PISA. The finding that different exploratory approaches yielded different results may be explained in terms of a “target” not necessarily connected to the “mechanism of action” thus highlighting the importance of a holistic approach in the identification of drug targets. We conclude that b-AP15, and likely also other dienone compounds of the same class, affect protein degradation and proteasome function at more than one level.
Collapse
Affiliation(s)
- Johannes Gubat
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dhananjay Kumar Singh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Pharmacy, Central University of South Bihar, Gaya, India
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, Division of Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pádraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Pádraig D’Arcy,
| |
Collapse
|
7
|
Iuliano L, Drioli S, Pignochino Y, Cafiero CM, Minisini M, D'Este F, Picco R, Dalla E, Giordano G, Grignani G, Di Giorgio E, Benedetti F, Felluga F, Brancolini C. Enhancing Proteotoxic Stress in Leiomyosarcoma Cells Triggers Mitochondrial Dysfunctions, Cell Death, and Antitumor Activity in vivo. Mol Cancer Ther 2021; 20:1039-1051. [PMID: 33785653 DOI: 10.1158/1535-7163.mct-20-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
Leiomyosarcomas are rare and aggressive tumors characterized by a complex karyotype. Surgical resection with or without radiotherapy and chemotherapy is the standard curative treatment. Unfortunately, a high percentage of leiomyosarcomas recurs and metastasizes. In these cases, doxorubicin and ifosfamide represent the standard treatment but with low response rates. Here, we evaluated the induction of proteotoxic stress as a possible strategy to kill leiomyosarcoma cells in a therapeutic perspective. We show that aggressive leiomyosarcomas coexist with high levels of proteotoxic stress. As a consequence, we hypothesized that leiomyosarcoma cells are vulnerable to further increases of proteotoxic stress. The small compound 2c is a strong inducer of proteotoxic stress. In leiomyosarcoma cells, it triggers cell death coupled to a profound reorganization of the mitochondrial network. By using stimulated emission depletion microscopy, we have unveiled the existence of DIABLO/SMAC clusters that are modulated by 2c. Finally, we have engineered a new version of 2c linked to polyethylene glycol though a short peptide, named 2cPP. This new prodrug is specifically activated by proteases present in the tumor microenvironment. 2cPP shows a strong antitumor activity in vivo against leiomyosarcomas and no toxicity against normal cells.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Sara Drioli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, c/o San Luigi Gonzaga Hospital, Orbassano, Torino, Italy.,Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Claudia Maria Cafiero
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Francesca D'Este
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Giorgia Giordano
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Torino, Italy
| | - Giovanni Grignani
- Sarcoma Unit, Division of Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Fabio Benedetti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Fulvia Felluga
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | | |
Collapse
|
8
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
9
|
Pellegrini P, Selvaraju K, Faustini E, Mofers A, Zhang X, Ternerot J, Schubert A, Linder S, D′Arcy P. Induction of ER Stress in Acute Lymphoblastic Leukemia Cells by the Deubiquitinase Inhibitor VLX1570. Int J Mol Sci 2020; 21:ijms21134757. [PMID: 32635430 PMCID: PMC7369842 DOI: 10.3390/ijms21134757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.
Collapse
Affiliation(s)
- Paola Pellegrini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Elena Faustini
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Arjan Mofers
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jens Ternerot
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Alice Schubert
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Department of Oncology-Pathology, Karolinska Institute, S-17176 Stockholm, Sweden
| | - Pádraig D′Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, S-58183 Linköping, Sweden; (P.P.); (K.S.); (E.F.); (A.M.); (J.T.); (A.S.); (S.L.)
- Correspondence:
| |
Collapse
|
10
|
Ciotti S, Iuliano L, Cefalù S, Comelli M, Mavelli I, Di Giorgio E, Brancolini C. GSK3β is a key regulator of the ROS-dependent necrotic death induced by the quinone DMNQ. Cell Death Dis 2020; 11:2. [PMID: 31919413 PMCID: PMC6952365 DOI: 10.1038/s41419-019-2202-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Signaling pathways controlling necrosis are still mysterious and debated. We applied a shRNA-based viability screen to identify critical elements of the necrotic response. We took advantage from a small molecule (G5) that makes covalent adducts with free thiols by Michael addition and elicits multiple stresses. In cells resistant to apoptosis, G5 triggers necrosis through the induction of protein unfolding, glutathione depletion, ER stress, proteasomal impairments, and cytoskeletal stress. The kinase GSK3β was isolated among the top hits of the screening. Using the quinone DMNQ, a ROS generator, we demonstrate that GSK3β is involved in the regulation of ROS-dependent necrosis. Our results have been validated using siRNA and by knocking-out GSK3β with the CRISPR/Cas9 technology. In response to DMNQ GSK3β is activated by serine 9 dephosphorylation, concomitantly to Akt inactivation. During the quinone-induced pro-necrotic stress, GSK3β gradually accumulates into the nucleus, before the collapse of the mitochondrial membrane potential. Accumulation of ROS in response to DMNQ is impaired by the absence of GSK3β. We provide evidence that the activities of the obligatory two-electrons reducing flavoenzymes, NQO1 (NAD(P)H quinone dehydrogenase 1) and NQO2 are required to suppress DMNQ-induced necrosis. In the absence of GSK3β the expression of NQO1 and NQO2 is dramatically increased, possibly because of an increased transcriptional activity of NRF2. In summary, GSK3β by blunting the anti-oxidant response and particularly NQO1 and NQO2 expression, favors the appearance of necrosis in response to ROS, as generated by the quinone DMNQ.
