1
|
Niaki NM, Hatefnia F, Heidari MM, Tabean M, Mobed A. Alpha-Fetoprotein (AFP) biosensors. Clin Chim Acta 2025; 573:120293. [PMID: 40216053 DOI: 10.1016/j.cca.2025.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein mainly produced during fetal development, and elevated levels in adults are frequently associated with liver diseases, especially hepatocellular carcinoma (HCC), as well as certain germ cell tumors. Measuring AFP in biological samples is crucial for early diagnosis, monitoring disease progression, and evaluating treatment efficacy. While traditional detection methods like enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay are dependable, they often face limitations such as lengthy processes, complexity, and the need for specialized equipment. In recent years, biosensing technologies have emerged as promising alternatives for detecting AFP, offering advantages like increased sensitivity, real-time monitoring, and ease of use. Various biosensing platforms, including electrochemical, optical, and piezoelectric sensors, have been developed to enable quick and specific detection of AFP. These sensors employ molecular recognition elements, such as antibodies, aptamers, or nanoparticles, to selectively bind AFP, producing a measurable signal. This article explores the structure and mechanisms of action of AFP, the diseases linked to it, and describes several biosensing technologies. It also reviews recent advancements in AFP biosensing, discussing their principles, performance, and potential applications in clinical settings. Furthermore, the article highlights the challenges and future prospects for developing cost-effective, portable, and multiplexed AFP biosensors, underscoring their potential to revolutionize early disease detection and personalized healthcare.
Collapse
Affiliation(s)
- Nava Moghadasian Niaki
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Hatefnia
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tabean
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Iran.
| |
Collapse
|
2
|
Deng ZJ, Liu HT, Yuan BH, Pan LX, Teng YX, Su JY, Luo CP, Guo PP, Zhong JH. lncSNHG16 promotes hepatocellular carcinoma development by inhibiting autophagy. Clin Transl Oncol 2025; 27:1612-1622. [PMID: 39298046 DOI: 10.1007/s12094-024-03730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
OBJECTIVE To investigate the expression of long non-coding RNA lncSNHG16 in hepatocellular carcinoma (HCC), associations between its expression and patient survival, and its potential role in regulating autophagy in the disease. METHODS Expression of lncSNHG16 was measured using quantitative real-time PCR in HCC cells in culture and HCC tissues from patients. Effects of lncSNHG16 overexpression were examined in HCC cultures using assays of cell proliferation, wound healing, and migration or invasion in Transwell dishes. Effects of lncSNHG16 overexpression were also examined in subcutaneous tumor in mice. Relationships of lncSNHG16 expression to autophagy and apoptosis in HCC cultures were explored using western blotting and flow cytometry. RESULTS Higher lncSNHG16 expression in HCC tissues was associated with significantly worse overall and recurrence-free survival of patients. Overexpressing lncSNHG16 in HCC cell culture promoted cell proliferation, migration, and invasion while suppressing apoptosis. lncSNHG16 was associated with upregulation of STAT3 as well as inhibition of autophagy and associated apoptosis. Overexpressing lncSNHG16 accelerated tumor growth and weight in mice. CONCLUSION The non-coding RNA lncSNHG16 suppresses autophagy and associated apoptosis in HCC, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | - Hao-Tian Liu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | - Bao-Hong Yuan
- YanAn Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Li-Xin Pan
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | - Yu-Xian Teng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | - Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China
| | - Cheng-Piao Luo
- Pathology Department, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Ping-Ping Guo
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China.
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, He Di Rd. #71, Nanning, 530021, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumors, Nanning, 530021, China.
| |
Collapse
|
3
|
Scialpi R, Espinosa-Sotelo R, Bertran E, Dituri F, Giannelli G, Fabregat I. New Hepatocellular Carcinoma (HCC) Primary Cell Cultures as Models for Exploring Personalized Anti-TGF-β Therapies Based on Tumor Characteristics. Int J Mol Sci 2025; 26:2430. [PMID: 40141074 PMCID: PMC11942228 DOI: 10.3390/ijms26062430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Transforming growth factor-beta (TGF-β) plays a dual role in hepatocellular carcinoma (HCC), acting as a tumor suppressor in early stages by inducing cell cycle arrest and apoptosis, and as a promoter in advanced stages by fostering tumor progression, epithelial-mesenchymal transition (EMT), and metastasis. Understanding TGF-β's role in HCC progression, particularly its impact on tumor-stroma interactions, is crucial for developing personalized therapies. This study aims to clarify TGF-β function in HCC using patient-derived cell lines and advanced 2D and 3D culture models. Three new cell lines (HLC21, HLC19 tumoral, and HLC19 metastatic) were isolated from HCC patient biopsies, characterizing their phenotypic markers and responses to TGF-β and its inhibitor, galunisertib. HLC21 cells displayed a mixed epithelial-mesenchymal phenotype, responding to TGF-β suppressing growth and undergoing EMT, which were inhibited by galunisertib. Conversely, HLC19 tumoral and metastatic cells exhibited mesenchymal phenotypes and were resistant to both TGF-β suppression and galunisertib effects. In 3D co-cultures with hepatic fibroblasts, TGF-β inhibitory effects were diminished for responsive cell lines, while resistant lines maintained their non-responsiveness. These findings highlight TGF-β's dual role in HCC and its influence on tumor-stroma crosstalk, offering valuable models for exploring personalized anti-TGF-β therapies based on tumor characteristics.
Collapse
Affiliation(s)
- Rosanna Scialpi
- TGF-β and Cancer Group—Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08860 L’Hospitalet de Llobregat, Spain; (R.S.); (R.E.-S.); (E.B.)
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. De Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Rut Espinosa-Sotelo
- TGF-β and Cancer Group—Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08860 L’Hospitalet de Llobregat, Spain; (R.S.); (R.E.-S.); (E.B.)
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Bertran
- TGF-β and Cancer Group—Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08860 L’Hospitalet de Llobregat, Spain; (R.S.); (R.E.-S.); (E.B.)
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francesco Dituri
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. De Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Gianluigi Giannelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. De Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Isabel Fabregat
- TGF-β and Cancer Group—Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08860 L’Hospitalet de Llobregat, Spain; (R.S.); (R.E.-S.); (E.B.)
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Duangchan K, Limjunyawong N, Rodponthukwaji K, Ittiudomrak T, Thaweesuvannasak M, Kunwong N, Metheetrairut C, Sirivatanauksorn V, Sirivatanauksorn Y, Kositamongkol P, Mahawithitwong P, Tovikkai C, Nguyen KT, Srisawat C, Punnakitikashem P. Development of Small Interfering RNA Loaded Cationic Lipid Nanoparticles for the Treatment of Liver Cancer with Elevated α-Fetoprotein Expression. ACS BIO & MED CHEM AU 2025; 5:78-88. [PMID: 39990947 PMCID: PMC11843345 DOI: 10.1021/acsbiomedchemau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 02/25/2025]
Abstract
α-Fetoprotein (AFP) is an oncogenic glycoprotein that is overexpressed in most patients with liver cancer. Moreover, it significantly affects tumorigenesis and progression, particularly by inhibiting programmed cell death or apoptosis. The treatment of liver cancer with chemotherapy is currently still in use, but its toxicity is a major concern. Alternatively, targeted therapy, especially small interfering RNA (siRNA)-based therapeutics that utilize siRNA to suppress target gene expression, is a promising cancer treatment approach that can help reduce such drawbacks. However, transporting siRNA into cells is a challenge due to its ease of degradation and limited cell membrane permeability. To overcome this limitation, we fabricated cationic lipid nanoparticles (cLNPs) to deliver AFP-targeted siRNA (siAFP) to AFP-producing liver cancer cells. Our results illustrated that these nanoparticles had a high capacity for siRNA encapsulation (>95%) and entered the cancer cells efficiently. Cell internalization of siAFP-loaded cLNPs resulted in the silencing of AFP mRNA expression and led to increased apoptotic cell death by inducing caspase-3/7 activity. This suggested that our cLNPs could be used as a powerful siRNA delivery carrier and siAFP-loaded cLNPs might be a useful strategy for treating liver cancer in the future.
Collapse
Affiliation(s)
- Kongpop Duangchan
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nathachit Limjunyawong
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
of Research Excellence in Allergy and Immunology, Faculty of Medicine
Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kamonlatth Rodponthukwaji
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Teeranai Ittiudomrak
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research
Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mattika Thaweesuvannasak
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Natsuda Kunwong
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanatip Metheetrairut
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vorapan Sirivatanauksorn
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yongyut Sirivatanauksorn
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prawat Kositamongkol
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prawej Mahawithitwong
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chutwichai Tovikkai
- Department
of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kytai T. Nguyen
- Department
of Bioengineering, University of Texas at
Arlington, Arlington, Texas76019, United States
| | - Chatchawan Srisawat
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department
of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Center of Research Excellence in Theranostic Nanomedicine, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
5
|
Atta D, Abou-Shanab AM, Kamar SS, Soliman MW, Magdy S, El-Badri N. Amniotic Membrane-Derived Extracellular Matrix for Developing a Cost-Effective Xenofree Hepatocellular Carcinoma Organoid Model. J Biomed Mater Res A 2025; 113:e37882. [PMID: 39925207 DOI: 10.1002/jbm.a.37882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Current limitations in the treatment of hepatocellular carcinoma (HCC) include tumor recurrence, chemoresistance, and severe side effects, all of which call for novel cancer models that better represent the tumor microenvironment (TME). 3D organoids hold promise due to their increased relevance to the TME hallmarks. Herein, we aim to establish an HCC organoid model that mimics the HCC microenvironment and its metabolic interactome. The organoid comprises a decellularized human amniotic membrane (dAM) as a biomimetic matrix, Huh-7 cell line, bone marrow mesenchymal stromal cells (BM-MSC), and human umbilical vein endothelial cell-conditioned medium (HUVEC-CM). The structure integrity of the HCC organoid was monitored using H&E staining at 7, 14, and 21 days and transmission electron microscopy (TEM) and scanning electron microscopy (SEM) at 21 days. The established organoid model maintained its viability over 21 days as tested by propidium iodide (PI) fluorescence staining, MTT, upregulated expression of proliferating cell nuclear antigen (PCNA), and alpha-fetoprotein (AFP). The expression of vascular endothelial growth factor (VEGF) in the HCC organoid induced a neo-angiogenic response in ovo. Metabolic reprogramming in the HCC organoid showed a shift toward glycolysis as indicated by promoted glucose consumption, upregulated lactate production, and reduced cellular pyruvate concentration. Oxidative phosphorylation was suppressed as indicated by reduced reactive oxygen species (ROS), and hydrogen peroxide (H2O2), and halted urea cycle progression. The dataset shows that the dAM may hold a promise for its use as extracellular matrix (ECM) source for HCC organoid models, by replicating the HCC microenvironment and metabolic signature, thus holding a promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Samaa Samir Kamar
- Histology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Pan Y, Yin Q, Wang Z, Wu G, Liu K, Li X, Liu J, Zeng J, Lin B, Li W, Zhu M, Li M. AFP shields hepatocellular carcinoma from macrophage phagocytosis by regulating HuR-mediated CD47 translocation in cellular membrane. Transl Oncol 2025; 52:102240. [PMID: 39667226 PMCID: PMC11699289 DOI: 10.1016/j.tranon.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Alpha fetoprotein(AFP) overexpression connecting with macrophage dysfunction remain poorly defined. In this study, explore AFP regulates macrophage immunomodulation in hepatocellular carcinoma(HCC) through comprehensive in vitro and in vivo studies. METHODS Immunohistochemical and immunofluorescence staining was used to analyze the relativity of AFP and cellular membrane CD47 expression in clinical 30 HCC tissues, and the expression of AFP and CD47 in HCC cells. The intelligent living-cell high-throughput imaging analyzer was applied to dynamically track and image of macrophages to phagocytize HCC cells. The effect of AFP on regulating the level of CD47 in cellular membrane and growth of tumor in vivo was performed by animal experiment. The association of AFP and CD47 in HCC cells was detected by single cell analysis. RESULTS The present results indicated that AFP upregulated the localization of CD47 on the HCC cell surface. CD47 overexpression stimulates HCC to escape immune surveillance by transmitting "don't eat me" signals to macrophages, lead to inhibit macrophage to phagocytize HCC cells. Mechanistically, the results demonstrated that AFP enhanced CD47 membrane translocation by interacting with Hu-Antigen R(HuR), an RNA-binding protein that regulates mRNA stability and translation. AFP alters the subcellular distribution of HuR, increasing its cytoplasmic accumulation and binding to CD47 transcript. CONCLUSIONS AFP enhanced CD47 membrane translocation by interacting with HuR. These findings proved that AFP could inhibit macrophage to phagocytize HCC cells by upregulating the localization of CD47 on the HCC cell surface. Combination of AFP with CD47 blockade may be a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Yinglian Pan
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Zhaoliang Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Laboratory, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, PR China
| | - Gang Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Laboratory, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, PR China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Xiaowei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jiangzheng Zeng
- Department of Medical Oncology, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, Hainan Province, PR China; Department of Medical Oncology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China.
