1
|
Mukherjee N, Katsnelson E, Brunetti TM, Michel K, Couts KL, Lambert KA, Robinson WA, McCarter MD, Norris DA, Tobin RP, Shellman YG. MCL1 inhibition targets Myeloid Derived Suppressors Cells, promotes antitumor immunity and enhances the efficacy of immune checkpoint blockade. Cell Death Dis 2024; 15:198. [PMID: 38459020 PMCID: PMC10923779 DOI: 10.1038/s41419-024-06524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are now the first-line treatment for patients with advanced melanoma. Despite promising clinical results, many patients fail to respond to these therapies. BH3 mimetics, a novel class of small molecule inhibitors that bind and inhibit anti-apoptotic members of the BCL2 family proteins such as BCL2 or MCL1, have been very successful in treating hematologic malignancies. However, there are limited studies on the immunomodulatory role of the BH3 mimetics. Several factors contribute to ICI resistance including myeloid-derived suppressor cells (MDSCs) that exert immunosuppressive effects through direct and indirect inhibition of antitumor immunity. Thus, targeting MDSCs to enhance antitumor immunity has the potential to enhance the efficacy of ICIs. In this study, we show that the MCL1 inhibitor S64315 reduces melanoma tumor growth in an immune cell-dependent manner in mice. Specifically, S64315 enhances antitumor immunity by reducing MDSC frequency and by promoting the activity of CD8+T cells. Additionally, human MDSCs are 10 times more sensitive to S64315 than cutaneous melanoma lines. Further, we found that a higher expression of MCL1 is associated with poor survival for patients treated with anti-PD-1. Finally, combining S64315 and anti-PD-1 significantly slowed tumor growth compared to either agent alone. Together, this proof-of-concept study demonstrates the potential of combining an MCL1 inhibitor with anti-PD-1 in the treatment of melanoma. It justifies the further development of next generation MCL1 inhibitors to improve efficacy of ICIs in treating malignant melanoma.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
| | - Elizabeth Katsnelson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA
| | - Tonya M Brunetti
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kylie Michel
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Kasey L Couts
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Karoline A Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
| | - William A Robinson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Aurora, CO, 80045, USA
| | - Martin D McCarter
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA
- Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, 80220, USA
| | - Richard P Tobin
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Surgical Oncology, Aurora, CO, 80045, USA.
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO, 80045, USA.
- University of Colorado Anschutz Medical Campus, Gates Center for Regenerative Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 237] [Impact Index Per Article: 118.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
3
|
Muthusamy K, Ramasamy G, Ravikumar C, Natesan S, Muthurajan R, Uthandi S, Kalyanasundaram K, Tiwari V. Exploring bixin from Bixa orellana L. seeds: quantification and in silico insights into its anti-cancer potential. J Biomol Struct Dyn 2023; 42:12244-12258. [PMID: 37837422 DOI: 10.1080/07391102.2023.2268202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Bixin, the key pigment of Bixa orellana L., is an apo-carotenoid found in the seed arils. The present study aimed to quantitatively determine the bixin content of seeds and explore its anti-cancer activity through in silico studies. The bixin content from the seeds of the local genotype, TNMTP8, quantified by RP-HPLC was 4.58 mg per gram. The prediction of pharmacological activity suggested that bixin may serve as a BRAF, MMP9, TNF expression inhibitors, and TP53 expression enhancer. According to molecular docking analysis, bixin interacted with eight different skin cancer targets and had the lowest binding energy compared to the standard drug, 5-fluorouracil. The binding score between bixin and the targets ranged from -4.7 to -8.7 kcal/mol. The targets BRAF and SIRT3 interacted well with bixin, with binding energies as low as -8.3 and -8.7 kcal/mol, respectively. Hence, the dynamic behavior of these two docked complexes throughout a 500 ns trajectory run was investigated further. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) values, and total contacts as a function of time recorded during scrutiny suggest that both complexes were stable. This was validated by post-molecular dynamics analysis using Molecular Mechanics Generalized Born Surface Area (MM-GBSA). Principal component analysis (PCA) was used to analyze the significant differences in motion exhibited by BRAF-Bixin and SIRT3-Bixin. The results showed that bixin is a promising source for potential treatment interventions in skin cancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaviyapriya Muthusamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gnanam Ramasamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Caroline Ravikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kumaran Kalyanasundaram
