1
|
Xu E, Huang Z, Zhu K, Hu J, Ma X, Wang Y, Zhu J, Zhang C. Thrombospondin 1 Promotes Cytoskeleton Remodeling, Dedifferentiation, and Pulmonary Metastasis through ITGA1 and ITGA6 in Osteosarcoma. Int J Biol Sci 2025; 21:2083-2100. [PMID: 40083708 PMCID: PMC11900803 DOI: 10.7150/ijbs.93678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Dedifferentiation of osteosarcoma cells leads to poor prognosis. We plan to identify the key molecules that are involved in cell dedifferentiation and explore how they promote the pulmonary metastasis of osteosarcoma cells. We performed a sphere formation assay and confirmed that the spheroid cells could be redifferentiated into osteoblasts, adipocytes, and chondrocytes in specific medium, and the stem cell-like markers Stro-1 and CD117 were detected on the cell surface, which indicated that the spheroid cells were dedifferentiated cells. Thrombospondin 1 (THBS1) and ITGAs were identified as the key molecules in dedifferentiation through mRNA-seq and analysis, and osteosarcoma patients with higher THBS1 expression had a worse prognosis than those with lower THBS1 expression. THBS1 promotes the accumulation of ITGA1 and ITGA6 on the cell membrane in the early phase of dedifferentiation, thereby increasing the phosphorylation of FAK, RasGRF1, and MLC2 in the cytoplasm and promoting cytoskeleton remodeling. Our results suggest that THBS1 promotes cell dedifferentiation and pulmonary metastasis by promoting cytoskeletal remodeling and that ITGA1 and ITGA6 play important roles in mediating extracellular to intracellular signals; this mediating effect takes place mainly in the early phase of dedifferentiation.
Collapse
Affiliation(s)
- Enjie Xu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Zhen Huang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Kunpeng Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Jianping Hu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Xiaolong Ma
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Jiazhuang Zhu
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Chunlin Zhang
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- Institute of Bone Tumor Affiliated to Tongji University School of Medicine, Shanghai, 200072, PR China
| |
Collapse
|
2
|
Tian B, Wu Y, Du X, Zhang Y. Osteosarcoma stem cells resist chemotherapy by maintaining mitochondrial dynamic stability via DRP1. Int J Mol Med 2025; 55:10. [PMID: 39513621 PMCID: PMC11554380 DOI: 10.3892/ijmm.2024.5451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Osteosarcoma malignancy exhibits significant heterogeneity, comprising both osteosarcoma stem cells (OSCs) and non‑OSCs. OSCs demonstrate increased resistance to chemotherapy due to their distinctive cellular and molecular characteristics. Alterations in mitochondrial morphology and homeostasis may enhance chemoresistance by modulating metabolic and regulatory processes. However, the relationship between mitochondrial homeostasis and chemoresistance in OSCs remains to be elucidated. The present study employed high‑resolution microscopy to perform multi‑layered image reconstructions for a quantitative analysis of mitochondrial morphology. The results indicated that OSCs exhibited larger mitochondria in comparison with non‑OSCs. Furthermore, treatment of OSCs with cisplatin (CIS) or doxorubicin (DOX) resulted in preserved mitochondrial morphological stability, which was not observed in non‑OSCs. This finding suggested a potential association between mitochondrial homeostasis and chemoresistance. Further analysis indicated that dynamin‑related protein 1 (DRP1) might play a pivotal role in maintaining the stability of mitochondrial homeostasis in OSCs. Depletion of DRP1 resulted in the disruption of mitochondrial stability when OSCs were treated with CIS or DOX. Additionally, knocking out DRP1 in OSCs led to a reduction in chemoresistance. These findings unveil a novel mechanism underlying chemoresistance in osteosarcoma and suggest that targeting DRP1 could be a promising therapeutic strategy to overcome chemoresistance in OSCs. This provided valuable insights for enhancing treatment outcomes among patients with osteosarcoma.
Collapse
Affiliation(s)
- Boren Tian
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yaxuan Wu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Xiaoyun Du
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| |
Collapse
|
3
|
Ha YH, Sung JH, Ryu CS, Ko EJ, Park HW, Park HS, Kim OJ, Kim IJ, Kim NK. Genetic Associations of Plasminogen Activator Inhibitor-1-Related miRNA Variants with Coronary Artery Disease. Int J Mol Sci 2024; 25:11528. [PMID: 39519081 PMCID: PMC11546797 DOI: 10.3390/ijms252111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease (CAD) is one of the most common types of cardiovascular disease and can lead to a heart attack as plaque gradually builds up inside the coronary arteries, blocking blood flow. Previous studies have shown that polymorphisms in the PAI-1 gene are associated with CAD; however, studies of the PAI-1 3'-untranslated region, containing a miRNA binding site, and the miRNAs that interact with it, are insufficient. To investigate the association between miRNA polymorphisms and CAD in the Korean population based on post-transcriptional regulation, we genotyped five polymorphisms in four miRNAs targeting the 3'-untranslated region of PAI-1 using real-time PCR and TaqMan assays. We found that the mutant genotype of miR-30c rs928508 A > G was strongly associated with increased CAD susceptibility. In a genotype combination analysis, the combination of the homozygous mutant genotype (GG) of miR-30c rs928508 with the wild-type genotype (GG) of miR-143 rs41291957 resulted in increased risk for CAD. Also, in an allele combination analysis, the combination of the mutant allele (G) of miR-30c rs928508 and the wild-type allele (G) of miR-143 rs41291957 resulted in increased risk for CAD. Furthermore, metabolic syndrome and diabetes mellitus showed synergistic effects on CAD risk when combined with miR-30c rs928508. These results can be applied to identify CAD prognostic biomarkers among miRNA polymorphisms and various clinical factors.