| |
Collapse
|
7
|
Ji Z, Fang D, Li J, Cao R, Wang H, Meng Z, Guo Z, Zhao Y. Serum Alpha-fetoprotein Associated with Treatment Efficacy of Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma: A Meta-Analysis and a Retrospective Cohort Study. HEPATITIS MONTHLY 2025; 24. [DOI: 10.5812/hepatmon-145022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 01/03/2025]
Abstract
Context: Serum alpha-fetoprotein (AFP) has been shown to be valuable in tumor staging and predicting survival outcomes. In this investigation, we conducted a retrospective cohort analysis and a meta-analysis to assess the predictive significance of initial AFP levels in patients with hepatocellular carcinoma (HCC) who underwent treatment with immune checkpoint inhibitors (ICIs). Methods: We searched databases from inception until 14 July 2024 to identify cohort studies involving ICI treatments in HCC patients with baseline AFP data. We also retrospectively analyzed patients with HCC treated with ICIs to assess the therapeutic effect in the high AFP (AFP ≥ 400 ng/mL) group and the low AFP (AFP < 400 ng/mL) group in terms of overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). Results: In the meta-analysis, a total of 34 studies, comprising 8,799 patients, were included, while the retrospective cohort study encompassed 55 patients. In the meta-analysis, the summarized hazard ratios (HRs) of AFP ≥ 400 ng/mL versus AFP < 400 ng/mL for ICI therapy indicated that the high AFP group had a poorer outcome compared to the low AFP group, with a pooled HR for OS of 1.69 (95% CI: 1.57 - 1.82, P < 0.001) and a pooled HR for PFS of 1.47 (95% CI: 1.33 - 1.63, P < 0.001). In the retrospective cohort study, higher AFP levels were associated with a lower DCR for ICIs, with a DCR of 42.9% in the high AFP group and 77.8% in the low AFP group (P = 0.008). Cox model analysis showed that higher serum AFP was an independent predictor for shorter OS (HR 3.584, 95% CI: 1.466 - 8.762, P = 0.005). The toxicity analysis also displayed a strong association between high AFP and the occurrence of immune-related adverse events (irAEs) (P = 0.008). Conclusions: Higher serum AFP is associated with poorer efficacy of ICI treatment in HCC patients.
Collapse
|
8
|
Han RY, Gan LJ, Lang MR, Ren SH, Liu DM, Li GT, Liu YY, Tian XD, Zhu KW, Sun LY, Chen L, Song TQ. Lenvatinib, sintilimab combined interventional treatment vs bevacizumab, sintilimab combined interventional treatment for intermediate-advanced unresectable hepatocellular carcinoma. World J Gastroenterol 2024; 30:4620-4635. [PMID: 39575400 PMCID: PMC11572639 DOI: 10.3748/wjg.v30.i43.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Bevacizumab and sintilimab combined interventional treatment (BeSiIT) and L envatinib and sintilimab combined interventional treatment (LeSiIT) are two commonly used therapeutic regimens for intermediate-advanced hepatocellular carcinoma (HCC) in clinical practice. AIM To compare the clinical efficacy and safety of BeSiIT and LeSiIT for the treatment of intermediate and advanced HCC. METHODS Patients diagnosed with intermediate-advanced HCC and initially treated with BeSiIT or LeSiIT in the Tianjin Medical University Cancer Institute and Hospital between February 2020 and July 2021 were included. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), conversion rate, and treatment-related adverse events. RESULTS Total 127 patients met the inclusion criteria and were divided into BeSiIT and LeSiIT groups. Twenty-eight and fifty patients in the BeSiIT and LeSiIT groups, respectively, were assessed after 1:2 propensity score matching. PFS and OS rates were not significantly different between the two groups. No significant variations were noted in ORRs or DCRs according to the Response Evaluation Criteria in Solid Tumors (RECIST), and modified RECIST. BeSiIT group showed a better conversion rate than the LeSiIT group (P = 0.043). Both groups showed manageable toxicity profiles. Multivariate analysis showed that the independent factors associated with PFS were alpha-fetoprotein levels and carcinoembryonic antigen score. CONCLUSION In intermediate-to-advanced HCC, the BeSiIT and LeSiIT groups exhibited acceptable toxicities and comparable PFS, OS, and ORR.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Liver Neoplasms/therapy
- Male
- Middle Aged
- Female
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Bevacizumab/therapeutic use
- Bevacizumab/administration & dosage
- Bevacizumab/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Aged
- Progression-Free Survival
- Quinolines/therapeutic use
- Quinolines/adverse effects
- Quinolines/administration & dosage
- Retrospective Studies
- Phenylurea Compounds/therapeutic use
- Phenylurea Compounds/adverse effects
- Phenylurea Compounds/administration & dosage
- Adult
- Neoplasm Staging
- Treatment Outcome
- Chemoembolization, Therapeutic/methods
- Chemoembolization, Therapeutic/adverse effects
Collapse
Affiliation(s)
- Ru-Yu Han
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lei-Juan Gan
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Meng-Ran Lang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shao-Hua Ren
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Dong-Ming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Guang-Tao Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Ya-Yue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Xin-Di Tian
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Kang-Wei Zhu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li-Yu Sun
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
9
|
Xu J, Liu K, Gong Z, Liu J, Lin H, Lin B, Li W, Zhu M, Li M. IL-6/STAT3 signaling pathway induces prostate apoptosis response protein-4(PAR-4) to stimulate malignant behaviors of hepatocellular carcinoma cells. Ann Hepatol 2024; 29:101538. [PMID: 39147129 DOI: 10.1016/j.aohep.2024.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Zhixun Gong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Haifeng Lin
- Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China; Institution of Tumor, Hainan Medical University, Hiakou 570102, Hainan Province, PR China.
| |
Collapse
|
10
|
Lin Z, Pan R, Wu L, Zhu F, Fang Q, Kwok HF, Lu X. AFP-HSP90 mediated MYC/MET activation promotes tumor progression in hepatocellular carcinoma and gastric cancers. Cancer Cell Int 2024; 24:283. [PMID: 39135041 PMCID: PMC11321088 DOI: 10.1186/s12935-024-03455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Alpha-fetoprotein (AFP) elevation is a well-known biomarker in various diseases, particularly in the diagnosis of hepatocellular carcinoma (HCC). Intracellular AFP has been previously implicated in promoting tumorigenesis. In this study, we discovered that AFP enhances the stability of oncoproteins c-MYC and c-MET, thereby facilitating the progression of liver and gastric tumors. Our findings suggest that AFP acts by stabilizing these oncoproteins, which are clients of heat shock protein 90 (HSP90), and prevents their degradation through ubiquitination. Intriguingly, we identified AFP as a novel co-chaperone of HSP90, demonstrating its ability to regulate the stabilization of HSP90 client proteins. Furthermore, our results indicate that inhibiting AFP or HSP90 enhances the cytotoxicity of chemotherapeutic agents in AFP-producing HCC and gastric cancer cells. These findings have significant implications for the development of therapeutic strategies targeting AFP-producing tumors, as the AFP-HSP90-mediated activation of c-MYC and c-MET provides new insights into potential treatment approaches. In summary, this study sheds light on the role of AFP in promoting tumor progression by stabilizing oncoproteins through its interaction with HSP90. The identification of this mechanism opens up new avenues for therapeutic interventions in AFP-producing tumors.
