1
|
Zhu R, Tian C, Gao N, Li Z, Yang S, Zhang Y, Zhou M, Sun Y, Zhang C, Jin K. Hypomethylation induced overexpression of PLOD3 facilitates colorectal cancer progression through TM9SF4-mediated autophagy. Cell Death Dis 2025; 16:206. [PMID: 40133271 PMCID: PMC11937244 DOI: 10.1038/s41419-025-07503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Colorectal cancer (CRC) ranks among the primary causes of human mortality globally. Numerous studies have highlighted the significant role of PLOD3 in the progression of various cancers. However, the exact function and underlying mechanisms of PLOD3 in CRC remains incompletely understood. To investigate the expression of PLOD3, qRT‒PCR, immunohistochemistry and western blotting were utilized to analyze the expression of PLOD3 in CRC tissues and adjacent normal tissues. Functional assays were conducted to assess the roles of PLOD3 both in vitro and in vivo. To elucidate the potential mechanism of PLOD3 in CRC, a range of techniques, including coimmunoprecipitation, immunofluorescence, CHX pulse-chase, and ubiquitination assays were used. As the results indicated, hypomethylation of the PLOD3 promoter leads to its over- expression in CRC, and elevated PLOD3 levels are associated with a poor prognosis. Both in vitro and in vivo models demonstrated that PLOD3 enhances CRC cell proliferation, invasion, and migration. Furthermore, through mechanistic studies, TM9SF4 was identified as a protein that interacts with PLOD3 and contributes to CRC progression by promoting autophagy. Additionally, PLOD3 could be secreted by CRC cells and secreted PLOD3 could promote CRC cells migration and invasion. These results demonstrated that PLOD3 promotes CRC progression through the PLOD3/TM9SF4 axis and could be a potential biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Renzhong Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Chuanxin Tian
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Nan Gao
- General Surgery department of Dongtai People's Hospital, Yancheng, China
| | - Zhiqiang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Yue Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Ming Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yueming Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| |
Collapse
|
2
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Lin X, Han X, Zhou W, Gong X, Zhou Y, Wang Q, Zhang C. RBM15 increase tumor-infiltrating CD4+ T cell in ESCC via modulating of PLOD3. Am J Cancer Res 2024; 14:5486-5503. [PMID: 39659928 PMCID: PMC11626265 DOI: 10.62347/idcp2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Collagen, a primary protein component of the extracellular matrix (ECM), undergoes a notable series of alterations concomitant with the growth of the tumor. Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (PLOD3) is involved in the synthesis of collagen and has been associated with a variety of cancers. However, it is unclear how PLOD3 functions in esophageal squamous cell carcinoma (ESCC). METHODS Differentially expressed genes between ESCC and adjacent normal tissues were identified using proteomic and transcriptomic analyses. These genes were then subjected to survival analysis to identify prognostic markers. Immune cell infiltration in the two subgroups was evaluated. Spearman's correlation analysis was performed to examine the correlation between PLOD3 and RBM15 expression in TCGA-ESCC database. shRNA-mediated approach was used to knockdown RBM15 in ESCC cells. The effects of RBM15 knockdown on PLOD3 expression were assessed by real-time PCR and Western blot. Moreover, COX algorithm was employed to construct a prognostic signature. RESULTS PLOD3 was found to be highly expressed in ESCC patients and correlated with a favorable prognosis. Immune cell infiltration estimation indicated tumor-infiltrating CD4+ T cell was increased in PLOD3-high group. Correlation analysis revealed that PLOD3 was associated with RBM15 and was closely related to CD4+ T cell infiltration. Moreover, loss-of-function approaches showed that depletion of RBM15 attenuated PLOD3 expression in ESCC cells. Following univariate and multivariate Cox regression analyses, PLOD3 and RBM15 were identified as a two-gene prognostic signature for ESCC. CONCLUSION RBM15 enhances tumor-infiltrating CD4+ T Cell abundance in ESCC by regulating PLOD3. Two new independent prognostic factors, PLOD3 and RBM15, may be useful in predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Xuyang Lin
- Department of Stomatology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Xiao Han
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast UniversityNanjing 210000, Jiangsu, China
| | - Yu Zhou
- Department of Medical Oncology, Cancer Center, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Qilong Wang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| |
Collapse
|
4
|
Bauer N, Boettger M, Papadaki S, Leitner T, Klostermann S, Kettenberger H, Georges G, Larraillet V, Gluhacevic von Kruechten D, Hillringhaus L, Vogt A, Ausländer S, Popp O. Procollagen-lysine 2-oxoglutarate 5-dioxygenases are responsible for 5R-hydroxylysine modification of therapeutic T-cell bispecific monoclonal antibodies produced by Chinese hamster ovary cells. Front Bioeng Biotechnol 2024; 12:1414408. [PMID: 39530057 PMCID: PMC11551027 DOI: 10.3389/fbioe.2024.1414408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
We present a detailed mass spectrometric analysis of three 2 + 1 T-cell bispecific monoclonal antibodies (TCB mAbs), where an unexpected +15.9950 Da mass shift in tryptic peptides was observed. This modification was attributed to the occurrence of 5R-hydroxylysine (Hyl) using a hybrid LC-MS/MS molecular characterization and CRISPR/Cas9 gene deletion approach. The modification was found at various sites within TCB mAbs, with a conspicuous hot spot motif mirroring a prior observation where Hyl was mapped to the CH1-VH Fab domain interface of IgGs. In contrast to the preceding report, our structural modeling analysis on TCB mAbs unveiled substantial differences in the orientation and flexibility of motifs in immediate proximity and across the artificial CH1-VL cross Fab interface and upstream elbow segment. Utilizing a hybrid database search, RNAseq, and a CRISPR/Cas9 knockout methodology in Chinese hamster ovary (CHO) production cell lines, procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were conclusively identified as the catalyzing enzymes accountable for the 5R-Hyl modification in TCB mAbs. To quantitatively inhibit Hyl formation in TCB mAbs, the activity of all three Chinese hamster PLOD isoenzymes needs to be depleted via CRISPR/Cas9 gene knockout. Moreover, our investigation identified cell culture iron availability, process duration, and clonal variability in CHO cells as elements influencing the levels of Hyl formation in TCB mAbs. This research offers a solution for circumventing Hyl formation in therapeutic complex mAb formats, such as TCB mAbs, produced in CHO cell culture processes, thereby addressing potential technical and biological challenges associated with unintended Hyl modification.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Boettger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Styliani Papadaki
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Tanja Leitner
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Data and Analytics, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | | | - Lars Hillringhaus
- Special Chemistry, Roche Diagnostics, Roche Innovation Center Munich, Penzberg, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
5
|