Collapse
Affiliation(s)
- Yong Hyun Ha
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Jung Hoon Sung
- CHA Bundang Medical Center, Department of Cardiology, CHA University, Seongnam 13496, Republic of Korea;
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Hyeon Woo Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| | - Ok Joon Kim
- CHA Bundang Medical Center, Department of Neurology, CHA University, Seongnam 13496, Republic of Korea;
| | - In Jai Kim
- CHA Bundang Medical Center, Department of Cardiology, CHA University, Seongnam 13496, Republic of Korea;
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea; (Y.H.H.); (C.S.R.); (E.J.K.); (H.W.P.); (H.S.P.)
| |
Collapse
|
4
|
Frye C, Cunningham CL, Mihailescu MR. Characterization of the SARS-CoV-2 Genome 3'-Untranslated Region Interactions with Host MicroRNAs. ACS OMEGA 2024; 9:36148-36164. [PMID: 39220490 PMCID: PMC11360049 DOI: 10.1021/acsomega.4c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. SARS-CoV-2 has exhibited increased disease severity and immune evasion across its variants, and the molecular mechanisms behind these phenomena remain largely unknown. Conserved elements of the viral genome, such as secondary structures within the 3'-untranslated region (UTR), could prove crucial in furthering our understanding of the host-virus interface. Analysis of the SARS-CoV-2 viral genome 3'-UTR revealed the potential for host microRNA (miR) binding sites, allowing for sequence-specific interactions. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRs miR-34a-5p, miR-34b-5p, and miR-760-3p in vitro. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to biophysically characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-d-arabinonucleic acid (FANA) analogs as competitive binding inhibitors for these interactions. These miRs modulate the translation of granulin (GRN), interleukin-6 (IL-6), and the IL-6 receptor (IL-6R), all of which are key modulators and activators of JAK/STAT3 signaling and are implicated in regulation of the immune response. Thus, we propose that hijacking of these miRs by SARS-CoV-2 could identify a mechanism of host immune modulation by the virus. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2, through direct targeting of the virus-host interface.
Collapse
Affiliation(s)
- Caleb
J. Frye
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Caylee L. Cunningham
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
5
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
6
|
Frye CJ, Cunningham CL, Mihailescu MR. Host microRNA interactions with the SARS-CoV-2 viral genome 3'-untranslated region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541401. [PMID: 37292986 PMCID: PMC10245713 DOI: 10.1101/2023.05.18.541401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has marked the spread of a novel human coronavirus. While the viral life cycle is well understood, most of the interactions at the virus-host interface remain elusive. Furthermore, the molecular mechanisms behind disease severity and immune evasion are still largely unknown. Conserved elements of the viral genome such as secondary structures within the 5'- and 3'-untranslated regions (UTRs) serve as attractive targets of interest and could prove crucial in furthering our understanding of virus-host interactions. It has been proposed that microRNA (miR) interactions with viral components could be used by both the virus and host for their own benefit. Analysis of the SARS-CoV-2 viral genome 3'-UTR has revealed the potential for host cellular miR binding sites, providing sites for specific interactions with the virus. In this study, we demonstrate that the SARS-CoV-2 genome 3'-UTR binds the host cellular miRNAs miR-760-3p, miR-34a-5p, and miR-34b-5p, which have been shown to influence translation of interleukin-6 (IL-6), the IL-6 receptor (IL-6R), as well as progranulin (PGRN), respectively, proteins that have roles in the host immune response and inflammatory pathways. Furthermore, recent work suggests the potential of miR-34a-5p and miR-34b-5p to target and inhibit translation of viral proteins. Native gel electrophoresis and steady-state fluorescence spectroscopy were utilized to characterize the binding of these miRs to their predicted sites within the SARS-CoV-2 genome 3'-UTR. Additionally, we investigated 2'-fluoro-D-arabinonucleic acid (FANA) analogs of these miRNAs as competitive binding inhibitors for these miR binding interactions. The mechanisms detailed in this study have the potential to drive the development of antiviral treatments for SARS-CoV-2 infection, and provide a potential molecular basis for cytokine release syndrome and immune evasion which could implicate the host-virus interface.