Collapse
Affiliation(s)
- Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
11
|
He ZJ, He K, Cai SW, Zhang R, Shao ZB, Wang ST, Li XP, Li YC, Liu WJ, Zhu YQ, Zeng SJ, Su YB, Shi Z. Phase separation of RNF214 promotes the progression of hepatocellular carcinoma. Cell Death Dis 2024; 15:483. [PMID: 38969650 PMCID: PMC11226663 DOI: 10.1038/s41419-024-06869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and the expression and function of an uncharacterized protein RNF214 in HCC are still unknown. Phase separation has recently been observed to participate in the progression of HCC. In this study, we investigated the expression, function, and phase separation of RNF214 in HCC. We found that RNF214 was highly expressed in HCC and associated with poor prognosis. RNF214 functioned as an oncogene to promote the proliferation, migration, and metastasis of HCC. Mechanically, RNF214 underwent phase separation, and the coiled-coil (CC) domain of RNF214 mediated its phase separation. Furthermore, the CC domain was necessary for the oncogenic function of RNF214 in HCC. Taken together, our data favored that phase separation of RNF214 promoted the progression of HCC. RNF214 may be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zheng-Jie He
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke He
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Song-Wang Cai
- Department of Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Rui Zhang
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhong-Bao Shao
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Sheng-Te Wang
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao-Peng Li
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei-Jing Liu
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - You-Qing Zhu
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shi-Jie Zeng
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Bin Su
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhi Shi
- Cancer Minimally Invasive Therapies Centre, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
- Department of Cell Biology & Institute of Biomedicine, Guangdong Provincial Biotechnology & Engineering Technology Research Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Genomic Medicine Engineering Research Center of Ministry of Education, MOE Key Laboratory of Tumor Molecular Biology, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
12
|
Wang J, Yang K, Yang X, Jin T, Tian Y, Dai C, Xu F. HHLA2 promotes hepatoma cell proliferation, migration, and invasion via SPP1/PI3K/AKT signaling pathway. Mol Carcinog 2024; 63:1275-1287. [PMID: 38578157 DOI: 10.1002/mc.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most malignant tumors characterized by poor prognosis and high mortality rates. Emerging evidence underscores the crucial role of the B7 protein family in various cancers, including HCC. However, the involvement of the human endogenous retrovirus H long-terminal repeat-associated protein 2 (HHLA2, or B7-H5) in HCC remains unclear. Immunohistochemistry was employed to assess the differential expression of HHLA2 between HCC and normal liver tissues. A battery of assays, including CCK8, EdU, tablet clone-forming, Transwell, and wound healing assays, were conducted to elucidate the function and potential mechanisms of HHLA2 in the malignant biological behaviors of HCC. Additionally, a xenograft mouse model was established to evaluate the tumorigenicity of hepatoma cell lines exhibiting different HHLA2 expression levels in vivo. Western blot analysis was used to analyze HHLA2, secretory phosphoprotein 1 (SPP1), and PI3K/AKT/mTOR levels. HHLA2 exhibited elevated expression in HCC tissues, correlating with poor tumor differentiation and shortened overall survival in HCC patients. In vitro experiments demonstrated that HHLA2 overexpression (OE) promoted the proliferation, migration, and invasion of hepatoma cells, while in vivo experiments revealed that HHLA2 OE enhanced HCC tumor growth. Conversely, inhibition of HHLA2 expression yielded the opposite effect. Downregulation of SPP1 inhibited the proliferation, migration, and invasion induced by HHLA2 OE, and this effect was linked to the PI3K/AKT/mTOR signaling pathway. Our findings indicate that HHLA2 promotes the proliferation, migration, and invasion of hepatoma cells via the SPP1/PI3K/AKT signaling pathway, establishing it as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Yang
- Department of Tradition Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Zhang Q, Li J, Liu F, Hu J, Liu F, Zou J, Wang X. Ephrin B2 (EFNB2) potentially protects against intervertebral disc degeneration through inhibiting nucleus pulposus cell apoptosis. Arch Biochem Biophys 2024; 756:109990. [PMID: 38636690 DOI: 10.1016/j.abb.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1β) treatment of NP cells to simulate the IDD environment indicated that IL-1β treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1β, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1β-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1β, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.
Collapse
Affiliation(s)
- Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubing Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfei Zou
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
An C, Wei R, Yao W, Han W, Li W, Shi G, Wu P. Association of serum AFP trajectories and hepatocellular carcinoma outcomes after hepatic arterial infusion chemotherapy: A longitudinal, multicenter study. Cancer Med 2024; 13:e7319. [PMID: 38819606 PMCID: PMC11141330 DOI: 10.1002/cam4.7319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 12/30/2023] [Indexed: 06/01/2024] Open
Abstract
AIM This study aims to investigate α-fetoprotein (AFP) trajectories for prediction of survival outcomes after hepatic arterial infusion chemotherapy (HAIC) treatment in large hepatocellular carcinoma (HCC). METHODS From May 2014 to June 2020, 889 eligible patients with large HCC underwent HAIC were retrospectively enrolled from five hospitals. A latent class growth mixed (LCGM) model was applied to distinguish potential AFP level dynamic changing trajectories. Inverse-probability-of-treatment weighted (IPTW) analyses were performed to eliminate unmeasured confounders through marginal structural models. Multivariate Cox proportional hazard regression analyses were used to determine the overall survival (OS) in patients with large HCC. Performance of these serum markers for survival prediction was compared by areas under receiver operating characteristic analysis with the Delong test. RESULTS The median follow-up time was 23.7 (interquartile range, 3.8-115.3). A total of 1009 patients with large HCC, who underwent HAIC with AFP repeatedly measured 3-10 times, were enrolled in the study. Three distinct trajectories of these serum AFP were identified using the LCGM model: high stable (37.0%; n = 373), low stable (15.7%; n = 159), and sharp-falling (47.3%; n = 477). Multivariate Cox proportional hazard regression analyses found that ALBI stage 2-3, BCLC-C stage and high-stable AFP trajectories were associated with OS. AFP trajectories yield the optimal predictive performance in all risk factors. CONCLUSIONS The AFP trajectories based on longitudinal AFP change showed outstanding performance for predicting survival outcomes after HAIC treatment in large HCC, which provide a potential monitoring tool for improving clinical decision-making.
Collapse
Affiliation(s)
- Chao An
- Department of Minimal Invasive InterventionState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Ran Wei
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wang Yao
- Department of Interventional OncologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Wenwen Han
- Department of International Radiology and Vascular SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Wang Li
- Department of Minimal Invasive InterventionState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Ge Shi
- Medical Cosmetic and Plastic Surgery Center, The Sixth Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Peihong Wu
- Department of Minimal Invasive InterventionState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
15
|
Zhang P, Zhu L, Pan X. A comprehensive analysis of the oncogenic and prognostic role of TBC1Ds in human hepatocellular carcinoma. PeerJ 2024; 12:e17362. [PMID: 38766486 PMCID: PMC11100476 DOI: 10.7717/peerj.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Backgrounds TBC1D family members (TBC1Ds) are a group of proteins that contain the Tre2-Bub2-Cdc16 (TBC) domain. Recent studies have shown that TBC1Ds are involved in tumor growth, but no analysis has been done of expression patterns and prognostic values of TBC1Ds in hepatocellular carcinoma (HCC). Methods The expression levels of TBC1Ds were evaluated in HCC using the TIMER, UALCN and Protein Atlas databases. The correlation between the mRNA levels of TBC1Ds and the prognosis of patients with HCC in the GEPIA database was then analyzed. An enrichment analysis then revealed genes that potentially interact with TBC1Ds. The correlation between levels of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC were studied using the TIMER 2.0 database. Finally, a series of in vitro assays verified the role of TBC1Ds in HCC progression. Results This study revealed the upregulated expression of TBC1Ds in HCC and the strong positive correlation between the mRNA levels of TBC1Ds and poor prognosis of patients with HCC. The functions of TBC1Ds were mainly related to autophagy and the AMPK pathway. There was also a significant correlation between level of TBC1Ds and tumor-infiltrating immune cells (TIICs) in HCC. The promoting role of TBC1Ds in HCC progression was verified in vitro assays. Conclusion The results of this analysis indicate that TBC1Ds may serve as new biomarkers for early diagnosis and treatment of HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Prognosis
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Autophagy/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Cell Line, Tumor
Collapse
Affiliation(s)
- Pei Zhang
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhu
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Pan
- The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Chaudhuri AG, Samanta S, Dey M, Raviraja NS, Dey S. Role of Alpha-Fetoprotein in the Pathogenesis of Cancer. J Environ Pathol Toxicol Oncol 2024; 43:57-76. [PMID: 38505913 DOI: 10.1615/jenvironpatholtoxicoloncol.2023049145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Alpha-fetoprotein (AFP) belongs to the albuminoid protein family and is considered as the fetal analog of serum albumin. This plasma protein is initially synthesized in the fetal liver and yolk sac and shows a maximum peak near the end of the first trimester. Later, concentrations begin to decline prenatally and drop precipitously after birth. This protein has three key ligand-binding pockets for interactions with various biomolecules. It contains multiple phosphorylation and acetylation sites for the regulation of physiological and pathophysiological states. High serum AFP titer is an established biomarker for yolk sac, embryonal and hepatocellular carcinoma. The present review critically analyzes the chemical nature, receptors, clinical implications, and therapeutic aspects of AFP, underpinning the development of different types of cancer.
Collapse
Affiliation(s)
- Alok Ghosh Chaudhuri
- Department of Physiology, Vidyasagar College, Kolkata 700 006, West Bengal, India
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur 721101, West Bengal, India
| | - Monalisha Dey
- Department of Physiology, Vidyasagar College, Kolkata 700 006, West Bengal, India
| | - N S Raviraja
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Souvik Dey
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| |
Collapse
|
17
|
Nguyen TH, Nguyen TM, Ngoc DTM, You T, Park MK, Lee CH. Unraveling the Janus-Faced Role of Autophagy in Hepatocellular Carcinoma: Implications for Therapeutic Interventions. Int J Mol Sci 2023; 24:16255. [PMID: 38003445 PMCID: PMC10671265 DOI: 10.3390/ijms242216255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review aims to provide a comprehensive understanding of the molecular mechanisms underlying autophagy and mitophagy in hepatocellular carcinoma (HCC). Autophagy is an essential cellular process in maintaining cell homeostasis. Still, its dysregulation is associated with the development of liver diseases, including HCC, which is one of leading causes of cancer-related death worldwide. We focus on elucidating the dual role of autophagy in HCC, both in tumor initiation and progression, and highlighting the complex nature involved in the disease. In addition, we present a detailed analysis of a small subset of autophagy- and mitophagy-related molecules, revealing their specific functions during tumorigenesis and the progression of HCC cells. By understanding these mechanisms, we aim to provide valuable insights into potential therapeutic strategies to manipulate autophagy effectively. The goal is to improve the therapeutic response of liver cancer cells and overcome drug resistance, providing new avenues for improved treatment options for HCC patients. Overall, this review serves as a valuable resource for researchers and clinicians interested in the complex role of autophagy in HCC and its potential as a target for innovative therapies aimed to combat this devastating disease.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Taesik You
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy National Cance Center, Goyang 10408, Republic of Korea
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
18
|
Chen Y, Yin S, Liu R, Yang Y, Wu Q, Lin W, Li W. β-Sitosterol activates autophagy to inhibit the development of hepatocellular carcinoma by regulating the complement C5a receptor 1/alpha fetoprotein axis. Eur J Pharmacol 2023; 957:175983. [PMID: 37598926 DOI: 10.1016/j.ejphar.2023.175983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is highly refractory. β-Sitosterol has been reported to suppress proliferation and migration as well as interfere with cell metabolism in tumors. However, there is limited information on the effects of β-sitosterol on HCC. Herein, we used a xenograft mouse model to investigate the effects of β-sitosterol on HCC tumor growth. The molecular mechanism was elucidated using quantitative real-time PCR, western blotting, lentiviral transfection, CCK8, scratch, Transwell, and Ad-mCherry-GFP-LC3B assays. The results showed that HepG2 cells highly expressed complement C5a receptor 1. β-Sitosterol antagonized complement component 5a and exerted inhibitory effects on the proliferation and migration of HepG2 cells. The inhibitory effect of β-sitosterol was reversed by the knockdown of complement C5a receptor 1. Bioinformatics analysis suggested alpha fetoprotein (AFP) as a downstream factor of complement C5a receptor 1. β-Sitosterol inhibited AFP expression, which was reversed by complement C5a receptor 1 knockdown. The inhibitory effects of β-sitosterol on cell proliferation and migration were weakened by AFP overexpression. Furthermore, β-sitosterol induced autophagy in HepG2 cells, which was reversed by complement C5a receptor 1 knockdown and AFP overexpression. Blockade of autophagy by 3-MA attenuated β-sitosterol inhibition of proliferation and migration in HepG2 cells. Moreover, β-sitosterol inhibited HCC progression in vivo. Our findings demonstrate that β-sitosterol inhibits HCC advancement by activating autophagy through the complement C5a receptor 1/AFP axis. These findings recommend β-sitosterol as a promising therapy for HCC.