Lazar V, Raymond E, Magidi S, Bresson C, Wunder F, Berindan-Neagoe I, Tijeras-Rabaland A, Raynaud J, Onn A, Ducreux M, Batist G, Lassen U, Cilius Nielsen F, Schilsky RL, Rubin E, Kurzrock R. Identification of a central network hub of key prognostic genes based on correlation between transcriptomics and survival in patients with metastatic solid tumors. Ther Adv Med Oncol 2024; 16:17588359241289200. [PMID: 39429467 PMCID: PMC11487509 DOI: 10.1177/17588359241289200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dysregulated pathways in cancer may be hub addicted. Identifying these dysregulated networks for targeting might lead to novel therapeutic options. Objective Considering the hypothesis that central hubs are associated with increased lethality, identifying key hub targets within central networks could lead to the development of novel drugs with improved efficacy in advanced metastatic solid tumors. Design Exploring transcriptomic data (22,000 gene products) from the WINTHER trial (N = 101 patients with various metastatic cancers), in which both tumor and normal organ-matched tissue were available. Methods A retrospective in silico analysis of all genes in the transcriptome was conducted to identify genes different in expression between tumor and normal tissues (paired t-test) and to determine their association with survival outcomes using survival analysis (Cox proportional hazard regression algorithm). Based on the biological relevance of the identified genes, hub targets of interest within central networks were then pinpointed. Patients were grouped based on the expression level of these genes (K-mean clustering), and the association of these groups with survival was examined (Cox proportional hazard regression algorithm, Forest plot, and Kaplan-Meier plot). Results We identified four key central hub genes-PLOD3, ARHGAP11A, RNF216, and CDCA8, for which high expression in tumor tissue compared to analogous normal tissue had the most significant correlation with worse outcomes. The correlation was independent of tumor or treatment type. The combination of the four genes showed the highest significance and correlation with the poorer outcome: overall survival (hazard ratio (95% confidence interval (CI)) = 10.5 (3.43-31.9) p = 9.12E-07 log-rank test in a Cox proportional hazard regression model). Findings were validated in independent cohorts. Conclusion The expression of PLOD3, ARHGAP11A, RNF216, and CDCA8 constitute, when combined, a prognostic tool, agnostic of tumor type and previous treatments. These genes represent potential targets for intercepting central hub networks in various cancers, offering avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vladimir Lazar
- Worldwide Innovative Network Association—WIN Consortium, Villejuif, France
| | - Eric Raymond
- Groupe Hospitalier Saint Joseph, Oncology Department Paris, France
| | - Shai Magidi
- Worldwide Innovative Network Association—WIN Consortium, 24, rue Albert Thuret, Chevilly-Larue 94850, France
| | - Catherine Bresson
- Worldwide Innovative Network Association—WIN Consortium, Villejuif, France
| | - Fanny Wunder
- Worldwide Innovative Network Association—WIN Consortium, Villejuif, France
| | - Ioana Berindan-Neagoe
- The Oncology Institute “Prof. Dr. Ion Chiricuta,” Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Jacques Raynaud
- Worldwide Innovative Network Association—WIN Consortium, Villejuif, France
| | - Amir Onn
- Sheba Medical Center, Institute of Pulmonology, Tel HaShomer, Ramat-Gan, Israel
| | - Michel Ducreux
- Gustave Roussy, Department of Medical Oncology, Villejuif, France
- University Paris-Saclay, Department of Medical Oncology, Orsay, France
| | - Gerald Batist
- Segal Cancer Centre, Department of Oncology, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | | | | | | | - Eitan Rubin
- Ben-Gurion University of the Negev, The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Be’er-Sheva, Israel
| | | |
Collapse
|
6
|
Galkina SI, Fedorova NV, Golenkina EA, Ksenofontov AL, Serebryakova MV, Kordyukova LV, Stadnichuk VI, Baratova LA, Sud'ina GF. Differential effects of angiotensin II and aldosterone on human neutrophil adhesion and concomitant secretion of proteins, free amino acids and reactive oxygen and nitrogen species. Int Immunopharmacol 2024; 139:112687. [PMID: 39018693 DOI: 10.1016/j.intimp.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Invasion and adhesion of neutrophils into tissues and their concomitant secretion play an important role in the development of vascular pathologies, including abdominal aortic aneurysm (AAA). Chronic administration of angiotensin II is used to initiate AAA formation in mice. The role of aldosterone in this process is being studied. We conducted for the first time a complex comparative study of the effects of angiotensin II and aldosterone on the adhesion of human neutrophils to fibronectin and the concomitant secretion of proteins, free amino acids as well as reactive oxygen (ROS) and nitrogen (NO) species. Neither angiotensin II nor aldosterone affected the attachment of neutrophils to fibronectin and the concomitant production of ROS. We showed for the first time that aldosterone stimulated the release of amino acid hydroxylysine, a product of lysyl hydroxylase, the activity of which is positively correlated with cell invasiveness. Aldosterone also initiates the secretion of matrix metalloproteinase 9 (MMP-9) and cathepsin G, which may reorganize the extracellular matrix and stimulate the recruitment and adhesion of neutrophils to the aortic walls. Angiotensin II did not affect protein secretion. It may contribute to neutrophil-induced vascular injury by inhibiting the production of NO or by increasing the secretion of isoleucine. Our results suggest that it is aldosterone-induced neutrophil secretion that may play a significant role in neutrophil-induced vascular wall destruction in angiotensin II-induced AAA or other vascular complications.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V Kordyukova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
7
|
Wen X, Qin J, Zhang X, Ye L, Wang Y, Yang R, Di Y, He W, Wang Z. MEK-mediated CHPF2 phosphorylation promotes colorectal cancer cell proliferation and metastasis by activating NF-κB signaling. Cancer Lett 2024; 584:216644. [PMID: 38253217 DOI: 10.1016/j.canlet.2024.216644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays a crucial role in the proliferation and metastasis of colorectal cancer (CRC) cells, but the underlying mechanisms remain poorly understood. Here, we report that chondroitin polymerizing factor 2 (CHPF2) promotes CRC cell proliferation and metastasis mediated by TNF, independently of its enzymatic activity. CHPF2 is highly expressed in CRC, and its elevated expression is associated with poor prognosis of CRC patients. Mechanistically, upon TNF stimulation, CHPF2 is phosphorylated at the T588 residue by MEK, enabling CHPF2 to interact with both TAK1 and IKKα. This interaction enhances the binding of TAK1 and IKKα, leading to increased phosphorylation of the IKK complex and activation of NF-κB signaling. As a result, the expression of early growth factors (EGR1) is upregulated to promote CRC cell proliferation and metastasis. In contrast, introduction of a phospho-deficient T588A mutation in CHPF2 weakened the interaction between CHPF2 and TAK1, thus impairing NF-κB signaling. CHPF2 T588A mutation reduced the ability of CHPF2 to promote the proliferation and metastasis of CRC in vitro and in vivo. Furthermore, the NF-κB RELA subunit promotes CHPF2 expression, further amplifying TNF-induced NF-κB signaling activation. These findings identify a moonlighting function of CHPF2 in promoting tumor cell proliferation and metastasis and provide insights into the mechanism by which CHPF2 amplifies TNF-mediated NF-κB signaling activation. Our study provides a molecular basic for the development of therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ranran Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