Collapse
Affiliation(s)
- Caleb J Frye
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | - Caylee L Cunningham
- Department of Chemistry & Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
7
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
8
|
Chen J, Gao F, Li D, Wang J. MiR26-5p inhibits pathological pulmonary microvascular angiogenesis via down-regulating WNT5A. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:812-819. [PMID: 37396938 PMCID: PMC10311967 DOI: 10.22038/ijbms.2023.68856.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 07/04/2023]
Abstract
Objectives Pathological micro angiogenesis is a key pathogenic factor in pulmonary diseases such as pulmonary hypertension and hepatopulmonary syndrome. More and more pieces of evidence show that excessive proliferation of pulmonary microvascular endothelial cells is the key event of pathological micro angiogenesis. The purpose of this research is to reveal the mechanism of miR26-5p regulating pulmonary microvascular hyperproliferation. Materials and Methods Hepatopulmonary syndrome rat model was made by common bile duct ligation. HE and IHC staining were used for analysis of the pathology of the rat. CCK8, transwell, and wound healing assay were used to assess miR26-5p or target gene WNT5A functioned toward PMVECs. microRNA specific mimics and inhibitors were used for up/down-regulated miR26-5p expression in PMVECs. Recombinant lentivirus was used for overexpression/knockdown WNT5A expression in PMVECs. And the regulation relationship of miR26-5p and WNT5A was analyzed by dual-luciferase reporter assay. Results qPCR showed that miR26-5p was significantly down-regulated in the course of HPS disease. Bioinformatics data showed that WNT5A was one of the potential key target genes of miR26-5p. Immunohistochemistry and qPCR analysis showed that WNT5A was largely expressed in pulmonary microvascular endothelial cells, in addition, this molecule was significantly up-regulated with the progression of the disease. Furthermore, dual luciferase reporter assay showed that miR26-5p could bind to WNT5A 3 'UTR region to inhibit WNT5A synthesis. Conclusion The results suggested MiR26-5p negatively regulated PMVECs proliferation and migration by WNT5A expression. Overexpression of miR26-5p may be a potentially beneficial strategy for HPS therapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anesthesiology, People’s Hospital of Chongqing Banan District, Chongqing 401320, China
- These authors contributed equally to this work
| | - Feng Gao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400038, China
- These authors contributed equally to this work
| | - Dan Li
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jinquan Wang
- Department of Anesthesiology, The Ninth People’s Hospital of Chongqing, Chongqing 400700, China
| |
Collapse
|
9
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
10
|
Tang W, Zhang Y, Zhang H, Zhang Y. Vascular Niche Facilitates Acquired Drug Resistance to c-Met Inhibitor in Originally Sensitive Osteosarcoma Cells. Cancers (Basel) 2022; 14:cancers14246201. [PMID: 36551686 PMCID: PMC9776923 DOI: 10.3390/cancers14246201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents characterized by drug resistance and poor prognosis. As one of the key oncogenes, c-Met is recognized as a promising therapeutic target for OS. In this report, we show that c-Met inhibitor PF02341066 specifically killed OS cells with highly phosphorylated c-Met in vitro. However, the inhibitory effect of PF02341066 was abrogated in vivo due to interference from the vascular niche. OS cells adjacent to microvessels or forming vascular mimicry suppressed c-Met expression and phosphorylation. Moreover, VEGFR2 was activated in OS cells and associated with acquired drug resistance. Dual targeting of c-Met and VEGFR2 could effectively shrink the tumor size in a xenograft model. c-Met-targeted therapy combined with VEGFR2 inhibition might be beneficial to achieve an ideal therapeutic effect in OS patients. Together, our results confirm the pivotal role of tumor heterogeneity and the microenvironment in drug response and reveal the molecular mechanism underlying acquired drug resistance to c-Met-targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- Correspondence: ; Tel.: +86-20-3933-2955
| |
Collapse
|
11
|
LncRNA HCG18 Promotes Osteosarcoma Cells Proliferation, Migration, and Invasion in by Regulating miR-34a/RUNX2 Pathway. Biochem Genet 2022; 61:1035-1049. [DOI: 10.1007/s10528-022-10294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|
12
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
13
|
Gong Y, Wei ZR. MiR-659-3p inhibits osteosarcoma progression and metastasis by inhibiting cell proliferation and invasion via targeting SRPK1. BMC Cancer 2022; 22:934. [PMID: 36038837 PMCID: PMC9425973 DOI: 10.1186/s12885-022-10029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Osteosarcoma is the most common primary bone cancer that affects mostly children and young adults. Despite the advances in osteosarcoma treatment, the long-term survival rate of metastatic patients has not significantly improved in the past few decades, thus demonstrating the need for novel therapeutic targets or methods to improve metastatic osteosarcoma treatment. In this study we aimed to elucidate the role of miR-659-3p and SRPK1 in osteosarcoma. METHODS We evaluated miR-659-3p and SRPK1 function in osteosarcoma cell proliferation, migration, and cell cycle progression in vitro by using gain- and loss-of-function strategies. The effect of miR-659-3p in tumor progression and metastasis was determined by in vivo mouse model. RESULTS We revealed that expression of miR-659-3p was significantly downregulated in osteosarcoma compared with normal bone cells and was inversely correlated with serine-arginine protein kinase 1 (SRPK1) expression. We proved that miR-659-3p targets 3' UTR of SRPK1 and negatively regulates SRPK1 expression in osteosarcoma cells via luciferase assay. In vitro studies revealed that gain of miR-659-3p function inhibited osteosarcoma cells growth, migration, and invasion by down-regulating SRPK1 expression. Inversely, inhibiting miR-659-3p in osteosarcoma cells promoted cell growth, migration, and invasion. Cell cycle profile analysis revealed that miR-659-3p inhibited osteosarcoma cells' G1/G0 phase exit by down-regulating SRPK1 expression. By using an in vivo mouse model, we demonstrated that miR-659-3p inhibits osteosarcoma tumor progression and lung metastasis by inhibiting SRPK1 expression and potentially downstream cell proliferation, and epithelial-to-mesenchymal transition genes. CONCLUSIONS This study demonstrated that miR-659-3p is a potential therapeutic method and SRPK1 is a potential therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopaedics, the First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, China.