Collapse
Affiliation(s)
- Sonia Ciotti
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Luca Iuliano
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Sebastiano Cefalù
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Marina Comelli
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Irene Mavelli
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
11
|
Mofers A, Perego P, Selvaraju K, Gatti L, Gullbo J, Linder S, D'Arcy P. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS One 2019; 14:e0223807. [PMID: 31639138 PMCID: PMC6804958 DOI: 10.1371/journal.pone.0223807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND b-AP15/VLX1570 are small molecule inhibitors of the ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5) deubiquitinases (DUBs) of the 19S proteasome. b-AP15/VLX1570 have been shown to be cytotoxic to cells resistant to bortezomib, raising the possibility that this class of drugs can be used as a second-line therapy for treatment-resistant multiple myeloma. Limited information is available with regard to potential resistance mechanisms to b-AP15/VLX1570. RESULTS We found that b-AP15-induced cell death is cell-cycle dependent and that non-cycling tumor cells may evade b-AP15-induced cell death. Such non-cycling cells may re-enter the proliferative state to form colonies of drug-sensitive cells. Long-term selection of cells with b-AP15 resulted in limited drug resistance (~2-fold) that could be reversed by buthionine sulphoximine, implying altered glutathione (GSH) metabolism as a resistance mechanism. In contrast, drug uptake and overexpression of drug efflux transporters were found not to be associated with b-AP15 resistance. CONCLUSIONS The proteasome DUB inhibitors b-AP15/VLX1570 are cell cycle-active. The slow and incomplete development of resistance towards these compounds is an attractive feature in view of future clinical use.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Karthik Selvaraju
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Laura Gatti
- Cerebrovascular Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joachim Gullbo
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Stig Linder
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
12
|
Bakhshi R, Zeynizadeh B, Mousavi H. Green, rapid, and highly efficient syntheses of
α
,
α′
‐bis[(aryl or allyl)idene]cycloalkanones and 2‐[(aryl or allyl)idene]‐1‐indanones as potentially biologic compounds via solvent‐free microwave‐assisted Claisen–Schmidt condensation catalyzed by MoCl
5. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reza Bakhshi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
13
|
Hillert EK, Brnjic S, Zhang X, Mazurkiewicz M, Saei AA, Mofers A, Selvaraju K, Zubarev R, Linder S, D'Arcy P. Proteasome inhibitor b-AP15 induces enhanced proteotoxicity by inhibiting cytoprotective aggresome formation. Cancer Lett 2019; 448:70-83. [PMID: 30768956 DOI: 10.1016/j.canlet.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/28/2018] [Accepted: 02/01/2019] [Indexed: 01/26/2023]
Abstract
Proteasome inhibitors have been shown to induce cell death in cancer cells by triggering an acute proteotoxic stress response characterized by accumulation of poly-ubiquitinated proteins, ER stress and the production of reactive oxygen species. The aggresome pathway has been described as an escape mechanism from proteotoxicity by sequestering toxic cellular aggregates. Here we show that b-AP15, a small-molecule inhibitor of proteasomal deubiquitinase activity, induces poly-ubiquitin accumulation in absence of aggresome formation. b-AP15 was found to affect organelle transport in treated cells, raising the possibility that microtubule-transport of toxic protein aggregates is inhibited, leading to enhanced cytotoxicity. In contrast to the antiproliferative effects of the clinically used proteasome inhibitor bortezomib, the effects of b-AP15 are not further enhanced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Our results suggest an inhibitory effect of b-AP15 on the transport of misfolded proteins, resulting in a lack of aggresome formation, and a strong proteotoxic stress response.
Collapse
Affiliation(s)
| | - Slavica Brnjic
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Padraig D'Arcy
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
14
|
Zhang X, Pellegrini P, Saei AA, Hillert EK, Mazurkiewicz M, Olofsson MH, Zubarev RA, D'Arcy P, Linder S. The deubiquitinase inhibitor b-AP15 induces strong proteotoxic stress and mitochondrial damage. Biochem Pharmacol 2018; 156:291-301. [DOI: 10.1016/j.bcp.2018.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022]
|