- Department of Forest Biology and Tree Improvement, Forest College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| | - Vikas Tiwari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
González-Palomo AK, Ruíz-Rodríguez VM, Hernández-Blanco DV, Pérez Vázquez FJ, Alcántara-Quintana LE, Cortés-Garcia JD. Atrazine modifies markers of melanocyte maturation and apoptosis in primary skin cultures. Toxicol Mech Methods 2023; 33:233-238. [PMID: 36093949 DOI: 10.1080/15376516.2022.2124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Atrazine (ATZ) is part of a group of herbicides called triazines. ATZ is widely used in agricultural areas of Mexico, commonly used for the selective control of weeds in corn and sorghum crops. The exposure to ATZ can have serious human health effects since its use was associated with the development of cutaneous melanoma in an epidemiological study. The aim of this study was to evaluate the expression of maturation and apoptotic markers in primary skin cultures exposed to ATZ. The primary skin cultures were exposed to 0.1, and 10 µM ATZ with or without ultraviolet (UV) radiation and the expression of maturation and apoptotic markers were evaluated by RT-qPCR. We observed a significant increase in all the melanocyte maturation markers in cells exposed to ATZ with or without UV, with SOX-9 and FAK (melanoblast markers) being the highest. Also, the expression of BCL-2 (anti-apoptotic marker) was the most increased gene in cells exposed to ATZ with or without UV. Low concentrations of ATZ and UV radiation induce genetic changes associated with the development of immature melanocytes and activate mechanisms associated with the inhibition of apoptosis characteristics of malignant cell transformation, which will allow proposing new therapeutic targets and generating new restrictions or care in farmers exposed to pesticides such as the ATZ.
Collapse
Affiliation(s)
- Ana K González-Palomo
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Victor M Ruíz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, México
| | - Diana V Hernández-Blanco
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.,Departamento de Dermatologia, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosi, Mexico
| | - Francisco J Pérez Vázquez
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Luz E Alcántara-Quintana
- Coordinación para la Innvoación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Juan D Cortés-Garcia
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.,Departamento de Dermatologia, Hospital Central "Dr Ignacio Morones Prieto", San Luis Potosi, Mexico
| |
Collapse
|
5
|
Mukherjee N, Dart CR, Amato CM, Honig-Frand A, Lambert JR, Lambert KA, Robinson WA, Tobin RP, McCarter MD, Couts KL, Fujita M, Norris DA, Shellman YG. Expression Differences in BCL2 Family Members between Uveal and Cutaneous Melanomas Account for Varying Sensitivity to BH3 Mimetics. J Invest Dermatol 2022; 142:1912-1922.e7. [PMID: 34942200 PMCID: PMC9635014 DOI: 10.1016/j.jid.2021.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Uveal melanoma (UM) is a subtype of melanoma. Although they share a melanocytic origin with cutaneous melanoma (CM), patients with UM have few treatment options. BCL2 homologous 3 mimetics are small-molecule drugs that mimic proapoptotic BCL2 family members. We compared BCL2 family member expression between UM and CM using immunoblot and The Cancer Genome Atlas transcriptomic analysis. UM has a unique signature of low BFL1 and high PUMA proteins compared with CM and 30 other cancer types, making them an attractive candidate for BCL2 homologous 3 protein mimetics. We tested the efficacy of a BCL2 inhibitor and MCL1 inhibitor (MCL1i) in UM, with viability assays, live-cell imaging, sphere assays, and mouse xenograft models. UM had a higher sensitivity to MCL1i than CM. Overexpression of BFL1 or knockdown of PUMA made the UM more resistant to MCL1i. In contrast, MAPK/extracellular signal‒regulated kinase inhibitor treatment in CM made them more sensitive to MCL1i. However, MCL1i-alone treatment was not very effective to reduce the UM initiating cells; to overcome this, we employed a combination of MCL1i with BCL2 inhibitor that synergistically inhibited UM initiating cell's capacity to expand. Overall, we identify a distinct expression profile of BCL2 family members for UM that makes them susceptible to BCL2 homologous 3 mimetics.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chiara R Dart