| | - Zheng-Ren Wei
- Department of Pharmacology, Basic Medical School, Jilin University, 126 Xinmin Street, Changchun, 130021, China
| |
Collapse
|
14
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
15
|
Yang Z, Liu T, Ren X, Yang M, Tu C, Li Z. Mir-34a: a regulatory hub with versatile functions that controls osteosarcoma networks. Cell Cycle 2022; 21:2121-2131. [PMID: 35699451 DOI: 10.1080/15384101.2022.2087755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent and highly aggressive bone malignancies. The treatment strategies of OS is under standard regimens, including surgical resection, chemotherapy, and other adjuvant therapy. However, the 5-year survival rate is still unsatisfactory. Previous studies have demonstrated that the expression of miR-34a decreases in osteosarcoma, which is involved in regulating numerous genes directly or indirectly at the post-transcriptional level and other pathways. Thus, miR-34a plays an important role in mediating OS cell proliferation, differentiation, migration, and apoptosis, and might be a pivotal biomarker for OS with diagnostic and therapeutic potentials. In this review, we aim to summarize the relationship between miR-34a and OS, with an emphasis on the specific mechanisms in OS development referring to miR-34a. Moreover, the potential role of miR-34a as a diagnostic, prognostic, and therapeutic candidate for OS would be presented in detail. However, the molecular mechanisms related to miR-34a and OS remain elusive, and more investigations are needed to reach a comprehensive understanding.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Mei Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| |
Collapse
|
16
|
Liu J, Shang G. The Roles of Noncoding RNAs in the Development of Osteosarcoma Stem Cells and Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:773038. [PMID: 35252166 PMCID: PMC8888953 DOI: 10.3389/fcell.2022.773038] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) is the common bone tumor in children and adolescents. Because of chemotherapy resistance, the OS patients have a poor prognosis. The one reason of chemotherapeutic resistance is the development of cancer stem cells (CSCs). CSCs represent a small portion of tumor cells with the capacity of self-renewal and multipotency, which are associated with tumor initiation, metastasis, recurrence and drug resistance. Recently, noncoding RNAs (ncRNAs) have been reported to critically regulate CSCs. Therefore, in this review article, we described the role of ncRNAs, especially miRNAs, lncRNAs and circRNAs, in regulating CSCs development and potential mechanisms. Specifically, we discussed the role of multiple miRNAs in targeting CSCs, including miR-26a, miR-29b, miR-34a, miR-133a, miR-143, miR-335, miR-382, miR-499a, miR-1247, and let-7days. Moreover, we highlighted the functions of lncRNAs in regulating CSCs in OS, such as B4GALT1-AS1, DANCR, DLX6-AS1, FER1L4, HIF2PUT, LINK-A, MALAT1, SOX2-OT, and THOR. Due to the critical roles of ncRNAs in regulation of OS CSCs, targeting ncRNAs might be a novel strategy for eliminating CSCs for OS therapy.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guanning Shang
- Department of Orthopedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Tian Y, Zhao Y, Yin C, Tan S, Wang X, Yang C, Zhang TD, Zhang X, Ye F, Xu J, Wu X, Ding L, Zhang J, Pei J, Wang XT, Zhang RX, Xu J, Wang W, Filipe CD, Hoare T, Yin DC, Qian A, Deng X. Polyvinylamine with moderate binding affinity as a highly effective vehicle for RNA delivery. J Control Release 2022; 345:20-37. [DOI: 10.1016/j.jconrel.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
18
|
De Tomi E, Campagnari R, Orlandi E, Cardile A, Zanrè V, Menegazzi M, Gomez-Lira M, Gotte G. Upregulation of miR-34a-5p, miR-20a-3p and miR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int J Mol Sci 2022; 23:ijms23031647. [PMID: 35163570 PMCID: PMC8835754 DOI: 10.3390/ijms23031647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Onconase (ONC) is an amphibian secretory ribonuclease displaying cytostatic and cytotoxic activities against many mammalian tumors, including melanoma. ONC principally damages tRNA species, but also other non-coding RNAs, although its precise targets are not known. We investigated the ONC ability to modulate the expression of 16 onco-suppressor microRNAs (miRNAs) in the A375 BRAF-mutated melanoma cell line. RT-PCR and immunoblots were used to measure the expression levels of miRNAs and their regulated proteins, respectively. In silico study was carried out to verify the relations between miRNAs and their mRNA targets. A375 cell transfection with miR-20a-3p and miR-34a-5p mimics or inhibitors was performed. The onco-suppressors miR-20a-3p, miR-29a-3p and miR-34a-5p were highly expressed in 48-h ONC-treated A375 cells. The cytostatic effect of ONC in A375 cells was mechanistically explained by the sharp inhibition of cyclins D1 and A2 expression level, as well as by downregulation of retinoblastoma protein and cyclin-dependent-kinase-2 activities. Remarkably, the expression of kinases ERK1/2 and Akt, as well as of the hypoxia inducible factor-1α, was inhibited by ONC. All these proteins control pro-survival pathways. Finally, many crucial proteins involved in migration, invasion and metastatic potential were downregulated by ONC. Results obtained from transfection of miR-20a-3p and miR-34a-5p inhibitors in the presence of ONC show that these miRNAs may participate in the antitumor effects of ONC in the A375 cell line. In conclusion, we identified many intracellular downregulated proteins involved in melanoma cell proliferation, metabolism and progression. All mRNAs coding these proteins may be targets of miR-20a-3p, miR-29a-3p and/or miR-34a-5p, which are in turn upregulated by ONC. Data suggest that several known ONC anti-proliferative and anti-metastatic activities in A375 melanoma cells might depend on the upregulation of onco-suppressor miRNAs. Notably, miRNAs stability depends on the upstream regulation by long-non-coding-RNAs or circular-RNAs that can, in turn, be damaged by ONC ribonucleolytic activity.
