1
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
2
|
Cohen G, Gover O, Schwartz B. Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study. Int J Mol Sci 2023; 24:14628. [PMID: 37834076 PMCID: PMC10572654 DOI: 10.3390/ijms241914628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
Collapse
|
3
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Delgado ILS, Tavares A, Francisco S, Santos D, Coelho J, Basto AP, Zúquete S, Müller J, Hemphill A, Meissner M, Soares H, Leitão A, Nolasco S. Characterization of a MOB1 Homolog in the Apicomplexan Parasite Toxoplasma gondii. BIOLOGY 2021; 10:biology10121233. [PMID: 34943148 PMCID: PMC8698288 DOI: 10.3390/biology10121233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Monopolar spindle One Binder1 (MOB1) proteins regulate key cellular functions, namely cell multiplication and cell division. The unicellular parasite Toxoplasma gondii transitions between several morphological stages, with the need to control the number of parasites in its cellular environment. We hypothesized that MOB1 proteins could participate in the regulation of the T. gondii life cycle, having identified one MOB1 protein (TgMOB1) coded in its genome. However, this study shows that TgMOB1 presents divergent features. While in organisms studied to date the lack of MOB1 has led to cell division defects, this did not occur in T. gondii in vitro cultures where mob1 was not an essential gene. Additionally, the identification of TgMOB1 proximity interacting partners detected novel MOB1 interactors. Still, TgMOB1 localizes to the region between the new-forming nuclei during cell division, and T. gondii parasites multiply slower with TgMOB1 overexpression and faster when there is a lack of TgMOB1, indicating an intricate role for TgMOB1 in T. gondii. This study uncovers new features of the T. gondii biology, a zoonotic parasite and model organism for the phylum Apicomplexa, and highlights the complex roles MOB1 proteins may assume, with possible implications for disease processes. Abstract Monopolar spindle One Binder1 (MOB1) proteins are conserved components of the tumor-suppressing Hippo pathway, regulating cellular processes such as cytokinesis. Apicomplexan parasites present a life cycle that relies on the parasites’ ability to differentiate between stages and regulate their proliferation; thus, Hippo signaling pathways could play an important role in the regulation of the apicomplexan life cycle. Here, we report the identification of one MOB1 protein in the apicomplexan Toxoplasma gondii. To characterize the function of MOB1, we generated gain-of-function transgenic lines with a ligand-controlled destabilization domain, and loss-of-function clonal lines obtained through CRISPR/Cas9 technology. Contrary to what has been characterized in other eukaryotes, MOB1 is not essential for cytokinesis in T. gondii. However, this picture is complex since we found MOB1 localized between the newly individualized daughter nuclei at the end of mitosis. Moreover, we detected a significant delay in the replication of overexpressing tachyzoites, contrasting with increased replication rates in knockout tachyzoites. Finally, using the proximity-biotinylation method, BioID, we identified novel members of the MOB1 interactome, a probable consequence of the observed lack of conservation of some key amino acid residues. Altogether, the results point to a complex evolutionary history of MOB1 roles in apicomplexans, sharing properties with other eukaryotes but also with divergent features, possibly associated with their complex life cycle.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona, 1749-024 Lisboa, Portugal
| | - Alexandra Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Samuel Francisco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Dulce Santos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - João Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Afonso P. Basto
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sara Zúquete
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland; (J.M.); (A.H.)
| | - Markus Meissner
- Institute for Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität Munich, D-82152 Munich, Germany;
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
| | - Sofia Nolasco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); (A.T.); (S.F.); (D.S.); (J.C.); (A.P.B.); (S.Z.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Correspondence: or
| |
Collapse
|
5
|
Zhang L, Tai Y, Zhao C, Ma X, Tang S, Tong H, Tang C, Gao J. Inhibition of cyclooxygenase-2 enhanced intestinal epithelial homeostasis via suppressing β-catenin signalling pathway in experimental liver fibrosis. J Cell Mol Med 2021; 25:7993-8005. [PMID: 34145945 PMCID: PMC8358882 DOI: 10.1111/jcmm.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase‐2 (COX‐2) expression. This study focused on the unknown mechanism by which COX‐2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX‐2 knockout mice. The impacts of COX‐2 on intestinal epithelial homeostasis via suppressing β‐catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX‐2 inhibitor. Then, β‐catenin signalling pathway in cirrhotic rats was associated with the activation of COX‐2. Furthermore, intestinal epithelial–specific COX‐2 knockout could suppress β‐catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX‐2/PGE2 was dependent on the β‐catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX‐2 may enhance intestinal epithelial homeostasis via suppression of the β‐catenin signalling pathway in liver fibrosis.