8
|
Ding M, Wang C, Hu J, She J, Shi R, Liu Y, Sun Q, Xu H, Zhou G, Wu W, Xia H. PLOD3 facilitated T cell activation in the colorectal tumor microenvironment and liver metastasis by the TNF-α/ NF-κB pathway. J Transl Med 2024; 22:30. [PMID: 38184566 PMCID: PMC10771005 DOI: 10.1186/s12967-023-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been the third most prevalent cancer worldwide. Liver metastasis is the critical factor for the poor prognosis of CRC. Here, we investigated the expression and role of PLOD3 in CRC. METHODS Different liver metastasis models were established by injecting PLOD3 stable knockdown or overexpression CT26 or MC38 mouse CRC cells into the spleen of mice to verify the tumorigenicity and metastasis ability in vivo. RESULTS We identified PLOD3 is significantly overexpressed in liver metastasis samples of CRC. High expression of PLOD3 was significantly associated with poor survival of CRC patients. The knockdown of PLOD3 exhibited remarkable inhibition of proliferation, migration, and invasion in CRC cells, while the opposite results could be found in different PLOD3-overexpressed CRC cells. Stable knockdown of PLOD3 also significantly inhibited liver metastasis of CRC cells in different xenografts models, while stable overexpression of PLOD3 promotes liver metastasis and tumor progression. Further studies showed that PLOD3 facilitated the T cell activation in the tumor microenvironment and affected the TNF-α/ NF-κB pathway. CONCLUSIONS This study revealed the essential biological functions of PLOD3 in colon cancer progression and metastasis, suggesting that PLOD3 is a promising translational medicine target and bioengineering targeting PLOD3 overcomes CRC liver metastasis.
Collapse
Affiliation(s)
- Min Ding
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Cheng Wang
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junjun She
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruoyu Shi
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Yixuan Liu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Haojun Xu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Wenlan Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hongping Xia
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China.
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China.
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
9
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
10
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
11
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|
12
|
Mei W, Jin L, Zhang B, Sun X, Yang G, Li S, Ye L. Computer classification and construction of a novel prognostic signature based on moonlighting genes in prostate cancer. Front Oncol 2022; 12:982267. [PMID: 36276080 PMCID: PMC9585316 DOI: 10.3389/fonc.2022.982267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancer (PRAD) patients have poor prognosis and rising morbidity despite the ongoing iteration of molecular therapeutic agents. As newly discovered proteins with several functions, Moonlighting proteins have showed an important role in tumor progression but has not been extensively investigated in PRAD. Our study aimed to identify moonlighting-related prognostic biomarkers and prospective PRAD therapy targets. 103 moonlighting genes were gathered from previous literatures. A PRAD classification and multivariate Cox prognostic signature were constructed using dataset from The Cancer Genome Atlas (TCGA). Subsequently, we tested our signature’s potential to predict biochemical failure-free survival (BFFS) using GSE21032, a prostate cancer dataset from Gene Expression Omnibus (GEO). The performance of this signature was demonstrated by Kaplan-Meier (KM), receiver operator characteristic (ROC), areas under ROC curve (AUC), and calibration curves. Additionally, immune infiltration investigation was conducted to determine the impact of these genes on immune system. This signature’s influence on drug susceptibility was examined using CellMiner’s drug database. Both training and validation cohorts demonstrated well predictive capacity of this 9-gene signature for PRAD. The 3-year AUCs for TCGA-PRAD and GSE21032 were 0.802 and 0.60 respectively. It can effectively classify patients into various biochemical recurrence risk groups. These genes were also assessed to be connected with tumor mutation burden (TMB), immune infiltration and therapy. This work created and validated a moonlighting gene signature, revealing fresh perspectives on moonlighting proteins in predicting prognosis and improving treatment of PRAD.
Collapse
Affiliation(s)
- Wangli Mei
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bihui Zhang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianchao Sun
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Li
- Department of Biochemistry, Dalian Medical University, Dalian, China
- *Correspondence: Lin Ye, ; Sheng Li,
| | - Lin Ye
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lin Ye, ; Sheng Li,
| |
Collapse
|
13
|
Gao Y, Shen L, Dong T, Yang X, Cui H, Guo Y, Ma Y, Kong P, Cheng X, Zhang L, Cui Y. An N-glycoproteomic site-mapping analysis reveals glycoprotein alterations in esophageal squamous cell carcinoma. J Transl Med 2022; 20:285. [PMID: 35752862 PMCID: PMC9233802 DOI: 10.1186/s12967-022-03489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aberrant glycosylation has been recognized as a hallmark of cancer and N-glycosylation is one of the main types of glycosylation in eukaryotes. Although N-glycoproteomics has made contributions to the discovery of biomarkers in a variety of cancers, less is known about the abnormal glycosylation signatures in esophageal squamous cell carcinoma (ESCC). Methods In this study, we reported the proteomics and N-glycoproteomic site-mapping analysis of eight pairs of ESCC tissues and adjacent normal tissues. With zic-HILIC enrichment, TMT-based isobaric labeling, LC–MS/MS analysis, differentially expressed N-glycosylation was quantitatively characterized. Lectin affinity enrichment combined with western blot was used to validate the potential biomarkers in ESCC. Results A series of differentially expressed glycoproteins (e.g., LAMP2, PLOD2) and enriched signaling pathways (e.g., metabolism-related pathway, ECM-receptor interaction, focal adhesion) were identified. Besides that, seven significantly enriched motifs were found from the identified N-glycosylation sites. Three clusters were identified after conducting the dynamic profiling analysis of glycoprotein change during lymph node metastasis progression. Further validation found that the elevated fucosylation level of ITGB1, CD276 contributed to the occurrence and development of ESCC, which might be the potential biomarkers in ESCC. Conclusion In summary, we characterized the N-glycosylation and N-glycoprotein alterations associated with ESCC. The typical changes in glycoprotein expression and glycosylation occupancy identified in our study will not only be used as ESCC biomarkers but also improve the understanding of ESCC biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03489-2.
Collapse
Affiliation(s)
- Yingzhen Gao
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Liuyi Shen
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Tianyue Dong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xin Yang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Heyang Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China
| | - Yanlin Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yanchun Ma
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China. .,Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China.