Collapse
Affiliation(s)
- Elisa De Tomi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Elisa Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Alessia Cardile
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Valentina Zanrè
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
- Correspondence:
| | - Macarena Gomez-Lira
- Department of Neuroscience, Biomedicine and Movement Sciences, Biology and Genetics Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (E.D.T.); (E.O.); (M.G.-L.)
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, I-37134 Verona, Italy; (R.C.); (A.C.); (V.Z.); (G.G.)
| |
Collapse
|
19
|
Abstract
The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.
Collapse
|
20
|
Synoradzki KJ, Bartnik E, Czarnecka AM, Fiedorowicz M, Firlej W, Brodziak A, Stasinska A, Rutkowski P, Grieb P. TP53 in Biology and Treatment of Osteosarcoma. Cancers (Basel) 2021; 13:4284. [PMID: 34503094 PMCID: PMC8428337 DOI: 10.3390/cancers13174284] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The TP53 gene is mutated in 50% of human tumors. Oncogenic functions of mutant TP53 maintain tumor cell proliferation and tumor growth also in osteosarcomas. We collected data on TP53 mutations in patients to indicate which are more common and describe their role in in vitro and animal models. We also describe animal models with TP53 dysfunction, which provide a good platform for testing the potential therapeutic approaches. Finally, we have indicated a whole range of pharmacological compounds that modulate the action of p53, stabilize its mutated versions or lead to its degradation, cause silencing or, on the contrary, induce the expression of its functional version in genetic therapy. Although many of the described therapies are at the preclinical testing stage, they offer hope for a change in the approach to osteosarcoma treatment based on TP53 targeting in the future.
Collapse
Affiliation(s)
- Kamil Jozef Synoradzki
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna M. Czarnecka
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Wiktoria Firlej
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Brodziak
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Stasinska
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (W.F.); (P.R.)
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.M.C.); (A.S.); (P.G.)
| |
Collapse
|
21
|
Nohawica M, Errachid A, Wyganowska-Swiatkowska M. Adipose-PAS interactions in the context of its localised bio-engineering potential (Review). Biomed Rep 2021; 15:70. [PMID: 34276988 PMCID: PMC8278035 DOI: 10.3892/br.2021.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Adipocytes are a known source of stem cells. They are easy to harvest, and are a suitable candidate for autogenous grafts. Adipose derived stem cells (ADSCs) have multiple target tissues which they can differentiate into, including bone and cartilage. In adipose tissue, ADSCs are able to differentiate, as well as providing energy and a supply of cytokines/hormones to manage the hypoxic and lipid/hormone saturated adipose environment. The plasminogen activation system (PAS) controls the majority of proteolytic activities in both adipose and wound healing environments, allowing for rapid cellular migration and tissue remodelling. While the primary activation pathway for PAS occurs through the urokinase plasminogen activator (uPA), which is highly expressed by endothelial cells, its function is not limited to enabling revascularisation. Proteolytic activity is dependent on protease activation, localisation, recycling mechanisms and substrate availability. uPA and uPA activated plasminogen allows pluripotent cells to arrive to new local environments and fulfil the niche demands. However, overstimulation, the acquisition of a migratory phenotype and constant protein turnover can be unconducive to the formation of structured hard and soft tissues. To maintain a suitable healing pattern, the proteolytic activity stimulated by uPA is modulated by plasminogen activator inhibitor 1. Depending on the physiological settings, different parts of the remodelling mechanism are activated with varying results. Utilising the differences within each microenvironment to recreate a desired niche is a valid therapeutic bio-engineering approach. By controlling the rate of protein turnover combined with a receptive stem cell lineage, such as ADSC, a novel avenue on the therapeutic opportunities may be identified, which can overcome limitations, such as scarcity of stem cells, low angiogenic potential or poor host tissue adaptation.