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carol M Amato
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam Honig-Frand
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James R Lambert
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karoline A Lambert
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard P Tobin
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin D McCarter
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kasey L Couts
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Dermatology Section, U.S. Department of Veterans Affairs Medical Center, Denver, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Dermatology Section, U.S. Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
6
|
DU BX, LIN P, LIN J. EGCG and ECG induce apoptosis and decrease autophagy via the AMPK/mTOR and PI3K/AKT/mTOR pathway in human melanoma cells. Chin J Nat Med 2022; 20:290-300. [DOI: 10.1016/s1875-5364(22)60166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/11/2022]
|
7
|
A Novel Regimen for Treating Melanoma: MCL1 Inhibitors and Azacitidine. Pharmaceuticals (Basel) 2021; 14:ph14080749. [PMID: 34451846 PMCID: PMC8399604 DOI: 10.3390/ph14080749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Although treatment options for melanoma patients have expanded in recent years with the approval of immunotherapy and targeted therapy, there is still an unmet need for new treatment options for patients that are ineligible for, or resistant to these therapies. BH3 mimetics, drugs that mimic the activity of pro-apoptotic BCL2 family proteins, have recently achieved remarkable success in the clinical setting. The combination of BH3 mimetic ABT-199 (venetoclax) plus azacitidine has shown substantial benefit in treating acute myelogenous leukemia. We evaluated the efficacy of various combinations of BH3 mimetic + azacitidine in fourteen human melanoma cell lines from cutaneous, mucosal, acral and uveal subtypes. Using a combination of cell viability assay, BCL2 family knockdown cell lines, live cell imaging, and sphere formation assay, we found that combining inhibition of MCL1, an anti-apoptotic BCL2 protein, with azacitidine had substantial pro-apoptotic effects in multiple melanoma cell lines. Specifically, this combination reduced cell viability, proliferation, sphere formation, and induced apoptosis. In addition, this combination is highly effective at reducing cell viability in rare mucosal and uveal subtypes. Overall, our data suggest this combination as a promising therapeutic option for some patients with melanoma and should be further explored in clinical trials.
Collapse
|
8
|
Al-Odat O, von Suskil M, Chitren R, Elbezanti W, Srivastava S, Budak-Alpddogan T, Jonnalagadda S, Aggarwal B, Pandey M. Mcl-1 Inhibition: Managing Malignancy in Multiple Myeloma. Front Pharmacol 2021; 12:699629. [PMID: 34349655 PMCID: PMC8327170 DOI: 10.3389/fphar.2021.699629] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.
Collapse
Affiliation(s)
- Omar Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Weam Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Hematology, Cooper Health University, Camden, NJ, United States
| | | | | | - Subash Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
9
|
Trisciuoglio D, Del Bufalo D. New insights into the roles of antiapoptotic members of the Bcl-2 family in melanoma progression and therapy. Drug Discov Today 2021; 26:1126-1135. [PMID: 33545382 DOI: 10.1016/j.drudis.2021.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Prosurvival and antiapoptotic B cell lymphoma-2 (Bcl-2) family proteins are often overexpressed in cutaneous melanoma, one of the most aggressive types of human cancer. They are also implicated in resistance to therapy and participate in melanoma progression by regulating various processes, including cell proliferation, migration, invasion, and crosstalk with the tumor microenvironment. In this review, we summarize recent findings related to prosurvival members of the Bcl-2 family beyond their canonical functions in the apoptotic pathway, mainly focusing on their potential roles as diagnostic and prognostic biomarkers in cutaneous melanoma. We also provide an overview of different approaches used to inhibit Bcl-2 proteins in preclinical and clinical studies, which are mainly based on the inhibition of protein expression or the disruption of their antiapoptotic functions.
Collapse
Affiliation(s)
- Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, via degli Apuli 4, 00185, Rome, Italy.