Collapse
Affiliation(s)
- Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Song Yin
- Department of Infectious Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei 230001, China; Wannan Medical College, Anhui, Wuhu 241002, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Qiuping Wu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, Haikou 570100, China; Key Laboratory of Tropical Translational Medicine of Ministry of Health, Hainan Medical University, Hainan, Haikou 571199, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Anhui, Hefei 230022, China.
| |
Collapse
|
19
|
Li Y, Lin Y, Zhao L, Yang C, Wang B, Gao Z, Ye Y, Wang S, Shen Z. Characteristics of alpha-fetoprotein-positive gastric cancer revealed by analysis of cancer databases and transcriptome sequencing data. Transl Oncol 2023; 36:101737. [PMID: 37478671 PMCID: PMC10375854 DOI: 10.1016/j.tranon.2023.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors in the world. Alpha fetoprotein (AFP)-positive gastric cancer (AFPP-GC) is considered a special entity among gastric cancers. There is still controversy regarding the clinicopathological characteristics and prognosis of AFPP-GC, and the potential mechanism underlying its high malignant potential is still unclear. A comprehensive description of AFPP-GC genomic characteristics and regulatory mechanisms is lacking. This study analyzed the pathological characteristics and prognosis of AFPP-GC by utilizing clinical samples. The results showed that AFPP-GC has a poor prognosis and a high of risk liver metastasis. Tissue transcriptome sequencing showed that genes with high expression in AFPP-GC were involved in the activation of various cancer pathways, and genes with low expression were involved in the immune response. Single-sample gene set enrichment analysis showed that overexpression of AFP in AFPP-GC significantly inhibited the infiltration of CD8+ T cells. To further explore the genomic characteristics of AFPP-GC, the signaling pathway by which AFP regulates the invasion and metastasis of AFPP-GC cells was discussed. The results showed that AFPP-GC may promote cell invasion by regulating the PTEN/AKT1/SOX5/CES1 signaling axis. This study reveals the molecular mechanism underlying the increased malignant potential of AFPP-GC vs. AFP-negative gastric cancer (AFPN-GC). This provides important information for individualized treatment of AFPP-GC.
Collapse
Affiliation(s)
- Yansen Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China; Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China.; Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
20
|
Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M, Lorzadeh S, Łos MJ, Baghaei K, Ghavami S. Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 2023; 329:121894. [PMID: 37380126 DOI: 10.1016/j.lfs.2023.121894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Liver fibrosis is characterized by the excessive deposition and accumulation of extracellular matrix components, mainly collagens, and occurs in response to a broad spectrum of triggers with different etiologies. Under stress conditions, autophagy serves as a highly conserved homeostatic system for cell survival and is importantly involved in various biological processes. Transforming growth factor-β1 (TGF-β1) has emerged as a central cytokine in hepatic stellate cell (HSC) activation and is the main mediator of liver fibrosis. A growing body of evidence from preclinical and clinical studies suggests that TGF-β1 regulates autophagy, a process that affects various essential (patho)physiological aspects related to liver fibrosis. This review comprehensively highlights recent advances in our understanding of cellular and molecular mechanisms of autophagy, its regulation by TGF-β, and the implication of autophagy in the pathogenesis of progressive liver disorders. Moreover, we evaluated crosstalk between autophagy and TGF-β1 signalling and discussed whether simultaneous inhibition of these pathways could represent a novel approach to improve the efficacy of anti-fibrotic therapy in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Samaneh Siapoush
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland; Autophagy Research Center, Department of Biochemistry; Shiraz University of Medical Sciences, Shiraz, Iran; LinkoCare Life Sciences AB, Linkoping, Sweden
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Ugonabo O, Udoh UAS, Rajan PK, Reeves H, Arcand C, Nakafuku Y, Joshi T, Finley R, Pierre SV, Sanabria JR. The Current Status of the Liver Liquid Biopsy in MASH Related HCC: Overview and Future Directions. Biomolecules 2023; 13:1369. [PMID: 37759769 PMCID: PMC10526956 DOI: 10.3390/biom13091369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the major risk factors for chronic liver disease and hepatocellular carcinoma (HCC). The incidence of MASH in Western countries continues to rise, driving HCC as the third cause of cancer-related death worldwide. HCC has become a major global health challenge, partly from the obesity epidemic promoting metabolic cellular disturbances but also from the paucity of biomarkers for its early detection. Over 50% of HCC cases are clinically present at a late stage, where curative measures are no longer beneficial. Currently, there is a paucity of both specific and sensitive biological markers for the early-stage detection of HCC. The search for biological markers in the diagnosis of early HCC in high-risk populations is intense. We described the potential role of surrogates for a liver biopsy in the screening and monitoring of patients at risk for nesting HCC.
Collapse
Affiliation(s)
- Onyinye Ugonabo
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Utibe-Abasi Sunday Udoh
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Pradeep Kumar Rajan
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Heather Reeves
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Christina Arcand
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Yuto Nakafuku
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Tejas Joshi
- Department of Medicine, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (O.U.); (T.J.)
| | - Rob Finley
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
| | - Juan Ramon Sanabria
- Marshall Institute for Interdisciplinary Research, Marshall University School of Medicine, Huntington, WV 25703, USA; (U.-A.S.U.); (P.K.R.); (Y.N.); (S.V.P.)
- Department of Surgery, Marshall University School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.R.); (C.A.); (R.F.)
- Department of Nutrition and Metabolomic Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Mao X, Wang J, Luo F. α-Fetoprotein contributes to the malignant biological properties of AFP-producing gastric cancer. Open Life Sci 2023; 18:20220476. [PMID: 37588998 PMCID: PMC10426758 DOI: 10.1515/biol-2022-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/02/2022] [Accepted: 07/17/2022] [Indexed: 08/18/2023] Open
Abstract
This study aimed to investigate whether α-fetoprotein (AFP) could affect the malignant behavior of AFP-producing gastric cancer (AFP-GC) and to explore the relationship between AFP and mesenchymal-epithelial transition factor (c-Met) in AFP-GC. In this study, 23 patients with AFP-GC (AFP[+]) and 18 patients with common gastric cancer (AFP[-]) were evaluated for the c-Met expression using immunohistochemical analysis. The AFP-GC cell line, GCIY, was used. The AFP endoribonuclease-prepared small interfering RNA (siRNA) and eukaryotic AFP overexpression vector were used to increase/knockdown the expression of AFP. Afterward, the c-Met expression was evaluated by polymerase chain reaction and western blot. The proliferation, migration, and invasion of GCIY cells were estimated before and after the AFP overexpression/knockdown. The c-Met expression in both groups was the same (p > 0.05), and AFP[+] group had a higher positive incidence of the c-Met expression than the AFP[-] group (p < 0.01). Furthermore, the c-Met expression frequency was decreased by AFP knockdown and increased by AFP overexpression (p < 0.01). The cell counting kit-8 cell proliferation assay, cell invasion, and migration assays confirmed that the AFP could affect the malignant biological behavior of AFP-GC. These findings suggest that AFP contributes to the malignant biological properties of AFP-GC and the high expression of c-Met in AFP-GC.
Collapse
Affiliation(s)
- Xiang Mao
- Department of General Surgery, Huashan Hospital, Shanghai, 200040, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Shanghai, 200040, China
| | - Fen Luo
- Department of General Surgery, Huashan Hospital, No. 12, Middle Urumqi Road, Shanghai, 200040, China
| |
Collapse
|
23
|
Bi S, Zhang Y, Zhou J, Yao Y, Wang J, Fang M, Li B, Wu C, Ren C. miR-210 promotes hepatocellular carcinoma progression by modulating macrophage autophagy through PI3K/AKT/mTOR signaling. Biochem Biophys Res Commun 2023; 662:47-57. [PMID: 37099810 DOI: 10.1016/j.bbrc.2023.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play an important role in tumor development. Increasing research suggests that miR-210 may promote the progression of tumor virulence, but whether its pro-carcinogenic effect in primary hepatocellular carcinoma (HCC) is via an action on M2 macrophages has not been examined. METHODS Differentiation of THP-1 monocytes into M2-polarized macrophages was induced with phorbol myristate acetate (PMA) and IL-4, IL-13. M2 macrophages were transfected with miR-210 mimics or miR-210 inhibitors. Flow cytometry was used to identify macrophage-related markers and apoptosis levels. The autophagy level of M2 macrophages, expression of PI3K/AKT/mTOR signaling pathway-related mRNAs and protein were detected by qRT-PCR and Western blot. HepG2 and MHCC-97H HCC cell lines were cultured with M2 macrophages conditioned medium to explore the effects of M2 macrophage-derived miR-210 on the proliferation, migration, invasion and apoptosis of HCC cells. RESULTS qRT-PCR showed increased expression of miR-210 in M2 macrophages. Autophagy-related gene and protein expression was enhanced in M2 macrophages transfected with miR-210 mimics, while apoptosis-related proteins were decreased. MDC staining and transmission electron microscopy observed the accumulation of MDC-labeled vesicles and autophagosomes in M2 macrophages in the miR-210 mimic group. The expression of PI3K/AKT/mTOR signaling pathway in M2 macrophages was reduced in miR-210 mimic group. HCC cells co-cultured with M2 macrophages transfected with miR-210 mimics exhibited enhanced proliferation and invasive ability as compared to the control group, while apoptosis levels were reduced. Moreover, promoting or inhibiting autophagy could enhance or abolish the above observed biological effects, respectively. CONCLUSIONS miR-210 can promote autophagy of M2 macrophages via PI3K/AKT/mTOR signaling pathway. M2 macrophage-derived miR-210 promotes the malignant progression of HCC via autophagy, suggesting that macrophage autophagy may serve as a new therapeutic target for HCC, and targeting miR-210 may reset the effect of M2 macrophages on HCC.