Collapse
Affiliation(s)
- Michal Nohawica
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| | - Abdelmounaim Errachid
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
- Earth and Life Institute, University Catholique of Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Marzena Wyganowska-Swiatkowska
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| |
Collapse
|
22
|
Li SJ, Wei XH, Zhan XM, He JY, Zeng YQ, Tian XM, Yuan ST, Sun L. Adipocyte-Derived Leptin Promotes PAI-1 -Mediated Breast Cancer Metastasis in a STAT3/miR-34a Dependent Manner. Cancers (Basel) 2020; 12:cancers12123864. [PMID: 33371368 PMCID: PMC7767398 DOI: 10.3390/cancers12123864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Although adipocytes affect the metastatic behavior of cancer cells, the underlying molecular mechanisms remain largely elusive. Thereby, we sought to screen for the signaling pathways responsible for adipocyte-induced motility of breast cancer cells by employing a breast cancer cell/adipocyte coculture system. Our study revealed that adipocyte coculture stimulated PAI-1 expression in breast cancer cells to potentiate cell motility. Furthermore, we obtained evidence that adipocytes secreted leptin to activate OBR in breast cancer cells, which phosphorylated STAT3 to promote the transcription of PAI-1 and repress the expression of miR-34a as the negative regulator of PAI-1. Our study provides new evidence for the involvement of adipocytes in breast cancer evolution, which advances the evolving roles of stromal cells in tumor pathogenesis. Abstract The crosstalk between cancer cells and adipocytes is critical for breast cancer progression. However, the molecular mechanisms underlying these interactions have not been fully characterized. In the present study, plasminogen activator inhibitor-1 (PAI-1) was found to be a critical effector of the metastatic behavior of breast cancer cells upon adipocyte coculture. Loss-of-function studies indicated that silencing PAI-1 suppressed cancer cell migration. Furthermore, we found that PAI-1 was closely related to the epithelial-mesenchymal transition (EMT) process in breast cancer patients. A loss-of-function study and a mammary orthotopic implantation metastasis model showed that PAI-1 promoted breast cancer metastasis by affecting the EMT process. In addition, we revealed that leptin/OBR mediated the regulation of PAI-1 through the interactions between adipocytes and breast cancer cells. Mechanistically, we elucidated that leptin/OBR further activated STAT3 to promote PAI-1 expression via miR-34a–dependent and miR-34a–independent mechanisms in breast cancer cells. In conclusion, our study suggests that targeting PAI-1 and interfering with its upstream regulators may benefit breast cancer patients.
Collapse
Affiliation(s)
- Si-Jing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Xiao-Hui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
| | - Xiao-Man Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Jin-Yong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
- China Cell-gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Yu-Qi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Xue-Mei Tian
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
| | - Sheng-Tao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (S.-T.Y.); (L.S.)
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; (S.-J.L.); (X.-M.Z.); (J.-Y.H.); (Y.-Q.Z.); (X.-M.T.)
- Correspondence: (S.-T.Y.); (L.S.)
| |
Collapse
|
23
|
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020. [PMID: 33037393 DOI: 10.1038/s41418‐020‐00633‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
Affiliation(s)
- Toshifumi Matsuyama
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shawn P Kubli
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tak W Mak
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Medical Biophysics and Department of Immunology, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Department of Medicine, University of Hong Kong, Pok Fu Lam, 999077, Hong Kong.
| |
Collapse
|
24
|
An aberrant STAT pathway is central to COVID-19. Cell Death Differ 2020; 27:3209-3225. [PMID: 33037393 PMCID: PMC7545020 DOI: 10.1038/s41418-020-00633-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.
Collapse
|
25
|
Bissey PA, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu FF. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer 2020; 20:597. [PMID: 32586280 PMCID: PMC7318489 DOI: 10.1186/s12885-020-07081-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background A major cause of disease-related death in nasopharyngeal carcinoma (NPC) is the development of distant metastasis (DM) despite combination chemoradiotherapy treatment. We previously identified and validated a four microRNA (miRNA) signature that is prognostic for DM. In this study, characterization of a key component of this signature, miR-34c, revealed its role in chemotherapy resistance. Methods Two hundred forty-six NPC patient biopsy samples were subject to comprehensive miRNA profiling and immunohistochemistry (IHC). Two human normal nasopharyngeal cell lines (immortalized; NP69 and NP460), as well as the NPC cell line C666–1, were used for miR-34c gain-of-function and loss-of-function experiments. Signaling pathways were assessed using quantitative real-time PCR (qRT-PCR) and Western blot. Cell viability was measured using the ATPlite assay. Results MiR-34c was downregulated in NPC patient samples, and confirmed in vitro to directly target SOX4, a master regulator of epithelial-to-mesenchymal transition (EMT). MiR-34c downregulation triggered EMT-representative changes in NP69 and NP460 whereby Snail, ZEB1, CDH2, and SOX2 were upregulated, while Claudin-1 and CDH1 were downregulated. Phenotypically, inhibition of miR-34c led to cisplatin resistance, whereas miR-34c over-expression sensitized NPC cells to cisplatin. TGFβ1 decreased miR-34c and increased SOX4 expression in vitro. The TGFβ receptor 1 inhibitor SB431542 reduced SOX4 expression and increased cisplatin sensitivity. Finally, IHC revealed that lower SOX4 expression was associated with improved overall survival in chemotherapy-treated NPC patients. Conclusion miR-34c is downregulated in NPC. Repression of miR-34c was shown to increase SOX4 expression, which leads to cisplatin resistance, while TGFβ1 was found to repress miR-34c expression. Taken together, our study demonstrates that inhibition of the TGFβ1 pathway could be a strategy to restore cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
| | - Mona Teng
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Valentin Petit