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome, Italy.
| |
Collapse
|
10
|
Haasler L, Kondadi AK, Tsigaras T, von Montfort C, Graf P, Stahl W, Brenneisen P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Arch Toxicol 2021; 95:1349-1365. [PMID: 33523262 PMCID: PMC8032633 DOI: 10.1007/s00204-021-02987-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the “parent” compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Graf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Abstract
Sphere assays are widely used in vitro techniques to enrich and evaluate the stem-like cell behavior of both normal and cancer cells. Utilizing three-dimensional in vitro sphere culture conditions provide a better representation of tumor growth in vivo than the more common monolayer cultures. We describe how to perform primary and secondary sphere assays, used for the enrichment and self-renewability studies of melanoma/melanocyte stem-like cells. Spheres are generated by growing melanoma cells at low density in nonadherent conditions with stem cell media. We provide protocols for preparing inexpensive and versatile polyHEMA-coated plates, setting up primary and secondary sphere assays in almost any tissue culture format and quantification methods using standard inverted microscopy. Our protocol is easily adaptable to laboratories with basic cell culture capabilities, without the need for expensive fluidic instruments.
Collapse
|
12
|
Wei AH, Roberts AW, Spencer A, Rosenberg AS, Siegel D, Walter RB, Caenepeel S, Hughes P, McIver Z, Mezzi K, Morrow PK, Stein A. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev 2020; 44:100672. [PMID: 32204955 PMCID: PMC7442684 DOI: 10.1016/j.blre.2020.100672] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022]
Abstract
Myeloid cell leukemia sequence 1 (MCL-1) is an antiapoptotic protein that plays a key role in promoting cell survival in multiple myeloma (MM), acute myeloid leukemia (AML), and non-Hodgkin lymphoma (NHL). Overexpression of MCL-1 is associated with treatment resistance and poor prognosis; thus, MCL-1 inhibitors are rational therapeutic options for malignancies depending on MCL-1. Several MCL-1 inhibitors have entered clinical trials, including AZD5991, S64315, AMG 176, and AMG 397. A key area of investigation is whether MCL-1 inhibitors will complement the activity of BCL-2 inhibitors, such as venetoclax, and synergistically enhance anti-tumor efficacy when given in combination with other anti-cancer drugs. Another important question is whether a safe therapeutic window can be found for this new class of inhibitors. In summary, inhibition of MCL-1 shows potential as a treatment for hematologic malignancies and clinical evaluation of MCL-1 inhibitors is currently underway.
Collapse
Affiliation(s)
- Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, VIC, Australia.
| | - Andrew W Roberts
- University of Melbourne, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Andrew Spencer
- Alfred Hospital, Monash University, Australian Centre for Blood Diseases, Melbourne, VIC, Australia
| | | | - David Siegel
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, NJ, USA
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
13
|
Mukherjee N, Amato CM, Skees J, Todd KJ, Lambert KA, Robinson WA, Van Gulick R, Weight RM, Dart CR, Tobin RP, McCarter MD, Fujita M, Norris DA, Shellman YG. Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma. Cancers (Basel) 2020; 12:E2182. [PMID: 32764384 PMCID: PMC7464298 DOI: 10.3390/cancers12082182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop treatments for patients with melanoma who are refractory to or ineligible for immune checkpoint blockade, including patients who lack BRAF-V600E/K mutations. This is often the case in patients diagnosed with rare melanoma subtypes such as mucosal and acral melanoma. Here, we analyzed data from the cutaneous melanoma The Cancer Genome Atlas Network (TCGA) transcriptomic and proteomic databases for differential expression of apoptosis molecules between melanomas with or without BRAF hotspot mutations. Our data indicated higher B-cell CLL/lymphoma 2 (BCL2) expression in melanoma without BRAF hotspot mutations, suggesting that BH3 mimetics, such as ABT-199 (venetoclax, a small molecule against BCL2), may be a potential therapeutic option for these patients. We explored the efficacy of combining two BH3 mimetics, ABT-199 and a myeloid cell leukemia sequence 1 (MCL1) inhibitor (S63845 or S64315/MIK665) in cutaneous, mucosal and acral melanomas, in vitro and in vivo. Our data indicate this combination induced cell death in a broad range of melanoma cell lines, including melanoma initiating cell populations, and was more potent in melanoma cells without BRAF-V600E/K mutations. Our knockdown/knockout experiments suggest that several pro-apoptotic BCL2 family members, BCL2-like 11 (apoptosis facilitator) (BIM), phorbol-12-myristate-13-acetate-induced protein 1 (NOXA) or BID, play a role in the combination-induced effects. Overall, our study supports the rationale for combining an MCL1 inhibitor with a BCL2 inhibitor as a therapeutic option in patients with advanced melanoma.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Carol M. Amato
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Jenette Skees
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Kaleb J. Todd
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Karoline A. Lambert
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - William A. Robinson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Robert Van Gulick
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Ryan M. Weight
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Chiara R. Dart
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Richard P. Tobin
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (R.P.T.); (M.D.M.)