Collapse
Affiliation(s)
- Shumin Bi
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yidan Zhang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Zhou
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Yao
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Jiadong Wang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Miaomiao Fang
- School of Nursing, Anhui Medical University, Hefei, Anhui, PR China
| | - Baozhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Chunxia Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
24
|
Li B, Wei C, Zhong Y, Huang J, Li R. The CCL27-CCR10 axis contributes to promoting proliferation, migration, and invasion of lung squamous cell carcinoma. Histol Histopathol 2023; 38:349-357. [PMID: 36169116 DOI: 10.14670/hh-18-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Lung cancer is characterized by its high mortality and morbidity. A deep understanding of the molecular mechanisms of lung cancer tumorigenesis helps to develop novel lung cancer diagnostic and therapeutic strategies. However, the picture of the associated molecular landscape is not yet complete. As understood, chemokine-receptor interactions contribute much to lung cancer tumorigenesis, in which CCR10 also plays an important role. This study aimed to expand the knowledge of CCR10 in lung squamous cell carcinoma (LUSC) in the manner of molecular mechanism and biological functions. Using GEPIA database, the survival analysis between LUSC patients with high and low CCR10 expressions was performed, showing that CCR10 could be regarded as a risk factor for LUSC patients. Subsequently, CCR10 protein and mRNA expressions in LUSC were examined by qRT-PCR and western blot respectively. The results indicated that CCR10 was highly expressed in LUSC cells. The results of CCK-8, colony formation, and Transwell assays presented that CCL27, the ligand of CCR10, promoted proliferative, migratory, and invasive abilities of LUSC cells by activating CCR10. Also, the PI3K/AKT signaling pathway was verified as the involved pathway by western blot. Overall, it could be concluded that the CCL27-CCR10 regulatory axis can activate the PI3K/AKT pathway fostering the malignant features of LUSC cells.
Collapse
Affiliation(s)
- Baijun Li
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Caizhou Wei
- Department of Respiratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Jianwei Huang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, PR China
| | - Rizhu Li
- Department of Cardiothoracic and Vascular Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, PR China.
| |
Collapse
|
25
|
Zhang M, Liu K, Zhang Q, Xu J, Liu J, Lin H, Lin B, Zhu M, Li M. Alpha fetoprotein promotes polarization of macrophages towards M2-like phenotype and inhibits macrophages to phagocytize hepatoma cells. Front Immunol 2023; 14:1081572. [PMID: 36911723 PMCID: PMC9995430 DOI: 10.3389/fimmu.2023.1081572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alpha-fetoprotein(AFP) is a cancer biomarker for the diagnosis of hepatocellular carcinoma(HCC); however, its role in macrophage polarization and phagocytosis remains unclear. In the present study, we explored the correlation between AFP regulation of macrophage function and the possible regulatory mechanisms. Human mononuclear leukemia cells (THP-1) and monocytes from healthy donors were used to analyze the effect of AFP on the macrophages' phenotype and phagocytosis. THP-1 cells and healthy human donor-derived monocytes were polarized into M0 macrophages induced by phorbol ester (PMA), and M0 macrophages were polarized into M1 macrophages induced by lipopolysaccharide(LPS) and interferon-γ(IFN-γ). Interleukin-4(IL-4) and interleukin-13(IL-13) were used to induce M0 macrophage polarization into M2 macrophages. Tumor-derived AFP(tAFP) stimulated M0 macrophage polarization into M2 macrophages and inhibited M1 macrophages to phagocytize HCC cells. The role of AFP in promoting macrophage polarization into M2 macrophages and inhibiting the M1 macrophages to phagocytize HCC cells may be involved in activating the PI3K/Akt signaling pathway. AFP could also enhanced the migration ability of macrophages and inhibited the apoptosis of HCC cells when co-cultured with M1-like macrophages. AFP is a pivotal cytokine that inhibits macrophages to phagocytize HCC cells.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Qiuyue Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Junnv Xu
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
- Institution of Tumor, Hainan Medical College, Hiakou, Hainan, China
| |
Collapse
|
26
|
Głowska-Ciemny J, Szymański M, Kuszerska A, Malewski Z, von Kaisenberg C, Kocyłowski R. The Role of Alpha-Fetoprotein (AFP) in Contemporary Oncology: The Path from a Diagnostic Biomarker to an Anticancer Drug. Int J Mol Sci 2023; 24:ijms24032539. [PMID: 36768863 PMCID: PMC9917199 DOI: 10.3390/ijms24032539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
This article presents contemporary opinion on the role of alpha-fetoprotein in oncologic diagnostics and treatment. This role stretches far beyond the already known one-that of the biomarker of hepatocellular carcinoma. The turn of the 20th and 21st centuries saw a significant increase in knowledge about the fundamental role of AFP in the neoplastic processes, and in the induction of features of malignance and drug resistance of hepatocellular carcinoma. The impact of AFP on the creation of an immunosuppressive environment for the developing tumor was identified, giving rise to attempts at immunotherapy. The paper presents current and prospective therapies using AFP and its derivatives and the gene therapy options. We directed our attention to both the benefits and risks associated with the use of AFP in oncologic therapy.
Collapse
Affiliation(s)
- Joanna Głowska-Ciemny
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| | - Marcin Szymański
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Agata Kuszerska
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
| | - Zbyszko Malewski
- Department of Perinatology and Gynecology, Poznan University of Medical Sciences, 60-535 Poznań, Poland
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Rafał Kocyłowski
- PreMediCare New Med Medical Center, ul. Czarna Rola 21, 61-625 Poznań, Poland
- Correspondence: (J.G.-C.); (R.K.)
| |
Collapse
|
27
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
28
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
XU JINGYAO, HAO SHUANGLI, HAN KAIYUE, YANG WANXI, DENG HONG. How is the AKT/mTOR pathway involved in cell migration and invasion? BIOCELL 2023. [DOI: 10.32604/biocell.2023.026618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
30
|
Zhang L, Yang F. Tanshinone IIA improves diabetes-induced renal fibrosis by regulating the miR-34-5p/Notch1 axis. Food Sci Nutr 2022; 10:4019-4040. [PMID: 36348805 PMCID: PMC9632221 DOI: 10.1002/fsn3.2998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to evaluate the improvement of tanshinone in renal fibrosis in vitro and in vivo study. It used streptozotocin to model diabetic nephropathy (DN) mice, and treated with different Tanshinone IIA concentrations. The pathology of kidney tissues was evaluated by hematoxylin and eosin (H&E) and Masson's staining; the ultrastructure and apoptosis cell number of kidney tissues were evaluated by transmission electron microscopy (TEM) and TUNEL assay. Relative gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemical (IHC) analysis, or western blot (WB) assay. In vitro study, using high-glucose stimulated HK-2 cell to model DN cell model, measuring cell proliferation, apoptosis rate, relative gene and protein expression, and LC 3B and P62 proteins expression by Cell Counting Kit-8 (CCK-8), flow cytometry, RT-qPCR, WB, and cell immunofluorescence. Analysis correlation between Notch1 and miRNA-34a-5p was carried out by dual-luciferase reporter. Fibrosis area and apoptosis cell rate were significantly up-regulated (p < .001), with Tanshinone IIA supplement. The fibrosis area and apoptosis cell rate were also significantly improved in a dose-dependent manner (p < .05). With si-miRNA-34a-5p transfection, the Tanshinone IIA's treatment effects were significantly depressed. By dual-luciferase reporter, miRNA-34a-5p could target Notch1 in the HK-2 cell line. Tanshinone IIA improved DN-induced renal fibrosis by regulating miRNA-34a-5p in vitro and in vivo study.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of NephrologyThe Second People's Hospital of Hefei, Medical University of Anhui (Hefei Hospital Affiliated to Medical University of Anhui)HefeiP.R. China
| | - Fan Yang
- Department of NephrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianP.R. China
| |
Collapse
|
31
|
Punuch K, Wongwan C, Jantana S, Somboonyosdech C, Rodponthukwaji K, Kunwong N, Nguyen KT, Sirivatanauksorn V, Sirivatanauksorn Y, Srisawat C, Punnakitikashem P. Study of siRNA Delivery via Polymeric Nanoparticles in Combination with Angiogenesis Inhibitor for The Treatment of AFP-Related Liver Cancer. Int J Mol Sci 2022; 23:ijms232012666. [PMID: 36293521 PMCID: PMC9604025 DOI: 10.3390/ijms232012666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis inhibitor drugs have been explored as important pharmacological agents for cancer therapy, including hepatocellular carcinoma. These agents have several drawbacks, such as drug resistance, nonspecific toxicity, and systemic side effects. Therefore, combination therapy of the drug and small interfering RNA could be a promising option to achieve high therapeutic efficacy while allowing a lower systemic dose. Therefore, we studied adding an alpha-fetoprotein siRNA (AFP-siRNA) incorporated on polymeric nanoparticles (NPs) along with angiogenesis inhibitor drugs. The AFP siRNA-loaded NPs were successfully synthesized at an average size of 242.00 ± 2.54 nm. Combination treatment of AFP-siRNA NPs and a low dose of sunitinib produced a synergistic effect in decreasing cell viability in an in vitro hepatocellular carcinoma (HCC) model. AFP-siRNA NPs together with sorafenib or sunitinib greatly inhibited cell proliferation, showing only 39.29 ± 2.72 and 44.04 ± 3.05% cell viability, respectively. Moreover, quantitative reverse transcription PCR (qRT-PCR) demonstrated that AFP-siRNA incorporated with NPs could significantly silence AFP-mRNA expression compared to unloaded NPs. Interestingly, the expression level of AFP-mRNA was further decreased to 28.53 ± 5.10% when sunitinib was added. Therefore, this finding was considered a new promising candidate for HCC treatment in reducing cell proliferation and enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Kittiporn Punuch
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chamaiphorn Wongwan
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Saranrat Jantana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Network NANOTEC—MU in Theranostic Nanomedicine, Bangkok 10700, Thailand
| | - Chayapol Somboonyosdech
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Natsuda Kunwong
- Research Network NANOTEC—MU in Theranostic Nanomedicine, Bangkok 10700, Thailand
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Vorapan Sirivatanauksorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Network NANOTEC—MU in Theranostic Nanomedicine, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yongyut Sirivatanauksorn
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Network NANOTEC—MU in Theranostic Nanomedicine, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Research Network NANOTEC—MU in Theranostic Nanomedicine, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-9133
| |
Collapse
|
32
|
Zhu MY, Gong ZS, Feng HP, Zhang QY, Liu K, Lin B, Zhang MN, Lin HF, Li MS. Vincosamide Has a Function for Inhibiting Malignant Behaviors of Hepatocellular Carcinoma Cells. World J Oncol 2022; 13:272-288. [PMID: 36406198 PMCID: PMC9635790 DOI: 10.14740/wjon1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/13/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Vincosamide (Vinco) was first identified in the methanolic extract of the leaves of Psychotria leiocarpa, and Vinco has important anti-inflammatory effects and activity against cholinesterase, Vinco also has a trait to anti-tumor. However, whether Vinco can inhibit the malignant behaviors of hepatocellular carcinoma (HCC) cells is still unclear. In the present study, we explored the role of Vinco in suppressing the malignant behaviors of HCC cells. METHODS MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide), trypan blue exclusion assay, the Cell Counting Kit (CCK)-8 and flow cytometric analysis were applied to detect the proliferation and apoptosis of HCC cells; electron microscopy was performed to observe the change of cellular mitochondrial morphology; scratch repair and Transwell assays were used to analyze the migration and invasion of HCC cells; expression and localization of proteins were detected by laser confocal microscopy and Western blotting; the growth of the cancer cells in vivo was assessed in a mouse tumorous model. RESULTS At a dose of 10 - 80 µg/mL, Vinco inhibited the proliferation, migration, invasion and promoted apoptosis of HCC cells in a dose-dependent manner but had low cytotoxicity effect on normal liver cells. Additionally, 80 µg/mL of Vinco could significantly disrupt the morphology of mitochondria, suppress the migration and invasion of HCC cells. The growth of HCC cells in the animal tumorous model was significantly inhibited after treatment with Vinco (10 mg/kg/day) for 3 days. The results of the present study indicated that Vinco (10 - 80 µg/mL) played a role in activating caspase-3, promoting the expression of phosphate and tension homology deleted on chromosome 10 (PTEN), and inhibiting the phosphorylation of AKT (Ser473) and mTOR (Thr2448); Vinco also has a trait for suppressing the expression of CXCR4, Src, MMP9, EpCAM, Ras, Oct4 and cancer stem cell "stemness markers" CD133 and CD44 in HCC cells. CONCLUSIONS Vinco has a role in inhibiting the malignant behaviors of HCC cells; the role molecular mechanism of Vinco may be involved in restraining expression of the growth-, metastasis-related factors, such as Src, Ras, MMP9, EpCAM, CXCR4; activating the activity of caspase-3 and blocking PI3K/AKT signaling pathway. Thus, Vinco should be considered as a new chemotherapy agent for HCC patients.