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China. .,Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Wang Y, Tian Z, Lin Y, Li H, Zhu Z, Liu Q, Su S, Zeng Y, Jia W, Yang Y, Xu S, Yao H, Jiang W, Song E. Multicenter phase II trial of Camrelizumab combined with Apatinib and Eribulin in heavily pretreated patients with advanced triple-negative breast cancer. Nat Commun 2022; 13:3011. [PMID: 35641481 PMCID: PMC9156739 DOI: 10.1038/s41467-022-30569-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
In the later-line setting or for patients with PD-L1-negative tumors, immunotherapy-based regimens remain ineffective against advanced triple-negative breast cancer (TNBC). In this multicentered phase II trial (NCT04303741), 46 patients with pretreated advanced TNBC were enrolled to receive camrelizumab 200 mg (day 1), and apatinib 250 mg daily, plus eribulin 1.4 mg/m2 (day 1 and 8) on a 21-day cycle until progression, or unacceptable toxicity. Primary endpoint was objective response rate (ORR) according to RECIST 1.1. Secondary endpoints included toxicities, disease control rate (DCR), clinical benefit rate, progression-free survival (PFS), and 1-year overall survival. With a median of 3 lines of prior chemotherapy in the advanced setting, 17.4% had received PD-1/PD-L1 blockade plus chemotherapy for advanced disease. The ORR was 37.0% (17/46, 95% CI 23.2-52.5). The DCR was 87.0% (40/46, 95% CI 73.7-95.1). Median PFS was 8.1 (95% CI 4.6-10.3) months. Tertiary lymphoid structure was associated with higher ORR. Patients with lower tumor PML or PLOD3 expression had favorable ORR and PFS. PD-L1 status was not associated with ORR/PFS. Grade 3/4 treatment-related adverse events occurred in 19 (41.3%) of 46 patients. Camrelizumab plus apatinib and eribulin shows promising efficacy with a measurable safety profile in patients with heavily pretreated advanced TNBC.
Collapse
Affiliation(s)
- Jieqiong Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenluan Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Lin
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Zhaowen Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijuan Jia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
PLOD3 regulates the expression of YAP1 to affect the progression of non-small cell lung cancer via the PKCδ/CDK1/LIMD1 signaling pathway. J Transl Med 2022; 102:440-451. [PMID: 35039611 DOI: 10.1038/s41374-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3) is a crucial oncogene in human lung cancer, whereas protein kinase C δ (PKCδ) acts as a tumor suppressor. In this study, we aimed to explore the regulation by PLOD3 on the expression of YAP1 to affect the progression of non-small cell lung cancer (NSCLC) via the PKCδ/CDK1/LIMD1 signaling pathway. We found that PLOD3, CDK1, and YAP1 were highly expressed, while LIMD1 was poorly expressed in NSCLC tissues. Mechanistic investigation demonstrated that silencing PLOD3 promoted the cleavage of PKCδ in a caspase-dependent manner to generate a catalytically active fragment cleaved PKCδ, enhanced phosphorylation levels of CDK1, and LIMD1 but suppressed nuclear translocation of YAP1. Furthermore, functional experimental results suggested that loss of PLOD3 led to increased phosphorylation levels of CDK1 and LIMD1 and downregulated YAP1, thereby suppressing the proliferation, colony formation, cell cycle entry, and resistance to apoptosis of NSCLC cells in vitro and inhibiting tumor growth in vivo. Taken together, these results show that PLOD3 silencing activates the PKCδ/CDK1/LIMD1 signaling pathway to prevent the progression of NSCLC, thus providing novel insight into molecular targets for treating NSCLC.
Collapse
|
16
|
Zhang J, Tian Y, Mo S, Fu X. Overexpressing PLOD Family Genes Predict Poor Prognosis in Pancreatic Cancer. Int J Gen Med 2022; 15:3077-3096. [PMID: 35330878 PMCID: PMC8938171 DOI: 10.2147/ijgm.s341332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is a common malignant tumor. Multiple studies have shown that procollagen lysyl-hydroxylase (PLOD) family genes were closely related to tumor progression and metastasis in a variety of human cancers. This study aimed to explore the prognosis and biological role of PLOD family genes in pancreatic adenocarcinoma (PAAD). Methods GEPIA, GEO, HPA, CCLE, Kaplan-Meier plotter, cBioPortal, LinkedOmics, DAVID6.8, STRING, and TIMER were employed to determine the prognostic values and biological function of PLOD family members in PAAD. Results The mRNA and protein expression patterns of PLOD family members were noticeably up-regulated in PAAD compared with normal tissues. PLOD family gene expression was also up-regulated in pancreatic cancer cell lines. PLOD1 was correlated with histological and pathological grades of pancreatic cancer. PLOD2 was related to histological grade. The high expression of PLOD1-2 was correlated with the poor overall survival rate and relapse-free survival rate in patients with PAAD. Additionally, PLODs showed high sensitivity and specificity in distinguishing pancreatic cancer from normal tissues. Through the functional enrichment analysis of PLOD-related genes in PAAD, we found that PLODs were enriched in collagen fiber tissue structure, lysine degradation, and collagen biosynthesis. Pathway analysis confirmed that PLODs regulated the proliferation, migration, and metastasis of pancreatic cancer through the RalGEF-Ral signaling pathway. Furthermore, the level of expression of PLOD1-2 was positively correlated with the activity of tumor-infiltrating immune cells, including CD8+T cells, neutrophils, macrophages, and dendritic cells. The level of expression of PLOD3 was inversely correlated with the level of infiltration of CD8+T cells. PLOD1 and PLOD2 were highly expressed in pancreatic cancer tissues with TP53 and KRAS mutations, respectively. However, the level of expression of PLOD3 in SMAD4 wild-type pancreatic cancer was increased. Conclusion The findings showed that individual PLOD genes or PLOD family genes could be potential prognostic biomarkers for PAAD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
- The Fifth People’s Hospital of Datong, Datong, Shanxi Province, 037006, People’s Republic of China
| | - YanZhang Tian
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - ShaoJian Mo
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| | - XiFeng Fu
- Department of Biliary and Pancreatic Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, People’s Republic of China
| |
Collapse
|
17
|
Pan S, Guan Y, Ma Y, Cui Q, Tang Z, Li J, Zu C, Zhang Y, Zhu L, Jiang J, Liu Z. Advanced glycation end products correlate with breast cancer metastasis by activating RAGE/TLR4 signaling. BMJ Open Diabetes Res Care 2022; 10:10/2/e002697. [PMID: 35346972 PMCID: PMC8961114 DOI: 10.1136/bmjdrc-2021-002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/06/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION This study was aimed to investigate the mechanisms of advanced glycation end products (AGEs) in promoting invasion and metastasis of breast cancer. RESEARCH DESIGN AND METHODS Patients with 131 breast cancer were enrolled in a cohort and followed up to investigate the association between AGEs and metastasis. Serum AGE concentrations were detected by ELISA. Breast cancer MDA-MB-231 cells were exposed to generated AGE-bovine serum albumin (BSA). CCK-8 assay was used to select the non-cytotoxic concentrations of AGE-BSA. Small interfering RNA was used to knock down Toll-like receptor 4 (TLR4). Migration and invasion were evaluated by wound healing and transwell assays. Real-time PCR and western blotting were used to detect the gene expressions. RESULTS In the cohort study, metastasis incidence was significantly correlated with serum AGE concentrations in patients with breast cancer (adjusted OR=1.75, 95% CI=1.20 to 2.57, p=0.004). During follow-up, metastasis interval was significantly shorter in diabetic than non-diabetic subjects. In the in vitro study, AGE-BSA incubation significantly promoted migration and invasion of cancer cells in a concentration-dependent manner. AGE-BSA dramatically increased expressions of receptor for AGEs (RAGE), TLR4, myeloid differentiation factor (MyD88), matrix metalloproteinase 9 (MMP9), promoted nuclear translocation of nuclear factor κB (NFκB) p65, but decreased the expression of inhibitor of NFκB (IκBα). TLR4 silencing significantly suppressed migration and invasion of cancer cells exposed to AGE-BSA. TLR4 silencing reduced the expression of MyD88 and MMP9, as well as nuclear translocation of NFκB p65 but increased IκBα expression in AGE-BSA-incubated breast cancer cells. CONCLUSIONS AGEs are correlated with metastasis of breast cancer. AGEs' promoting effects on migration and invasion of breast cancer cells via activating RAGE/TLR4/MyD88 signaling were suggested as the involved mechanism.