| | - Martin D. McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (R.P.T.); (M.D.M.)
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Dermatology Section, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Dermatology Section, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
14
|
Mukherjee N, Skees J, Todd KJ, West DA, Lambert KA, Robinson WA, Amato CM, Couts KL, Van Gulick R, MacBeth M, Nassar K, Tan AC, Zhai Z, Fujita M, Bagby SM, Dart CR, Lambert JR, Norris DA, Shellman YG. MCL1 inhibitors S63845/MIK665 plus Navitoclax synergistically kill difficult-to-treat melanoma cells. Cell Death Dis 2020; 11:443. [PMID: 32513939 PMCID: PMC7280535 DOI: 10.1038/s41419-020-2646-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Current treatment for patients with metastatic melanoma include molecular-targeted therapies and immune checkpoint inhibitors. However, a subset of melanomas are difficult-to-treat. These melanomas include those without the genetic markers for targeted therapy, non-responsive to immunotherapy, and those who have relapsed or exhausted their therapeutic options. Therefore, it is necessary to understand and explore other biological processes that may provide new therapeutic approaches. One of most appealing is targeting the apoptotic/anti-apoptotic system that is effective against leukemia. We used genetic knockdown and pharmacologic approaches of BH3 mimetics to target anti-apoptotic BCL2 family members and identified MCL1 and BCLXL as crucial pro-survival members in melanoma. We then examined the effects of combining BH3 mimetics to target MCL1 and BCLXL in vitro and in vivo. These include clinical-trial-ready compounds such as ABT-263 (Navitoclax) and S63845/S64315 (MIK655). We used cell lines derived from patients with difficult-to-treat melanomas. In vitro, the combined inhibition of MCL1 and BCLXL resulted in significantly effective cell killing compared to single-agent treatment (p < 0.05) in multiple assays, including sphere assays. The combination-induced cell death was independent of BIM, and NOXA. Recapitulated in our mouse xenograft model, the combination inhibited tumor growth, reduced sphere-forming capacity (p < 0.01 and 0.05, respectively), and had tolerable toxicity (p > 0.40). Taken together, this study suggests that dual targeting of MCL1 and BCLXL should be considered as a treatment option for difficult-to-treat melanoma patients.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Jenette Skees
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Kaleb J Todd
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Drake A West
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - William A Robinson
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Carol M Amato
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kasey L Couts
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Robert Van Gulick
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Morgan MacBeth
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Kelsey Nassar
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Aik-Choon Tan
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, US
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
| | - Stacey M Bagby
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - Chiara R Dart
- University of Colorado Anschutz Medical Campus, School of Medicine, Division of Medical Oncology, Mail Stop 8117, Aurora, CO, 80045, US
| | - James R Lambert
- Department of Pathology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8104, Aurora, CO, 80045, US
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US
- Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO, 80220, US
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Mail Stop 8127, Aurora, CO, 80045, US.
- University of Colorado Anschutz Medical Campus, Gates Center for Regenerative Medicine, Aurora, CO, 80045, US.
| |
Collapse
|
15
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
16
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
17
|
Denisenko TV, Gorbunova AS, Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev Biol 2019; 7:355. [PMID: 31921862 PMCID: PMC6932960 DOI: 10.3389/fcell.2019.00355] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria in addition to be a main cellular power station, are involved in the regulation of many physiological processes, such as generation of reactive oxygen species, metabolite production and the maintenance of the intracellular Ca2+ homeostasis. Almost 100 years ago Otto Warburg presented evidence for the role of mitochondria in the development of cancer. During the past 20 years mitochondrial involvement in programmed cell death regulation has been clarified. Moreover, it has been shown that mitochondria may act as a switchboard between various cell death modalities. Recently, accumulated data have pointed to the role of mitochondria in the metastatic dissemination of cancer cells. Here we summarize the modern knowledge concerning the contribution of mitochondria to the invasion and dissemination of tumor cells and the possible mechanisms behind that and attempts to target metastatic cancers involving mitochondria.