Collapse
Affiliation(s)
- Ming Yue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
- These authors contributed equally to this work and are co-first authors
| | - Zhi Sun Gong
- Department of Radiotherapy, Second Affiliated Hospital, Hainan Medical College, Haikou, China
- These authors contributed equally to this work and are co-first authors
| | - Hai Peng Feng
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
- These authors contributed equally to this work and are co-first authors
| | - Qiu Yue Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Min Ni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Hai Feng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Meng Sen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Hiakou 570102, Hainan Province, China
| |
Collapse
|
33
|
Chen YF, Liu SY, Cheng QJ, Wang YJ, Chen S, Zhou YY, Liu X, Jiang ZG, Zhong WW, He YH. Intracellular alpha-fetoprotein mitigates hepatocyte apoptosis and necroptosis by inhibiting endoplasmic reticulum stress. World J Gastroenterol 2022; 28:3201-3217. [PMID: 36051342 PMCID: PMC9331527 DOI: 10.3748/wjg.v28.i26.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress contributes to the pathogenesis of chronic liver diseases, but how hepatocytes respond to ER stress has not been clarified. Alpha-fetoprotein (AFP) is secreted by hepatoma cells and elevated levels of serum AFP are associated with development of liver malignancies. AIM To investigate whether and how AFP could regulate ER stress and hepatocyte injury. METHODS The distribution of AFP and the degrees of ER stress in liver tissues and liver injury were characterized by histology, immunohistochemistry, and Western blot in biopsied human liver specimens, two mouse models of liver injury and a cellular model. The levels of AFP in sera and the supernatants of cultured cells were quantified by chemiluminescence. RESULTS High levels of intracellular AFP were detected in liver tissues, particularly in the necrotic areas, from patients with chronic liver diseases and mice after carbon tetrachloride (CCl4) administration or induction of ER stress, but not from the controls. The induced intracellular AFP was accompanied by elevated activating transcription factor-6 (ATF6) expression and protein kinase R-like ER kinase (PERK) phosphorylation in mouse livers. ER stress induced AFP expression in LO2 cells and decreased their viability. ATF6, but not PERK, silencing mitigated the ER-stress-induced AFP expression in LO2 cells. Conversely, AFP silencing deteriorated the ER stress-mediated LO2 cell injury and CCl4 administration-induced liver damages by increasing levels of cleaved caspase-3, the C/enhancer binding protein homologous protein expression, mixed lineage kinase domain-like pseudokinase and PERK phosphorylation, but decreasing ATF6 expression. CONCLUSION ER stress upregulated intra-hepatocyte AFP expression by activating ATF6 during the process of liver injury and intracellular AFP attenuated hepatocyte apoptosis and necroptosis by alleviating ER stress.
Collapse
Affiliation(s)
- Yun-Fen Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Si-Ying Liu
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qi-Jiao Cheng
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yu-Jiao Wang
- Department of General Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Shuang Chen
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yi-Yang Zhou
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xia Liu
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zhi-Gang Jiang
- School of Public Health, Zunyi Medical University, Zunyi 563099, Guizhou Province, China
| | - Wei-Wei Zhong
- Department of Endoscopy, Jingmen No.1 People’s Hospital, Jingmen 448000, Hubei Province, China
| | - Yi-Huai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
34
|
Tatipamula VB, Thonangi CV, Dakal TC, Vedula GS, Dhabhai B, Polimati H, Akula A, Nguyen HT. Potential anti-hepatocellular carcinoma properties and mechanisms of action of clerodane diterpenes isolated from Polyalthia longifolia seeds. Sci Rep 2022; 12:9267. [PMID: 35661799 PMCID: PMC9166726 DOI: 10.1038/s41598-022-13383-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Diterpenes are secondary metabolites that have attracted much attention due to their potential biological activities including anti-cancer potential. The aim of the current study is to assess the anticancer potential of the six known clerodane diterpenes (1–6) isolated from Polyalthia longifolia seeds and their underlying molecular mechanisms. These compounds were evaluated for their cytotoxicity in vitro by using MTT assays. The “two-phase model” with NDEA and PB ad libitum was used for induction of HCC and sorafenib was used as the standard drug. Prophylactic studies were carried out for compounds 4/6 at both low (5 mg/kg b.w) and high (10 mg/kg b.w) doses. Based on the MTT assay results, the two best compounds, 4 and 6, were selected for in vivo studies. The results showed that treatment with compound 4/6 significantly restored the changes in biochemical parameters and liver morphology observed in (NDEA + PB)-induced HCC rats. Additionally, the docking studies showed that compound 4/6 interacted with several key proteins such as MDM2, TNF-α, FAK, thereby inhibiting these proteins and reversing the negative impacts of NDEA. In conclusion, our results suggested that compounds 4 and 6 are potential therapeutic agents for HCC, mostly due to their ability to control typical cancer pathways.
Collapse
Affiliation(s)
- Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Chandi Vishala Thonangi
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India.
| | - Tikam Chand Dakal
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Girija Sastry Vedula
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Bhanupriya Dhabhai
- Genome & Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Haritha Polimati
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Annapurna Akula
- Pharmacology Department, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530003, India
| | - Ha Thi Nguyen
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang, 550000, Vietnam.
| |
Collapse
|
35
|
Xin C, Zhang Y, Bao M, Yu C, Hou K, Wang Z. Novel carrier-free, charge-reversal and DNA-affinity nanodrugs for synergistic cascade cancer chemo-chemodynamic therapy. J Colloid Interface Sci 2022; 606:1488-1508. [PMID: 34500153 DOI: 10.1016/j.jcis.2021.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The combination of chemotherapy (CT) and chemodynamic therapy (CDT) is an emerging therapeutic strategy for tumors; however, its therapeutic efficacy is usually impaired by the shortage of high-efficiency intracellular catalysts for CDT and the poor tumor selectivity of CT. To address this concern, novel carrier-free nanodrugs (CMC-DD2) self-assembled from the natural melanin complex (CMC) with a superior CDT performance, and dehydroabietic acid hexamer (DD2) displaying a potent antitumor activity were proposed for the synergistic combination of CT and CDT. CMC-DD2 preferred to enter tumor cells and localize in the nucleus after lysosome escape due to its pH-dependent charge-reversal properties. Nanodrugs internalized by the nucleus directly bound the DNA and altered its conformation. Then, the dissociation of CMC-DD2 was efficiently triggered by intracellular hydrogen peroxide (H2O2) with the release of DNA damaging agents, including nitrate anions, hydroxyl radicals (●OH) and DD2. Finally, severe DNA damage induced mitochondrial apoptosis in HepG2 cells. An in vivo assessment further demonstrated the superior tumor selectivity and suppressor capacity and no/low toxicity of the nanodrugs. Overall, novel carrier-free, charge-reversal, nucleus-targeting, biodegradable, and DNA-affinity nanodrugs represent safe and effective platforms for the combination of CT and CDT.