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Sai W Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
He P, Ding J. EWS promotes cell proliferation and inhibits cell apoptosis by regulating miR-199a-5p/Sox2 axis in osteosarcoma. Biotechnol Lett 2020; 42:1263-1274. [PMID: 32236759 DOI: 10.1007/s10529-020-02859-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Osteosarcoma is one of the most common malignant bone tumors which mainly occurs in children and adolescents. It is characterized by high malignancy and high metastasis rate, resulting in high mortality and disability. Accumulating studies have validated that long noncoding RNAs (lncRNAs) exerted vital roles in multiple cancer progression by regulating the expression of specific genes. This work aimed to explore the potential molecular mechanism of EWS in osteosarcoma. RESULTS In this study, we discovered that both EWS and Sox2 were highly expressed in osteosarcoma tissue samples. In addition, the expression of EWS was positively associated with Sox2 level. We conducted a series of functional assays and observed that Sox2 overexpression could significantly overturned the enhancement of cell proliferation and the decline of cell apoptosis induced by EWS knockdown in osteosarcoma. Moreover, we found a key upstream regulatory gene of Sox2: miR-199a-5p. CONCLUSIONS Through molecular biology studies and rescue assays, we further demonstrated that EWS promotes tumor growth through the miR-199a-5p/Sox2 signaling axis in osteosarcoma. These findings may provide an important theoretical basis for the clinical diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng He
- Department of Orthopedics, XD Group Hospital, Xi'an, 710077, Shaanxi, China
| | - Junjie Ding
- Department of Orthopedics, Yan'an People's Hospital, No. 57 Qilipu Street, Baota District, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
27
|
Yang W, Qi YB, Si M, Hou Y, Nie L. A comprehensive analysis for associations between multiple microRNAs and prognosis of osteosarcoma patients. PeerJ 2020; 8:e8389. [PMID: 31998559 PMCID: PMC6977468 DOI: 10.7717/peerj.8389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant primary bone tumor occurring in children and young adults, which occupies the second important cause of tumor-associated deaths among children and young adults. Recent studies have demonstrated that many microRNAs (miRNAs) have abnormal expression in OS, and can function as prognostic factors of OS patients. However, no previous studies have comprehensively analyzed the relationship between multiple miRNAs and prognosis of OS patients. Methods A total of 63 OS patients were retrospectively enrolled. The clinical characteristics were collected, and the expression levels of miRNA-21, miRNA-30c, miRNA-34a, miRNA-101, miRNA-133a, miRNA-214, miRNA-218, miRNA-433 and miRNA-539 in tumor tissues were measured through quantitative real-time polymerasechain reaction. Kaplan–Meier analysis was used to perform univariate survival analysis, and Cox regression model was used to perform multivariate survival analysis which included the variables with P < 0.1 in univariate survival analysis. Results The cumulative survival for 1, 2 and 5 years was 90.48%, 68.25% and 38.10%, respectively, and mean survival time was (45.39 ± 3.60) months (95% CI [38.34–52.45]). Kaplan–Meier analysis demonstrated that TNM stage, metastasis or recurrence, miRNA-21, miRNA-214, miRNA-34a, miRNA-133a and miRNA-539 were correlated with cum survival, but gender, age, tumor diameter, differentiation, miRNA-30c, miRNA-433, miRNA-101 and miRNA-218 were not. Multivariate survival analysis demonstrated that miRNA-21 (hazard ratio (HR): 3.457, 95% CI [2.165–11.518]), miRNA (HR: 3.138, 95% CI [2.014–10.259]), miRNA-34a (HR: 0.452, 95% CI [0.202–0.915]), miRNA-133a (HR: 0.307, 95% CI [0.113–0.874]) and miRNA-539 (HR: 0.358, 95% CI [0.155–0.896]) were independent prognostic markers of OS patients after adjusting for TNM stage (HR: 2.893, 95% CI [1.496–8.125]), metastasis or recurrence (HR: 3.628, 95% CI [2.217–12.316]) and miRNA-30c (HR: 0.689, 95% CI [0.445–1.828]). Conclusions High expression of miRNA-21 and miRNA-214 and low expression of miRNA-34a, miRNA-133a and miRNA-539 were associated with poor prognosis of OS patients after adjusting for TNM stage, metastasis or recurrence and miRNA-30c.
Collapse
Affiliation(s)
- Wen Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Department of Spinal Surgery, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Yu-Bin Qi
- Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Meng Si
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yong Hou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
28
|
Interstitial serum albumin empowers osteosarcoma cells with FAIM2 transcription to obtain viability via dedifferentiation. In Vitro Cell Dev Biol Anim 2020; 56:129-144. [PMID: 31942726 DOI: 10.1007/s11626-019-00421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
During hematogenous metastasis, cancer cells escape from primary lesions and enter into the circulatory system, and only a few can colonize distant organs. However, the mechanism of cell survival and metastasis in the hematopoietic environment remains unclear. Angiorrhea is the character of pathological neovascularization in malignant tumors and commonly detected in osteosarcoma (OS), a bone tumor that prefers circulatory metastasis. In the present study, we focused on the notable role of serum albumin, the highest content in blood plasma, on OS progression. Our results indicated that serum albumin might act as a barrier against exogenous cancer cells during hematogenous metastasis. OS cells with high metastatic potential could gradually obtain strong viability through dedifferentiation under the effect of serum albumin in the angiorrhea region. Further exploration showed that serum albumin could increase the intracellular calcium concentration by activating the voltage-dependent calcium channel Cav2.1 in OS cells to affect the cytoskeleton, sequentially leading to dedifferentiation. Dedifferentiated OS cells with increased FAS apoptosis inhibitory molecule 2 (FAIM2) expression would gradually acquire survival ability, whereas knockdown of FAIM2 caused apoptosis in serum albumin. Moreover, FAIM2 overexpression rescued the viability of OS cells with low metastatic potential in serum albumin. In clinical specimens, OS cells showed markedly stronger positive staining of FAIM2 in the angiorrhea area. Taken together, our findings indicate that serum albumin in the angiorrhea region is a critical substance during pulmonary metastasis of OS cells. Angiorrhea is a nonnegligible prognostic element and FAIM2 might serve as a promising therapeutic target.