Collapse
Affiliation(s)
- Linhao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ma
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Chen Y, Ye Z, Seidler U, Tian D, Xiao F. Microenvironmental regulation of intestinal stem cells in the inflamed intestine. Life Sci 2021; 273:119298. [PMID: 33667519 DOI: 10.1016/j.lfs.2021.119298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023]
Abstract
The rapid renewal of intestinal epithelium during homeostasis requires balanced proliferation and differentiation of intestinal stem cells (ISCs) at the base of crypt. Upon intestinal inflammation, the vigorous expansion of surviving ISCs is responsible for epithelial repair. However, it is not well depicted how ISCs adapt to the inflammatory conditions within intestinal tissue and support epithelial repair. In the intestinal inflammation, niche cells around ISCs along with their secreted niche factors can facilitate the regeneration of ISCs via niche signals. Additionally, the growth of ISCs can respond to inflammatory cells, inflammatory cytokines, and inflammatory signals. Understanding the adaptive mechanism of ISCs in supporting intestinal epithelial regeneration during inflammation is a focus on the treatment for patients with intestinal inflammation. Here, we aim to present an overview of how ISCs adapt to the acute inflammation to support intestinal repair, with a focus on the roles and interaction of niche signals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhenghao Ye
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Dean Tian
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Xiao
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
7
|
Rees WD, Tandun R, Yau E, Zachos NC, Steiner TS. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front Cell Dev Biol 2020; 8:583919. [PMID: 33282867 PMCID: PMC7688923 DOI: 10.3389/fcell.2020.583919] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelium is replenished every 3-4 days through an orderly process that maintains important secretory and absorptive functions while preserving a continuous mucosal barrier. Intestinal epithelial cells (IECs) derive from a stable population of intestinal stem cells (ISCs) that reside in the basal crypts. When intestinal injury reaches the crypts and damages IECs, a mechanism to replace them is needed. Recent research has highlighted the existence of distinct populations of acute and chronic damage-associated ISCs and their roles in maintaining homeostasis in several intestinal perturbation models. What remains unknown is how the damage-associated regenerative ISC population functions in the setting of chronic inflammation, as opposed to acute injury. What long-term consequences result from persistent inflammation and other cellular insults to the ISC niche? What particular "regenerative" cell types provide the most efficacious restorative properties? Which differentiated IECs maintain the ability to de-differentiate and restore the ISC niche? This review will cover the latest research on damage-associated regenerative ISCs and epigenetic factors that determine ISC fate, as well as provide opinions on future studies that need to be undertaken to understand the repercussions of the emergence of these cells, their contribution to relapses in inflammatory bowel disease, and their potential use in therapeutics for chronic intestinal diseases.
Collapse
Affiliation(s)
- William D Rees
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Rene Tandun
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Enoch Yau
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Theodore S Steiner
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
8
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
9
|
Yu X, Li S, Xu Y, Zhang Y, Ma W, Liang C, Lu H, Ji Y, Liu C, Chen D, Li J. Androgen Maintains Intestinal Homeostasis by Inhibiting BMP Signaling via Intestinal Stromal Cells. Stem Cell Reports 2020; 15:912-925. [PMID: 32916121 PMCID: PMC7561494 DOI: 10.1016/j.stemcr.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/13/2023] Open
Abstract
Research shows a higher incidence of colorectal cancer in men. However, the molecular mechanisms for this gender disparity remain unknown. We report the roles of androgen in proliferation and differentiation of intestinal stem cells via targeting of the androgen receptor (AR) on intestinal stromal cells by negatively regulating BMP signaling. Orchidectomy (ORX) or the AR antagonist promotes expansion of intestinal epithelium but suppresses intestinal stem cell (ISC) proliferation. Conversely, the AR agonist inhibits ISC differentiation but augments proliferation in ovariectomized mice. Mechanistically, activation of the AR increases expression of BMP antagonists but lowers expression of BMP4 and Wnt antagonists in primary stromal cells, which promotes intestinal organoid growth. Interestingly, the BMP pathway inhibitor LDN-193189 reverses the ORX-induced effects. Our results highlight that stromal cells constitute the intestinal stem cell niche and provide a possible explanation for higher incidence rates of colorectal cancer in men.