Collapse
Affiliation(s)
- Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chong Yu
- School of pharmacy, Harbin Medical University, Harbin 150090, China
| | - Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Dan W, Zhong L, Yu L, Xiong L, Li J, Ye J, Luo X, Liu C, Chu X, Liu B. Skp2 promotes APL progression through the stabilization of oncoprotein PML-RARα and the inhibition of JunB expression. Life Sci 2022; 289:120231. [PMID: 34921867 DOI: 10.1016/j.lfs.2021.120231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
AIMS To investigate the role of Skp2 and JunB on acute promyelocytic leukemia (APL) progression and the related mechanism. MATERIALS AND METHODS The expression of Skp2 in NB4 cell line was depleted to explore its effect on proliferation and differentiation both in vitro and in vivo assays. Western blot and quantitative RT-PCR analysis were performed to explore Skp2-regulated downstream target genes. Luciferase and co-immunoprecipitation analysis indicated that PML-RARα inhibited the transactivation of JunB by interacting with the PU.1 protein. The western blot analysis confirmed that Skp2 could maintain the stability of PML-RARα. KEY FINDINGS We report that the progression of APL and the attenuation of APL sensitivity to ATRA are positively associated with Skp2. Elevated Skp2 expression promotes APL progression by decreasing the expression of lncRNA HOTAIRM1 and inactivation of GSK3β, causing autophagy inhibition followed by the suppression of PML-RARα ubiquitylation and degradation, which represses JunB transcriptional activation through PU.1/PML-RARα transcriptional complex to block cell differentiation. Coupled with ATRA or GSK3β inhibitor treatment, genetic or pharmacological inhibition of Skp2 strikingly induces JunB expression by accelerating the degradation of PML-RARα, which contributes to the eradication of APL. Additionally, the expressions of Skp2 and JunB are negatively correlated in mice subcutaneous leukemia xenograft tumors. SIGNIFICANCE Collectively, this study uncovers the roles of Skp2 in PML-RARα stabilization and in APL oncogenic functions. We reveal a novel mechanism of PML-RARα degradation and JunB regulation that constitute an important signaling network of Skp2-GSK3β-PML/RARα-JunB.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Stability
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcriptional Activation
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihua Yu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ling Xiong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Jian Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiao Ye
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xu Luo
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chen Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Xu J, Lin H, Wu G, Zhu M, Li M. IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma. Front Oncol 2021; 11:760971. [PMID: 34976809 PMCID: PMC8714735 DOI: 10.3389/fonc.2021.760971] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor of which the occurrence and development, the tumorigenicity of HCC is involving in multistep and multifactor interactions. Interleukin-6 (IL-6), a multifunctional inflammatory cytokine, has increased expression in HCC patients and is closely related to the occurrence of HCC and prognosis. IL-6 plays a role by binding to the IL-6 receptor (IL-6R) and then triggering the Janus kinase (JAK) associated with the receptor, stimulating phosphorylation and activating signal transducer and activator of transcription 3 (STAT3) to initiate downstream signals, participating in the processes of anti-apoptosis, angiogenesis, proliferation, invasion, metastasis, and drug resistance of cancer cells. IL-6/STAT3 signal axes elicit an immunosuppressive in tumor microenvironment, it is important to therapy HCC by blocking the IL-6/STAT3 signaling pathway. Recent, some inhibitors of IL-6/STAT3 have been development, such as S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb), Madindoline A (Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes), C188-9 and Curcumin (Inhibits STAT3 phosphorylation), etc. for treatment of cancers. Overall, consideration of the IL-6/STAT3 signaling pathway, and its role in the carcinogenesis and progression of HCC will contribute to the development of potential drugs for targeting treatment of liver cancer.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Gang Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
- Institution of Tumour, Hainan Medical College, Haikou, China
| |
Collapse
|
38
|
Ridder DA, Weinmann A, Schindeldecker M, Urbansky LL, Berndt K, Gerber TS, Lang H, Lotz J, Lackner KJ, Roth W, Straub BK. Comprehensive clinicopathologic study of alpha fetoprotein-expression in a large cohort of patients with hepatocellular carcinoma. Int J Cancer 2021; 150:1053-1066. [PMID: 34894400 DOI: 10.1002/ijc.33898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Alpha fetoprotein (AFP) is the most widely used diagnostic and prognostic serum biomarker for hepatocellular carcinoma (HCC). Despite its wide clinical use, a systematic clinicopathologic study comparing AFP expression in HCC in situ with serum AFP concentrations has not yet been conducted. To analyze AFP expression in a large cohort of patients by immunohistochemistry, we employed a comprehensive tissue microarray with 871 different HCCs of overall 561 patients. AFP immunoreactivity was detected in only about 20% of HCC core biopsies, whereas 48.9% of the patients displayed increased serum values (>12 ng/mL). Immunostaining of whole tumor slides revealed that lack of detectable immunoreactivity in core biopsies in a subgroup of patients with elevated AFP serum concentrations is due to heterogeneous intratumoral AFP expression. Serum AFP concentrations and AFP expression in situ were moderately correlated (Spearman's rank correlation coefficient .53, P = 1.2e - 13). High AFP expression detected in serum (>227.3 ng/mL) or in situ predicted unfavorable prognosis and was associated with vascular invasion, higher tumor grade and macrotrabecular-massive tumor subtype. Multivariate and ROC curve analysis demonstrated that high AFP concentrations in serum is an independent prognostic parameter and represents the more robust prognostic predictor in comparison to AFP immunostaining of core biopsies. The previously published vessels encapsulating tumor clusters (VETC) pattern turned out as an additional, statistically independent prognostic parameter. AFP-positivity was associated with increased tumor cell apoptosis, but not with increased vascular densities. Additionally, AFP-positive tumors displayed increased proliferation rates, urea cycle dysregulation and signs of genomic instability, which may constitute the basis for their increased aggressiveness.
Collapse
Affiliation(s)
- Dirk Andreas Ridder
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Arndt Weinmann
- Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Tissue Biobank, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Lana Louisa Urbansky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Kristina Berndt
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Tiemo Sven Gerber
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johannes Lotz
- Institute for Laboratory Medicine and Clinical Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karl J Lackner
- Institute for Laboratory Medicine and Clinical Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
39
|
GP73-mediated secretion of AFP and GP73 promotes proliferation and metastasis of hepatocellular carcinoma cells. Oncogenesis 2021; 10:69. [PMID: 34650031 PMCID: PMC8516944 DOI: 10.1038/s41389-021-00358-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Golgi protein 73 (GP73) and alpha fetoprotein (AFP) serve as biomarkers for the diagnosis of hepatocellular carcinoma (HCC), and their serum levels correlate with patients’ outcomes. However, the mechanisms underlying these correlations are unknown. Here we show that GP73 increased the secretion of AFP through direct binding to AFP, thereby promoting the proliferation and metastasis of HCC cells that expressed AFP and its receptor (AFPR). Extracellular GP73 contributed to the proliferation and metastasis of HCC cells independent of AFP and AFPR. Moreover, extracellular AFP and GP73 synergized to enhance the malignant phenotype of HCC cells. Furthermore, extracellular GP73 and AFP inhibited the antitumor effects of sorafenib and synergistically increased the drug resistance of HCC cells. These findings, which reveal the mechanism of GP73-mediated secretion of AFP and its effects on the malignant phenotype of HCC cells, provide a comprehensive theoretical basis for the diagnosis and treatment of HCC and identify potential drug targets.
Collapse
|
40
|
Autophagy Promotes the Survival of Adipose Mesenchymal Stem/Stromal Cells and Enhances Their Therapeutic Effects in Cisplatin-Induced Liver Injury via Modulating TGF-β1/Smad and PI3K/AKT Signaling Pathways. Cells 2021; 10:cells10092475. [PMID: 34572126 PMCID: PMC8470434 DOI: 10.3390/cells10092475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a key metabolic process where cells can recycle its proteins and organelles to regenerate its own cellular building blocks. Chemotherapy is indispensable for cancer treatment but associated with various side-effects, including organ damage. Stem cell-based therapy is a promising approach for reducing chemotherapeutic side effects, however, one of its main culprits is the poor survival of transplanted stem cells in damaged tissues. Here, we aimed to test the effects of activating autophagy in adipose-derived mesenchymal stem/stromal cells (ADSCs) on the survival of ADSCs, and their therapeutic value in cisplatin-induced liver injury model. Autophagy was activated in ADSCs by rapamycin (50 nM/L) for two hours before transplantation and were compared to non-preconditioned ADSCs. Rapamycin preconditioning resulted in activated autophagy and improved survival of ADSCs achieved by increased autophagosomes, upregulated autophagy-specific LC3-II gene, decreased protein degradation/ubiquitination by downregulated p62 gene, downregulated mTOR gene, and finally, upregulated antiapoptotic BCL-2 gene. In addition, autophagic ADSCs transplantation in the cisplatin liver injury model, liver biochemical parameters (AST, ALT and albumin), lipid peroxidation (MDA), antioxidant profile (SOD and GPX) and histopathological picture were improved, approaching near-normal conditions. These promising autophagic ADSCs effects were achieved by modulation of components in TGF-β1/Smad and PI3K-AKT signaling pathways, besides reducing NF-κB gene expression (marker for inflammation), reducing TGF-β1 levels (marker for fibrosis) and increasing SDF-1 levels (liver regeneration marker) in liver. Therefore, current results highlight the importance of autophagy in augmenting the therapeutic potential of stem cell therapy in alleviating cisplatin-associated liver damage and opens the path for improved cell-based therapies, in general, and with chemotherapeutics, in particular.
Collapse
|
41
|
Yang J, Ding S. Chimeric RNA-binding protein-based killing switch targeting hepatocellular carcinoma cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:683-695. [PMID: 34589286 PMCID: PMC8463442 DOI: 10.1016/j.omtn.2021.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
Cancer cell-specific killing switches are synthetic circuits developed as an intelligent weapon to specifically eliminate malignant cells. RNA-delivered synthetic circuits provide safer means to control oncolytic functions, in which proteolysis-responding capsid-cNOT7 is developed to enable logic computation and modular design. Unfortunately, although circuits containing these capsid-cNOT7s exhibited good performance when introduced as replicons, in modified mRNA (modRNA) delivery, the performance was not quite as good. To improve this situation, alternative modules suitable for modRNA delivery need to be developed. An attractive option is RNA-binding protein (RBP)/riboswitches. In this study, RBPs were engineered by fusing with degron and cleavage sites. The compatibility of these chimeric RBPs with proteolysis-based sensing units were tested. Eight two-input logic gates and four three-input logic gates were implemented. After building this chimeric RBP-based system, we constructed a hepatocellular carcinoma (HCC) cell-specific killing circuit using two proteolysis-based sensing units, a two-input logic OR gate, and a leakproof apoptosis-inducing actuator, which distinguished HCC cells and induced apoptosis in a mixed IMR90-PLC/PRF/5 population.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
42
|
Feng L, Wang Y, Wang X, An S, Aizimuaji Z, Tao C, Zhang K, Cheng S, Wu J, Xiao T, Rong W. Integrated analysis of the rhesus monkey liver transcriptome during development and human primary HCC AFP-related gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:406-415. [PMID: 34484865 PMCID: PMC8403716 DOI: 10.1016/j.omtn.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023]
Abstract
Embryonic development and tumorigenesis have a certain degree of similarity. Alpha-fetoprotein (AFP), a protein related to embryonic development, is a well-known biomarker for the diagnosis and prognosis of hepatocellular carcinoma (HCC). In this study, we analyzed the differences in gene expression profiles and molecular mechanisms in human HCC tissues from patients in AFPhigh (serum AFP level ≥ 25 ng/mL) and AFPlow (serum AFP level < 25 ng/mL) groups. The results indicated that AFPhigh HCC has more malignant biological characteristics. Single-sample gene set enrichment analysis (ssGSEA) showed significantly higher levels of genes expressed in dendritic cells, neutrophils, and natural killer cells in the AFPlow group than in the AFPhigh group. Then, we defined a rhesus monkey fetal liver developmental landscape and compared it to the HCC gene expression profile. The gene signatures of AFPhigh HCC tissues were similar to those of early embryonic liver tissues. In this study, we comprehensively analyzed the rhesus monkey liver transcriptome during development and human primary HCC AFP-related gene expression profiles and clarified the function of AFP in the occurrence and development of HCC from the perspective of developmental biology, which might provide a new perspective on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xijun Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Songlin An
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zulihumaer Aizimuaji
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Jianxiong Wu, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Ting Xiao, State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author: Dr. Weiqi Rong, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
43
|
Negri F, Gnetti L, Pedrazzi G, Silini EM, Porta C. Sorafenib and hepatocellular carcinoma: is alpha-fetoprotein a biomarker predictive of tumor biology and primary resistance? Future Oncol 2021; 17:3579-3584. [PMID: 34155918 DOI: 10.2217/fon-2021-0083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/02/2021] [Indexed: 01/21/2023] Open
Abstract
Background: Alpha-fetoprotein (AFP) is the only biomarker with proven prognostic value in advanced hepatocellular carcinoma. Preliminary data indicate crosstalk between AFP and VEGF signaling. Methods: The authors looked at 69 patients with advanced hepatocellular carcinoma who were previously tested for VEGFR2 expression, had available baseline AFP serum concentrations and were treated with sorafenib within clinical trials. Results: Shorter progression-free survival and overall survival were associated with increased AFP level and elevated VEGFR2 staining. At multivariate analysis of AFP level was the only independent prognostic factor for progression-free survival and overall survival. Conclusion: The authors' study confirms the adverse prognostic role of elevated baseline AFP and also suggests a possible role of AFP in primary resistance to sorafenib therapy.