Collapse
Affiliation(s)
- Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yitong Guan
- Medical School, Yan'an University, Yan'an, China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chao Zu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Jiang
- Department of Medical Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
18
|
Qi Q, Huang W, Zhang H, Zhang B, Sun X, Ma J, Zhu C, Wang C. Bioinformatic analysis of PLOD family member expression and prognostic value in non-small cell lung cancer. Transl Cancer Res 2022; 10:2707-2724. [PMID: 35116582 PMCID: PMC8798377 DOI: 10.21037/tcr-21-73] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a group of enzymes that can mediate the hydroxylation of lysyl to hydroxylysine and participate in the formation of stabilized collagen. Evidence has demonstrated that PLODs are involved in the steps of tumor progression, including proliferation, invasion, and metastasis. However, limited information is available on the function of PLOD1/2/3 in lung cancer. In this study, we investigated the expression patterns and prognostic values of PLODs in patients with lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). METHODS The Oncomine database and UALCAN were used to analyze the mRNA expression levels of PLOD family members in non-small cell lung cancer (NSCLC). The prognostic values of PLODs were investigated by the Kaplan-Meier Plotter database. We collected 33 patients with lung cancer to further verify the expression profiles and prognostic values of PLODs. The Kaplan-Meier method was used to perform survival curves, and the log-rank test was performed to evaluate the differences in survival. According to the GSE31210 databset, univariate and multivariate analyses were performed to identify whether PLODs were independent prognostic indicators for survival. Meanwhile, we investigated the mutations, potential biological functions and immune relevance of PLODs on the basis of the cBioPortal, Metascape and TIMER databases respectively. RESULTS We found that the mRNA and protein expression levels of PLODs in NSCLC tissues were higher than those in normal lung tissues. High PLOD1/2/3 expression had significant relevance to poor survival in LUAD but not in LUSC. In addition, the GSE31210 dataset showed that PLOD1 and PLOD3 were independent risk factors for relapse-free survival and overall survival (OS) in LUAD. We observed a high alteration rate of PLODs in LUSC patients, and the genetic alterations of PLODs had significant relevance to favorable OS. Furthermore, we observed that PLODs were significantly associated with tumor immunity in lung cancer. The enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that the functions of the PLODs focused on cell cycle, DNA replication, and glycolysis/gluconeogenesis in LUAD. CONCLUSIONS These results indicated that PLODs were highly expressed in lung cancer and may be suitable prognostic markers.
Collapse
Affiliation(s)
- Qi Qi
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Wuhao Huang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Xiaoyan Sun
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Jun Ma
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Chaonan Zhu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Lung Cancer Center, Tianjin, China
| |
Collapse
|
19
|
Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone Suppresses the Secretory Processes That Ensure the Invasion of Neutrophils into Tissues and Induce Inflammation. Biomedicines 2022; 10:biomedicines10020314. [PMID: 35203523 PMCID: PMC8869632 DOI: 10.3390/biomedicines10020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.
Collapse
|
20
|
Chen W, Zhong Y, Shu J, Yu H, Chen Z, Ren X, Hui Z, Li Z. Characterization of glucose-binding proteins isolated from health volunteers and human type 2 diabetes mellitus patients. Proteins 2021; 89:1413-1424. [PMID: 34165207 DOI: 10.1002/prot.26163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/09/2021] [Accepted: 06/15/2021] [Indexed: 11/11/2022]
Abstract
Glucose is one of the most important monosaccharides. Although hyperglycemia in type 2 diabetes mellitus (T2DM) lead to a series of changes; however, little is known about the alterations of serum proteins in T2DM, especially those proteins with glucose affinity. In this study, the glucose-binding proteins (GlcBPs) of serum were isolated from 30 health volunteer (HV) and 30 T2DM patients by glucose-magnetic particle conjugates (GMPC) and identified by mass spectrum analysis. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated the main gene annotations and pathways of this GlcBPs, while Motif-X webtool provided the potential glucose-binding domains. Further docking analysis and glycan microarray were used to understand the interaction between the glucose and glucose-binding domains. A total of 149 and 119 GlcBPs were identified from HV and T2DM cases. Four hundred and sixty-eight GO annotations in 165 identified GlcBPs were available, while the majority involved in cellular processes and binding function. A short peptide, EGDEEITCLNGFWLE, which was derived from the Motif-X analysis, presented a high-binding ability to the glucose from both docking analysis and glycan analysis. GMPC provides a powerful tool for GlcBPs isolation and indicates the alteration of GlcBPs in T2DM.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhuo Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziye Hui
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
21
|
Liu C, Lin P, Zhao J, Xie H, Li R, Yang X, Wang N, Jia H, Jiang S, Zhang K, Yu X. Knockdown of long noncoding RNA AC245100.4 inhibits the tumorigenesis of prostate cancer cells via the STAT3/ NR4A3 axis. Epigenomics 2021; 13:1591-1605. [PMID: 34657447 DOI: 10.2217/epi-2021-0293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: To explore the role and mechanism of long noncoding RNA AC245100.4 and NR4A3 in prostate cancer (PCa). Methods: RNA-sequencing analysis was used to detect the downstream genes of AC245100.4. A series of gain- and loss-of-function approaches were used to investigate the roles of AC245100.4 and NR4A3. RNA immunoprecipitation was performed to examine the interaction between AC245100.4 and STAT3. Results: AC245100.4 was significantly upregulated in PCa cells and tissues. Knockdown of AC21500.4 significantly inhibited the tumorigenesis of PCa cells. Mechanistically, AC245100.4 deregulated the transcription of NR4A3 via increasing p-STAT3, which acted as a transcriptional repressor of NR4A3. Conclusion: Knockdown of long noncoding RNA AC245100.4 inhibits the tumorigenesis of PCa cells via the STAT3/NR4A3 axis.