Collapse
Affiliation(s)
| | - Anna S Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
18
|
Ahn CH, Lee WW, Jung YC, Shin JA, Hong KO, Choi S, Swarup N, Kim J, Ahn MH, Jung M, Cho SD, Jin B. Antitumor effect of TW-37, a BH3 mimetic in human oral cancer. Lab Anim Res 2019; 35:27. [PMID: 32257914 PMCID: PMC7081630 DOI: 10.1186/s42826-019-0028-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
TW-37 is a small molecule B cell lymphoma-2 (Bcl-2) homology 3 mimetic with potential anticancer activities. However, the in vivo anti-cancer effect of TW-37 in human oral cancer has not been properly studied yet. Here, we attempted to confirm antitumor activity of TW37 in human oral cancer. TW-37 significantly inhibited cell proliferation and increased the number of dead cells in MC-3 and HSC-3 human oral cancer cell lines. TW-37 enhanced apoptosis of both cell lines evidenced by annexin V/propidium iodide double staining, sub-G1 population analysis and the detection of cleaved poly (ADP-ribose) polymerase and caspase-3. In addition, TW-37 markedly downregulated the expression of Bcl-2 protein, while not affecting Bcl-xL or myeloid cell leukemia-1. In vivo, TW-37 inhibited tumor growth in a nude mice xenograft model without any significant liver and kidney toxicities. Collectively, these data reveal that TW-37 may be a promising small molecule to inhibit human oral cancer.
Collapse
Affiliation(s)
- Chi-Hyun Ahn
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Won Woo Lee
- 2Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-dong, Seongnam, 13488 Republic of Korea
| | - Yun Chan Jung
- Chaon, 301-3, 240, Pangyoyeok-ro, Bundang-gu, Seongnam, 13493 Republic of Korea
| | - Ji-Ae Shin
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Kyoung-Ok Hong
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Sujung Choi
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Neeti Swarup
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Jihoon Kim
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Min-Hye Ahn
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Minjung Jung
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Sung-Dae Cho
- 1Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080 Republic of Korea
| | - Bohwan Jin
- 2Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-dong, Seongnam, 13488 Republic of Korea
| |
Collapse
|
19
|
Eberle J. Countering TRAIL Resistance in Melanoma. Cancers (Basel) 2019; 11:cancers11050656. [PMID: 31083589 PMCID: PMC6562618 DOI: 10.3390/cancers11050656] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope of finally defeating this deadly disease. TNF-related apoptosis-inducing ligand (TRAIL) represents a promising antitumor strategy. The principal sensitivity of melanoma cells for TRAIL was demonstrated in previous studies; however, inducible resistance appeared as a major problem. To address this issue, combination strategies were tested, and survival pathway inhibitors were shown to sensitize melanoma cells for TRAIL-induced apoptosis. Finally, cell cycle inhibition was identified as a common principle of TRAIL sensitization in melanoma cells. Mitochondrial apoptosis pathways, pro- and antiapoptotic Bcl-2 proteins as well as the rheostat consisted of Smac (Second mitochondria-derived activator of caspase) and XIAP (X-linked inhibitor of apoptosis protein) appeared to be of particular importance. Furthermore, the role of reactive oxygen species (ROS) was recognized in this setting. Inducible TRAIL resistance in melanoma can be explained by (i) high levels of antiapoptotic Bcl-2 proteins, (ii) high levels of XIAP, and (iii) suppressed Bax activity. These hurdles have to be overcome to enable the use of TRAIL in melanoma therapy. Several strategies appear as particularly promising, including new TRAIL receptor agonists, Smac and BH3 mimetics, as well as selective kinase inhibitors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany.
| |
Collapse
|