Collapse
Affiliation(s)
- Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Department of Medicine & Surgery, Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine & Surgery, Unit of Neuroscience & Robust Statistics Academy, University of Parma, Parma, Italy
| | - Enrico Maria Silini
- Department of Medicine & Surgery, Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy
| | - Camillo Porta
- Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, Bari, Italy
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
44
|
Qiao L, Zhang Q, Sun Z, Liu Q, Wu Z, Hu W, Bao S, Yang Q, Liu L. The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway. Cancer Lett 2021; 514:63-78. [PMID: 34044068 DOI: 10.1016/j.canlet.2021.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Deubiquitinase ubiquitin-specific protease 11 (USP11), a member of the deubiquitinating family, plays an important but still controversial role in cancer development. Namely, USP11 has been shown to promote the proliferation and metastasis of hepatocellular carcinoma (HCC), but the underlying molecular basis is poorly understood. This study aimed to unravel novel functions of USP11 in HCC, especially those related to autophagy. Here, EdU, migration and colony formation assays, and mouse models showed that USP11 played a crucial role in HCC cell proliferation and metastasis in vitro and in vivo. Results from co-immunoprecipitation and ubiquitination assays demonstrated that USP11 interacted with E2F1 and maintained E2F1 protein stability by removing its ubiquitin. Notably, E2F1 regulated USP11 expression at the transcriptional level. Thus, the E2F1/USP11 formed a positive feedback loop to promote the proliferation and migration of HCC cells. Moreover, E2F1/USP11 inhibited autophagy by regulating ERK/mTOR pathway. In addition, the combination treatment inhibition of USP11 and autophagy enhanced the apoptosis of HCC cells and inhibited the tumor growth in mice more effective than either treatment alone. Taken together, these results indicate that the E2F1/USP11 signal axis promotes HCC proliferation and metastasis and inhibits autophagy, which provides an experimental basis for the treatment of HCC.
Collapse
Affiliation(s)
- Lijun Qiao
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiangnu Zhang
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhe Sun
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Quan Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Zongze Wu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Weibin Hu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Shiyun Bao
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
45
|
Ren X, Li L, Wu J, Lin K, He Y, Bian L. PDGF-BB regulates the transformation of fibroblasts into cancer-associated fibroblasts via the lncRNA LURAP1L-AS1/LURAP1L/IKK/IκB/NF-κB signaling pathway. Oncol Lett 2021; 22:537. [PMID: 34079593 PMCID: PMC8157341 DOI: 10.3892/ol.2021.12798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The most abundant cells in the tumor microenvironment are cancer-associated fibroblasts (CAFs). They play an important role in oral squamous cell carcinoma (OSCC) angiogenesis, invasion and metastasis. Platelet-derived growth factor (PDGF)-BB has an obvious regulating effect on the formation of CAFs through binding to PDGF receptor (PDGFR)-β, but the role of long non-coding (lnc)RNA in PDGF-BB-induced transformation of fibroblasts into CAFs remains poorly understood. Using an lncRNA ChIP, 370 lncRNA transcripts were identified to be significantly and differentially expressed between fibroblasts and PDGF-BB-induced fibroblasts, including 240 upregulated lncRNAs and 130 downregulated lncRNAs, indicating that lncRNAs are involved in the regulation of the transformation of CAFs. Previous studies have shown that the nuclear factor (NF)-κB signaling pathway plays an important role in the activation of CAFs. Dual-luciferase reporter assay and co-immunoprecipitation were conducted to confirm that the leucine-rich adaptor protein 1-like (LURAP1L), which is the target of lncRNA LURAP1L antisense RNA 1 (LURAP1L-AS1) had a positive regulatory effect on I-κB kinase (IKK)/NF-κB signaling. Therefore, LURAP1L-AS1 was selected and PDGF-BB was demonstrated to upregulate the expression of LURAP1L-AS1 and LURAP1L, which was reversed by a PDGFR-β inhibitor. Subsequently, knocking down LURAP1L-AS1 suppressed the expression of PDGF-BB-induced fibroblast activation marker protein α-smooth muscle actin, fibroblast activation protein-α, PDGFR-β and phosphorylated (p)-PDGFR-β. IKKα, p-IĸB and p-NF-κB were downregulated by the knockdown of LURAP1L-AS1 and upregulated by overexpression of LURAP1L-AS1. The present study indicates that LURAP1L-AS1/LURAP1L/IKK/IĸB/NF-κB plays an important regulatory role in PDGF-BB-induced fibroblast activation and may become a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Xiaobin Ren
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Lei Li
- Department of Head and Neck Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jianhua Wu
- Department of Periodontology, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Ken Lin
- Department of Otolaryngology, Kunming Children's Hospital, Kunming, Yunnan 650034, P.R. China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 530102, P.R. China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
46
|
Emerging roles of cancer-testis antigenes, semenogelin 1 and 2, in neoplastic cells. Cell Death Dis 2021; 7:97. [PMID: 33966049 PMCID: PMC8106676 DOI: 10.1038/s41420-021-00482-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 11/22/2020] [Accepted: 01/17/2021] [Indexed: 02/03/2023]
Abstract
Cancer-testicular Antigens (CTAs) belong to a group of proteins that under normal conditions are strictly expressed in a male's reproductive tissues. However, upon malignisation, they are frequently re-expressed in neoplastic tissues of various origin. A number of studies have shown that different CTAs affect growth, migration and invasion of tumor cells and favor cancer development and metastasis. Two members of the CTA group, Semenogelin 1 and 2 (SEMG1 and SEMG2, or SEMGs) represent the major component of human seminal fluid. They regulate the motility and capacitation of sperm. They are often re-expressed in different malignancies including breast cancer. However, there is almost no information about the functional properties of SEMGs in cancer cells. In this review, we highlight the role of SEMGs in the reproductive system and also summarize the data on their expression and functions in malignant cells of various origins.
Collapse
|
47
|
Li H, Zhao S, Shen L, Wang P, Liu S, Ma Y, Liang Z, Wang G, Lv J, Qiu W. E2F2 inhibition induces autophagy via the PI3K/Akt/mTOR pathway in gastric cancer. Aging (Albany NY) 2021; 13:13626-13643. [PMID: 34091441 PMCID: PMC8202834 DOI: 10.18632/aging.202891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 12/24/2022]
Abstract
Background: E2F2 is a member of the E2F transcription factor family and has important but not fully understood biological functions in cancers. The biological role of E2F2 in gastric cancer (GC) also remains unclear. Methods: We examined the expression levels of E2F2 in GC using publicly available datasets such as TIMER, Oncomine, GEPIA, UALCAN, etc., and in our patient cohort, using quantitative real-time PCR, western blotting, and immunohistochemistry. We further investigated the effects of E2F2 on phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling, autophagy, and the migration and invasion of GC cells by the wound healing assay, Transwell assay and transmission electron microscopy. Results: E2F2 was highly expressed in both GC tissues and cells compared with normal gastric tissues/cells. High E2F2 expression was associated with poor overall survival (OS). In addition, the expression of E2F2 in GC was strongly correlated with a variety of immune markers. E2F2 overexpression promoted the migration and invasiveness of GC cells in vitro through inhibition of PI3K/Akt/mTOR-mediated autophagy. Conclusion: High E2F2 expression was associated with the characteristics of invasive tumors and poor prognosis. E2F2 also had potential modulatory effects on tumor immunity. We discovered a novel function of E2F2 in the regulation of PI3K/Akt/mTOR-mediated autophagy and the downstream processes of cell migration and invasion.
Collapse
Affiliation(s)
- Hui Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liwei Shen
- Department of Oncology, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shihai Liu
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingji Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhiwei Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gongjun Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
48
|
Erianin suppresses hepatocellular carcinoma cells through down-regulation of PI3K/AKT, p38 and ERK MAPK signaling pathways. Biosci Rep 2021; 40:225824. [PMID: 32677672 PMCID: PMC7385585 DOI: 10.1042/bsr20193137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the dominant pathological type of primary liver cancer and no effective methods are available for its treatment. Erianin is a natural product extracted from Dendrobium, which possesses multiple pharmacological activities, including antioxidative and antitumor activity. OBJECTIVE To evaluate the anti-HCC activities of erianin and explore its underlying mechanism. METHODS MTT assay and Crystal Violet staining assay were used to select the non-toxic concentrations for the subsequent experiments. The colony formation assay and PCNA fluorescent staining were used to investigate the antiproliferative effects of erianin on human SMMC-7721 and HepG2 cells. Wound healing and transwell test were used to analyze cell migration and invasion. Caspase3 and Tunel staining were used to detect apoptosis. Western blot was used to examine the expression levels of proteins associated with invasion and key proteins in the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), p38 and ERK mitogen-activated protein kinase (MAPK) signaling pathways. RESULTS Erianin inhibited HCC cell proliferation in a dose-dependent manner. Decreased migration rate and invaded cells were observed with erianin supplement. The expression of invasion-associated proteins in the erianin group was also down-regulated. Besides, more apoptotic cells were observed after erianin treatment. For the molecular mechanism, erianin inhibited the phosphorylation of Akt, ERK and P38 in the PI3K/Akt and ERK/P38 pathway. CONCLUSION We demonstrated, for the first time, that erianin inhibited the proliferation, migration, invasion and induced the apoptosis of HCC through PI3K/Akt, p38 and ERK MAPK signaling pathway, indicating that erianin is a promising agent for the HCC treatment.
Collapse
|
49
|
Lin B, Dong X, Wang Q, Li W, Zhu M, Li M. AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Front Cell Dev Biol 2021; 9:635476. [PMID: 33898423 PMCID: PMC8061420 DOI: 10.3389/fcell.2021.635476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule in the treatment of HCC. The application of AFP-derived peptides, AFP fragments and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to intracellular proteins or its receptors is the basis of a new strategy for the treatment of HCC and other cancers. In addition, AIFs can be combined with drugs and delivery agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only destroy cancer cells with these drugs but also activate immune cells to kill cancer cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy is expected to play an important role in enhancing the treatment effect of patients with cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of cancer in the future.
Collapse
Affiliation(s)
- Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Xu Dong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Qiujiao Wang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Institution of Tumor, Hainan Medical College, Haikou, China
| |
Collapse
|
50
|
Xin C, Zhang Y, Zhao M, Wang Z, Cheng C. Polyditerpene acid from Pinus koraiensis pinecones inhibits the progression of hepatocarcinoma. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|