Collapse
Affiliation(s)
- Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Jiabin Zhao
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China.,Department of Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hui Xie
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China.,Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rou Li
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xu Yang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Nan Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Huizhen Jia
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Ke Zhang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| |
Collapse
|
22
|
Shi J, Bao M, Wang W, Wu X, Li Y, Zhao C, Liu W. Integrated Profiling Identifies PLOD3 as a Potential Prognostic and Immunotherapy Relevant Biomarker in Colorectal Cancer. Front Immunol 2021; 12:722807. [PMID: 34646265 PMCID: PMC8503557 DOI: 10.3389/fimmu.2021.722807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) is related to a variety of human diseases. However, its function in Colorectal cancer (CRC) remains uncertain. PLOD3 expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data. DAVID was used for enrichment analysis of PLOD3-related genes. The correlation between PLOD3 expression and immune cell infiltration was evaluated. Four expression profile datasets (GSE17536, GSE39582, GSE74602, and GSE113513) from Gene Expression Omnibus, and two proteomic datasets were used as validation cohorts for assessing the diagnostic and prognostic value of PLOD3 in CRC. What's more, we performed immunohistochemistry (IHC) staining for PLOD3 in 160 paired CRC specimens and corresponding adjacent non-tumor tissues. PLOD3 was highly expressed in many tumors including CRC. PLOD3 was upregulated in advanced stage CRCs, and high PLOD3 expression was associated with poor survival. High PLOD3 expression was associated with low levels of B cells, CD4+ T cells, M1 macrophages, CD8+ T cells, and multiple immunerelated characteristics. In addition, the high PLOD3 expression group had a higher TIDE score and a lower tumor mutation burden and microsatellite instability, indicating that patients with high PLOD3 expression may be resistant to immunotherapy. Additional datasets and IHC analysis were used to validate the diagnostic and prognostic value of PLOD3 at the mRNA and protein levels in CRC. Patients with non-response to immunotherapy showed increased PLOD3 expression in an immunotherapy treated dataset. PLOD3 is a potential biomarker for CRC diagnosis and prognosis prediction. CRCs with high PLOD3 expression may be resistant to immune checkpoint therapy.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyu Bao
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueying Li
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changdong Zhao
- Department of Gastroenterology, Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Weiwei Liu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Zhang Y, Pan M, Li CY, Li JY, Ge W, Xu L, Xiao Y. Exploration of the typical features of tubulovillous adenoma using in-depth quantitative proteomics analysis. Bioengineered 2021; 12:6831-6843. [PMID: 34585630 PMCID: PMC8806592 DOI: 10.1080/21655979.2021.1971036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This present study aimed to explore the typical protein features of tubulovillous adenoma (TVA) using proteomic and bioinformatic analyses. Tandem mass tag (TMT)-based quantitative proteomic analyses were conducted on normal mucosa, tubular adenoma, TVA and adenocarcinoma tissues. We identified 5,665 proteins categorized into seven clusters based on Pearson’s correlation analysis. The bioinfomatic analysis showed mitochondrial and metabolism-related events were typical characteristics of TVA and mitochondrial-, ribosome- and matrisome-related biological processes may contribute to carcinogenesis. PLOD3 was identified as a key protein associated with the malignant potential of TVA and promoted the viability of adenoma organoids. The Cancer Genome Atlas (TCGA) analysis revealed PLOD3 as a risk factor for disease-free and overall survival. Furthermore, the PLOD3 expression correlated negatively with the abundance of B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages and myeloid dendritic cells. In conclusion, enhanced metabolic and mitochondrial reprogramming are typical features of TVA, and PLOD3 might be related to the “immune desert” phenotype and contribute to TVA tumorigenesis and colorectal cancer development.
Collapse
Affiliation(s)
- Yin Zhang
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chun-Yuan Li
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing-Ying Li
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lai Xu
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Gong S, Duan Y, Wu C, Osterhoff G, Schopow N, Kallendrusch S. A Human Pan-Cancer System Analysis of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3). Int J Mol Sci 2021; 22:ijms22189903. [PMID: 34576068 PMCID: PMC8467482 DOI: 10.3390/ijms22189903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/11/2023] Open
Abstract
The overexpression of the enzymes involved in the degradation of procollagen lysine is correlated with various tumor entities. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) expression was found to be correlated to the progression and migration of cancer cells in gastric, lung and prostate cancer. Here, we analyzed the gene expression, protein expression, and the clinical parameters of survival across 33 cancers based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC), function annotation of the mammalian genome 5 (FANTOM5), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) databases. Genetic alteration, immune infiltration and relevant cellular pathways were analyzed in detail. PLOD3 expression negatively correlated with survival periods and the infiltration level of CD8+ T cells, but positively correlated to the infiltration of cancer associated fibroblasts in diverse cancers. Immunohistochemistry in colon carcinomas, glioblastomas, and soft tissue sarcomas further confirm PLOD 3 expression in human cancer tissue. Moreover, amplification and mutation accounted for the largest proportion in esophageal adenocarcinoma and uterine corpus endometrial carcinoma, respectively; the copy number alteration of PLOD3 appeared in all cancers from TCGA; and molecular mechanisms further proved the effect of PLOD3 on tumorigenesis. In particular, PLOD3 expression appears to have a tumor immunological effect, and is related to multiple immune cells. Furthermore, it is also associated with tumor mutation burden and microsatellite instability in various tumors. PLOD3 acts as an inducer of various cancers, and it could be a potential biomarker for prognosis and targeted treatment.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Correspondence:
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| |
Collapse
|
25
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA, Sud'ina GF. Inhibition of Neutrophil Secretion Upon Adhesion as a Basis for the Anti-Inflammatory Effect of the Tricyclic Antidepressant Imipramine. Front Pharmacol 2021; 12:709719. [PMID: 34421605 PMCID: PMC8375473 DOI: 10.3389/fphar.2021.709719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
PLOD3 Is Associated with Immune Cell Infiltration and Genomic Instability in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4714526. [PMID: 34239923 PMCID: PMC8235962 DOI: 10.1155/2021/4714526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a family of enzymes. However, the clinical and functional roles of PLOD3 in colon adenocarcinoma (COAD) have not been investigated. The present study found that PLOD3 was highly upregulated in COAD, which may be resulted from its aberrant DNA methylation. The upregulation of both PLOD3 mRNA and protein was confirmed in our tissue samples. Moreover, high PLOD3 was identified to be associated with unfavorable prognosis in COAD. As genome instability is a hallmark of cancer, PLOD3 was expressed higher in COAD samples with high chromosomal instability (CIN-high) than those with low CIN (CIN-low) and higher in those with low MSI than high MSI, indicating that PLOD3 expression was associated with tumor genomic instability. Furthermore, immune cells showed significantly different infiltrating levels between the high and low PLOD3 expression groups, and the immune score was negatively correlated with PLOD3 expression and higher in samples with low PLOD3 expression, suggesting that high PLOD3 expression was associated with reduced immune cell infiltrating levels in COAD. To further uncover the underlying mechanism of PLOD3 in PLOD3, we compared the COAD samples of high PLOD3 expression with those of low PLOD3 expression and found that high expression of PLOD3 was associated with reduced expression of immune regulators and enhanced activities of two tumor-promoting pathways, including gluconeogenesis and TGF-beta signaling in epithelial-mesenchymal transition (EMT), suggesting that high expression of PLOD3 causes poor prognosis in COAD by weakening the immune cell infiltration and enhancing activities of tumor-promoting pathways. In summary, the present study highlights the importance of PLOD3 and provides the evidence about the functional role of PLOD3 in COAD.