Collapse
|
29
|
Chen Y, Yang C, Li Y, Chen L, Yang Y, Belguise K, Wang X, Lu K, Yi B. MiR145-5p inhibits proliferation of PMVECs via PAI-1 in experimental hepatopulmonary syndrome rat pulmonary microvascular hyperplasia. Biol Open 2019; 8:bio.044800. [PMID: 31649116 PMCID: PMC6899039 DOI: 10.1242/bio.044800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a triad of advanced liver disease, intrapulmonary vasodilatation and arterial hypoxemia. Increasing evidence shows that HPS is associated with pulmonary microvascular hyperplasia. The aim of this work was to investigate the underlying mechanism of miR-145 in regulating the proliferation of pulmonary microvascular endothelial cells (PMVECs) and angiogenesis in HPS via plasminogen activator inhibitor-1 (PAI-1). To test this, morphology score and number of pulmonary microvascular were assessed in lung tissues from rats with HPS by Hematoxylin and Eosin (H&E) staining. Expression levels of PAI-1 were assessed in lung tissues from HPS rats, as well as in PMVECs treated with HPS rat serum. We also selected the putative microRNA binding site on PAI-1 by bioinformatics analysis. Then, miR145-3p and miR145-5p expression levels in the lungs and PMVECs of rats were detected by qRT-PCR because miR145-5p is a microRNA binding site on PAI-1. In addition, the effects of miR-145-5p regulation on PAI-1 were examined by upregulation and downregulation of miR-145-5p and specific lentivirus transfection was used to overexpress and knockdown PAI-1 to assess PAI-1 function on PMVECs proliferation. Our data showed that levels of PAI-1 expression in lung tissue of rats increased significantly when rats were treated with common bile duct ligation. We found that levels of miR-145-5p were frequently downregulated in HPS tissues and cell lines, and overexpression of miR-145-5p dramatically inhibited PMVECs proliferation. We further verified PAI-1 as a novel and direct target of miR-145-5p in HPS. MiR-145-5p inhibits PAI-1 synthesis and the expression changes of PAI-1 directly affect the proliferation of PMVECs. We concluded that miR-145-5p negatively regulates PMVEC proliferation through PAI-1 expression. In addition, overexpression of miR-145-5p may prove beneficial as a therapeutic strategy for HPS treatment. Summary: Our findings provide proof of principle that microRNAs may be useful for the future development of novel therapeutic strategies in HPS.
Collapse
Affiliation(s)
- Yang Chen
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Congwen Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yujie Li
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lin Chen
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Yang
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Karine Belguise
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier (UPS), 31062 Toulouse, France
| | - Xiaobo Wang
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier (UPS), 31062 Toulouse, France
| | - Kaizhi Lu
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
30
|
The DNMT1/miR-34a Axis Is Involved in the Stemness of Human Osteosarcoma Cells and Derived Stem-Like Cells. Stem Cells Int 2019; 2019:7028901. [PMID: 31781245 PMCID: PMC6875320 DOI: 10.1155/2019/7028901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
The DNA methyltransferase 1 (DNMT1)/miR-34a axis promoted carcinogenesis of various types of cancers. However, no literature reported its contribution to the stemness of osteosarcoma cancer stem-like cells (OSLCs). We sought to determine whether the DNMT1/miR-34a axis facilitates the stemness of OSLCs. We here revealed the higher DNMT1 activity and expression, lower miR-34a expression with high methylation of its promoter, and stronger stemness of OSLCs, as manifested by elevated sphere and colony formation capacities; CD133, CD44, ABCG2, Bmi1, Sox2, and Oct4 protein amounts in vitro; and carcinogenicity in a nude mouse xenograft model, when compared to the parental U2OS cells. 5-Azacytidine (Aza-dC) repressed DNMT1 activation and upregulated miR-34a expression by promoter demethylation and suppressed the stemness of OSLCs in a dose-dependent manner. DNMT1 knockdown increased miR-34a and reduced the stemness of OSLCs. Transfection with a miR-34a mimic repressed the stemness of OSLCs but did not alter DNMT1 activity and expression. Conversely, DNMT1 overexpression declined miR-34a levels, promoting the stemness of U2OS cells. Transfection with a miR-34a inhibitor enhanced the stemness of U2OS cells, without affecting the DNMT1 activity and expression. Importantly, reexpression of miR-34a could rescue the effects of DNMT1 overexpression on miR-34a inhibition as well as the stemness promotion without affecting the activity and expression of DNMT1. Our results revealed that aberrant activation of DNMT1 caused promoter methylation of miR-34a, leading to miR-34a underexpression, and the role of the DNMT1/miR-34a axis in promoting and sustaining the stemness of OSLCs.
Collapse
|
31
|
Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol 2019; 122:526-537. [DOI: 10.1016/j.ijbiomac.2018.10.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
|