Collapse
Affiliation(s)
- Xin Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Shiguang Li
- School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Yiming Xu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing Dongcheng District, 100730 Beijing, China
| | - Yundi Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Wenlong Ma
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Changchun Liang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Haodong Lu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Yuge Ji
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, CHU, Sart-Tilman, 4000 Liège, Belgium,Corresponding author
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, China,Corresponding author
| |
Collapse
|
10
|
Fallah S, Beaulieu JF. The Hippo Pathway Effector YAP1 Regulates Intestinal Epithelial Cell Differentiation. Cells 2020; 9:1895. [PMID: 32823612 PMCID: PMC7463744 DOI: 10.3390/cells9081895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The human intestine is covered by epithelium, which is continuously replaced by new cells provided by stem cells located at the bottom of the glands. The maintenance of intestinal stem cells is supported by a niche which is composed of several signaling proteins including the Hippo pathway effectors YAP1/TAZ. The role of YAP1/TAZ in cell proliferation and regeneration is well documented but their involvement on the differentiation of intestinal epithelial cells is unclear. In the present study, the role of YAP1/TAZ on the differentiation of intestinal epithelial cells was investigated using the HT29 cell line, the only multipotent intestinal cell line available, with a combination of knockdown approaches. The expression of intestinal differentiation cell markers was tested by qPCR, Western blot, indirect immunofluorescence and electron microscopy analyses. The results show that TAZ is not expressed while the abolition of YAP1 expression led to a sharp increase in goblet and absorptive cell differentiation and reduction of some stem cell markers. Further studies using double knockdown experiments revealed that most of these effects resulting from YAP1 abolition are mediated by CDX2, a key intestinal cell transcription factor. In conclusion, our results indicate that YAP1/TAZ negatively regulate the differentiation of intestinal epithelial cells through the inhibition of CDX2 expression.
Collapse
Affiliation(s)
- Sepideh Fallah
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Chen X, Yuan W, Li Y, Luo J, Hou N. Role of Hippo-YAP1/TAZ pathway and its crosstalk in cardiac biology. Int J Biol Sci 2020; 16:2454-2463. [PMID: 32760212 PMCID: PMC7378646 DOI: 10.7150/ijbs.47142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway undertakes a pivotal role in organ size control and the process of physiology and pathology in tissue. Its downstream effectors YAP1 and TAZ receive upstream stimuli and exert transcription activity to produce biological output. Studies have demonstrated that the Hippo pathway contributes to maintenance of cardiac homeostasis and occurrence of cardiac disease. And these cardiac biological events are affected by crosstalk among Hippo-YAP1/TAZ, Wnt/β-catenin, Bone morphogenetic protein (BMP) and G-protein-coupled receptor (GPCR) signaling, which provides new insights into the Hippo pathway in heart. This review delineates the interaction among Hippo, Wnt, BMP and GPCR pathways and discusses the effects of these pathways in cardiac biology.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenchang Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
12
|
Takahashi T, Shiraishi A. Stem Cell Signaling Pathways in the Small Intestine. Int J Mol Sci 2020; 21:ijms21062032. [PMID: 32188141 PMCID: PMC7139586 DOI: 10.3390/ijms21062032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of stem cells to divide and differentiate is necessary for tissue repair and homeostasis. Appropriate spatial and temporal mechanisms are needed. Local intercellular signaling increases expression of specific genes that mediate and maintain differentiation. Diffusible signaling molecules provide concentration-dependent induction of specific patterns of cell types or regions. Differentiation of adjacent cells, on the other hand, requires cell–cell contact and subsequent signaling. These two types of signals work together to allow stem cells to provide what organisms require. The ability to grow organoids has increased our understanding of the cellular and molecular features of small “niches” that modulate stem cell function in various organs, including the small intestine.
Collapse
|
13
|
van Soldt BJ, Cardoso WV. Hippo-Yap/Taz signaling: Complex network interactions and impact in epithelial cell behavior. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e371. [PMID: 31828974 DOI: 10.1002/wdev.371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The Hippo pathway has emerged as a crucial integrator of signals in biological events from development to adulthood and in diseases. Although extensively studied in Drosophila and in cell cultures, major gaps of knowledge still remain on how this pathway functions in mammalian systems. The pathway consists of a growing number of components, including core kinases and adaptor proteins, which control the subcellular localization of the transcriptional co-activators Yap and Taz through phosphorylation of serines at key sites. When localized to the nucleus, Yap/Taz interact with TEAD transcription factors to induce transcriptional programs of proliferation, stemness, and growth. In the cytoplasm, Yap/Taz interact with multiple pathways to regulate a variety of cellular functions or are targeted for degradation. The Hippo pathway receives cues from diverse intracellular and extracellular inputs, including growth factor and integrin signaling, polarity complexes, and cell-cell junctions. This review highlights the mechanisms of regulation of Yap/Taz nucleocytoplasmic shuttling and their implications for epithelial cell behavior using the lung as an intriguing example of this paradigm. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Signaling Pathways > Cell Fate Signaling Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Wellington V Cardoso
- Columbia Center for Human Development, Department of Medicine, Pulmonary Allergy Critical Care Medicine, Columbia University Irving Medical Center, New York, New York.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
14
|
Li M, Gu MM, Lang Y, Shi J, Chen BPC, Guan H, Yu L, Zhou PK, Shang ZF. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free Radic Biol Med 2019; 145:223-236. [PMID: 31580946 DOI: 10.1016/j.freeradbiomed.2019.09.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/21/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Meng-Meng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yue Lang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianming Shi
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lan Yu
- Suzhou Digestive Diseases and Nutrition Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China.