Collapse
|
27
|
Gao S, Wang Z. Comprehensive Analysis of Regulatory Network for LINC00472 in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3533608. [PMID: 34221297 PMCID: PMC8211516 DOI: 10.1155/2021/3533608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Renal cell carcinoma (RCC) accounts for about 2% to 3% of adult malignancies, and clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of kidney cancer. It accounts for 75% of all kidney tumors. Although new targeted drugs continue to appear, they are still not suitable for all patients. Therefore, an in-depth study of the molecular mechanism of the development of ccRCC and exploration of new targets for the treatment of ccRCC will help to achieve precise treatment for ccRCC. With the development of molecular research, the study of long noncoding RNA (LncRNA) has given us a new understanding of tumors. Although LncRNA does not encode proteins, it directly interacts with proteins in various signaling pathways and affects cell functions. Therefore, it is of great significance to study the mechanism of LncRNA in ccRCC. The expression level of Linc00472 in ccRCC tissues is significantly lower than adjacent normal tissues, and its low expression is closely related to Furman's high grade. The low expression of Linc00472 is associated with poor prognosis in patients with ccRCC. The results of protein interaction and functional enrichment analysis indicate that genes upregulated in renal clear cell carcinoma may play a major role. Analysis of target gene prediction results showed that Linc00472 may be used as ceRNA in the miR-24-3p-HLA-DPB1 pathway, miR-24-3p-CXCL9 pathway, miR-221-3p-C3aR1-VEGFR2 pathway, miR-17-5p-HLA-DQA1/HLA-DQB1 pathway, and miR-17-5p-C3aR1/C5aR1-VEGFR2 pathway which play important functions. In addition, the regulatory relationship between miR-24-3p and TNFR2 (TNFRSF1B), CD36, and COL4A1 should also be noted. The value of Linc00472 in the diagnosis and treatment of ccRCC is worthy of further study.
Collapse
Affiliation(s)
- Shuoze Gao
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiping Wang
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
28
|
Tan X, Banerjee P, Shi L, Xiao GY, Rodriguez BL, Grzeskowiak CL, Liu X, Yu J, Gibbons DL, Russell WK, Creighton CJ, Kurie JM. p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. SCIENCE ADVANCES 2021; 7:eabf4885. [PMID: 34144984 PMCID: PMC8213221 DOI: 10.1126/sciadv.abf4885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/05/2021] [Indexed: 05/04/2023]
Abstract
Cancer cells exhibit hyperactive secretory states that maintain cancer cell viability and remodel the tumor microenvironment. However, the oncogenic signals that heighten secretion remain unclear. Here, we show that p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. p53 loss up-regulates the expression of a Golgi scaffolding protein, progestin and adipoQ receptor 11 (PAQR11), which recruits an adenosine diphosphate ribosylation factor 1-containing protein complex that loads cargos into secretory vesicles. PAQR11-dependent secretion of a protease, PLAU, prevents anoikis and initiates autocrine activation of a PLAU receptor/signal transducer and activator of transcription-3-dependent pathway that up-regulates PAQR11 expression, thereby completing a feedforward loop that amplifies prometastatic effector protein secretion. Pharmacologic inhibition of PLAU receptor impairs the growth and metastasis of p53-deficient cancers. Blockade of PAQR11-dependent secretion inhibits immunosuppressive processes in the tumor microenvironment. Thus, Golgi reprogramming by p53 loss is a key driver of hypersecretion in cancer.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
29
|
Bhummaphan N, Pin-On P, Phiboonchaiyanan PP, Siriluksana J, Aporntewan C, Chanvorachote P, Mutirangura A. Targeting multiple genes containing long mononucleotide A-T repeats in lung cancer stem cells. J Transl Med 2021; 19:231. [PMID: 34059086 PMCID: PMC8166091 DOI: 10.1186/s12967-021-02902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Intratumour heterogeneous gene expression among cancer and cancer stem cells (CSCs) can cause failure of current targeted therapies because each drug aims to target the function of a single gene. Long mononucleotide A-T repeats are cis-regulatory transcriptional elements that control many genes, increasing the expression of numerous genes in various cancers, including lung cancer. Therefore, targeting A-T repeats may dysregulate many genes driving cancer development. Here, we tested a peptide nucleic acid (PNA) oligo containing a long A-repeat sequence [A(15)] to disrupt the transcriptional control of the A-T repeat in lung cancer and CSCs. METHODS First, we separated CSCs from parental lung cancer cell lines. Then, we evaluated the role of A-T repeat gene regulation by counting the number of repeats in differentially regulated genes between CSCs and the parental cells of the CSCs. After testing the dosage and effect of PNA-A15 on normal and cancer cell toxicity and CSC phenotypes, we analysed genome-wide expression to identify dysregulated genes in CSCs. RESULTS The number of A-T repeats in genes differentially regulated between CSCs and parental cells differed. PNA-A15 was toxic to lung cancer cells and CSCs but not to noncancer cells. Finally, PNA-A15 dysregulated a number of genes in lung CSCs. CONCLUSION PNA-A15 is a promising novel targeted therapy agent that targets the transcriptional control activity of multiple genes in lung CSCs.