| | - Ping-Kun Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
15
|
Bae JS, Kim SM, Jeon Y, Sim J, Jang JY, Son J, Hong W, Park MK, Lee H. Loss of Mob1a/b impairs the differentiation of mouse embryonic stem cells into the three germ layer lineages. Exp Mol Med 2019; 51:1-12. [PMID: 31723125 PMCID: PMC6853965 DOI: 10.1038/s12276-019-0342-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway plays a crucial role in cell proliferation and apoptosis and can regulate stem cell maintenance and embryonic development. MOB kinase activators 1A and 1B (Mob1a/b) are key components of the Hippo pathway, whose homozygous deletion in mice causes early embryonic lethality at the preimplantation stage. To investigate the role of Mob1a/b in stem cell maintenance and differentiation, an embryonic stem cell (ESC) clone in which Mob1a/b could be conditionally depleted was generated and characterized. Although Mob1a/b depletion did not affect the stemness or proliferation of mouse ESCs, this depletion caused defects in differentiation into the three germ layers. Yap knockdown rescued the in vitro and in vivo defects in differentiation caused by Mob1a/b depletion, suggesting that differentiation defects caused by Mob1a/b depletion were Yap-dependent. In teratoma experiments, Yap knockdown in Mob1a/b-depleted ESCs partially restored defects in differentiation, indicating that hyperactivation of Taz, another effector of the Hippo pathway, inhibited differentiation into the three germ layers. Taken together, these results suggest that Mob1a/b or Hippo signaling plays a critical role in the differentiation of mouse ESCs into the three germ layers, which is dependent on Yap. These close relationship of the Hippo pathway with the differentiation of stem cells supports its potential as a therapeutic target in regenerative medicine.
Collapse
Affiliation(s)
- June Sung Bae
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Sun Mi Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Yoon Jeon
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Juyeon Sim
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Ji Yun Jang
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Jaehyung Son
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Woosol Hong
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Mi Kyung Park
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Ho Lee
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea. .,Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
16
|
Zhou HQ, Liu MS, Deng TB, Xie PB, Wang W, Shao T, Wu Y, Zhang P. The TGF-β/Smad Pathway Inhibitor SB431542 Enhances The Antitumor Effect Of Radiofrequency Ablation On Bladder Cancer Cells. Onco Targets Ther 2019; 12:7809-7821. [PMID: 31576139 PMCID: PMC6765330 DOI: 10.2147/ott.s212596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite progress achieved in bladder cancer (BC) treatment, the prognosis of patients with advanced BC (ie, metastasized from the bladder to other organs) is poor. Although mortality in cases of low-grade BC is rare, the treatment, such as a radical cystectomy, often has a serious impact on the quality of life. Thus, research is needed to identify more effective treatment strategies and this work is aiming to examine the potential application of combination of radiofrequency ablation (RFA) and SB435142, a inhibitor of transforming growth factor β (TGFβ)/Smad pathway. Methods BC cells were transplanted into nude mice (thymusdeficiency Bal B/c) to form subcutaneous tumors. The mice with subcutaneous tumors were then treated with RFA and oral administration of SB431542, an inhibitor of TGFβ/Smad signaling pathway. The antitumor effect of RFA was measured by tumor proliferation curves and micro-positron emission computed tomography (micro-PET). The effect of SB431542 on epithelial-mesenchymal transition (EMT) related regulators in subcutaneous tumor tissues formed by BC cells were examined by quantitative real-time polymerase chain reaction (qPCR) experiments. Results The SB431542 treatment enhanced the antitumor effect of RFA on subcutaneous growth of BCs. SB431542 also decreased EMT-related regulators in subcutaneous tumor tissues formed by BC cells in nude mice. Conclusion SB431542 enhances the effect of RFA on BC.
Collapse
Affiliation(s)
- Hong-Qing Zhou
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ming-Sheng Liu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ti-Bin Deng
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Ping-Bo Xie
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Wei Wang
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tao Shao
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Yao Wu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University , Qujing City 655000, Yunnan Province, People's Republic of China
| | - Peng Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing 100853, People's Republic of China
| |
Collapse
|
17
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|