Collapse
Affiliation(s)
- Narumol Bhummaphan
- Center of Excellence in Molecular Genetic of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Piyapat Pin-On
- Center of Excellence in Molecular Genetic of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Preeyaporn Plaimee Phiboonchaiyanan
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Jirattha Siriluksana
- Center of Excellence in Molecular Genetic of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Chatchawit Aporntewan
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand.
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetic of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Collagen synthesis and gap junctions: the highway for metastasis of ovarian cancer. J Transl Med 2021; 101:540-542. [PMID: 36775376 DOI: 10.1038/s41374-021-00546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
|
31
|
Neutrophil Adhesion and the Release of the Free Amino Acid Hydroxylysine. Cells 2021; 10:cells10030563. [PMID: 33807594 PMCID: PMC7999338 DOI: 10.3390/cells10030563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
During infection or certain metabolic disorders, neutrophils can escape from blood vessels, invade and attach to other tissues. The invasion and adhesion of neutrophils is accompanied and maintained by their own secretion. We have previously found that adhesion of neutrophils to fibronectin dramatically and selectively stimulates the release of the free amino acid hydroxylysine. The role of hydroxylysine and lysyl hydroxylase in neutrophil adhesion has not been studied, nor have the processes that control them. Using amino acid analysis, mass spectrometry and electron microscopy, we found that the lysyl hydroxylase inhibitor minoxidil, the matrix metalloproteinase inhibitor doxycycline, the PI3K/Akt pathway inhibitors wortmannin and the Akt1/2 inhibitor and drugs that affect the actin cytoskeleton significantly and selectively block the release of hydroxylysine and partially or completely suppress spreading of neutrophils. The actin cytoskeleton effectors and the Akt 1/2 inhibitor also increase the phenylalanine release. We hypothesize that hydroxylysine release upon adhesion is the result of the activation of lysyl hydroxylase in interaction with matrix metalloproteinase, the PI3K/Akt pathway and intact actin cytoskeleton, which play important roles in the recruitment of neutrophils into tissue through extracellular matrix remodeling.
Collapse
|
32
|
Chen Y, Li J, Xiao JK, Xiao L, Xu BW, Li C. The lncRNA NEAT1 promotes the epithelial-mesenchymal transition and metastasis of osteosarcoma cells by sponging miR-483 to upregulate STAT3 expression. Cancer Cell Int 2021; 21:90. [PMID: 33546665 PMCID: PMC7866772 DOI: 10.1186/s12935-021-01780-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent primary bone tumours in adolescents. Accumulating evidence shows that aberrant expression of the long non-coding RNA (lncRNA) NEAT1 and microRNA-483 (miR-483) contribute to the epithelial-mesenchymal transition (EMT), invasion and metastasis of tumour cells. However, the potential regulatory effects of NEAT1 and miR-483 on the EMT of osteosarcoma remain elusive. Methods The expression of the NEAT1, miR-483, signal transducer and activator of transcription-1 (STAT1), STAT3, and EMT-associated markers was measured using qRT-PCR or western blotting. NEAT1 overexpression or knockdown was induced by lentivirus-mediated transfection. A luciferase reporter assay was employed to confirm the association between NEAT1/miR-483 and miR-483/STAT3. RNA immunoprecipitation (RIP) was also performed to verify the NEAT1 and miR-483 interaction. Wound healing and transwell assays were implemented to assess the migration and invasion of U2OS cells. Unilateral subcutaneous injection of U2OS into nude mice was performed to investigate tumour metastasis in vivo. Results The expression of miR-483 was downregulated in both osteosarcoma cell lines and osteosarcoma tissues. The overexpression of miR-483 suppressed the migration, invasion, and expression of EMT-associated proteins in U2OS cells, while simultaneous overexpression of STAT3 partially relieved this suppression. Mechanistically, miR-483 specifically targeted the 3′ untranslated region (3′UTR) of STAT3 and repressed its expression. However, NEAT1 sponged miR-438, increased STAT3 expression, and repressed STAT1 expression, subsequently increasing the EMT of osteosarcoma cells. The knockdown of NEAT1 in transplanted U2OS cells impaired the liver and lung metastases of osteosarcoma in nude mice. Moreover, NEAT1 silencing inhibited the mesenchymal- epithelial transition (MET) of osteosarcoma at metastasis sites. Conclusions The lncRNA NEAT1/miR-483/STAT3 axis plays a crucial role in regulating the metastasis of osteosarcoma and potentially represents one appealing therapeutic target for osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jia-Kun Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lei Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Bin-Wu Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
33
|
Zhao Y, Zhang X, Yao J. Comprehensive analysis of PLOD family members in low-grade gliomas using bioinformatics methods. PLoS One 2021; 16:e0246097. [PMID: 33503035 PMCID: PMC7840023 DOI: 10.1371/journal.pone.0246097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Low-grade gliomas (LGGs) is a primary invasive brain tumor that grows slowly but is incurable and eventually develops into high malignant glioma. Novel biomarkers for the tumorigenesis and lifetime of LGG are critically demanded to be investigated. In this study, the expression levels of procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were analyzed by ONCOMINE, HPA and GEPIA. The GEPIA online platform was applied to evaluate the interrelation between PLODs and survival index in LGG. Furthermore, functions of PLODs and co-expression genes were inspected by the DAVID. Moreover, we used TIMER, cBioportal, GeneMINIA and NetworkAnalyst analysis to reveal the mechanism of PLODs in LGG. We found that expression levels of each PLOD family members were up-regulated in patients with LGG. Higher expression of PLODs was closely related to shorter disease-free survival (DFS) and overall survival (OS). The findings showed that LGG cases with or without alterations were significantly correlated with the OS and DFS. The mechanism of PLODs in LGG may be involved in response to hypoxia, oxidoreductase activity, Lysine degradation and immune cell infiltration. In general, this research has investigated the values of PLODs in LGG, which could serve as biomarkers for diagnosis, prognosis and potential therapeutic targets of LGG patients.
Collapse
Affiliation(s)
- Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
- * E-mail:
| | - Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| |
Collapse
|
34
|
Xie D, Li J, Wei S, Qi P, Ji H, Su J, Du N, Zhang X. Knockdown of PLOD3 suppresses the malignant progression of renal cell carcinoma via reducing TWIST1 expression. Mol Cell Probes 2020; 53:101608. [PMID: 32585183 DOI: 10.1016/j.mcp.2020.101608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), also known as lysyl hydroxylase 3 (LH3) has been demonstrated to be overexpressed in several kinds of cancers and facilitate cell migration. Currently, we aimed to reveal the role of PLOD3 in renal cell carcinoma (RCC) progression, and explore whether TWIST1 (Twist family bHLH transcription factor 1) is involved in this process. Fifty-eight paired RCC tissues and normal tissues were collected and subjected to qPCR and immunohistochemistry (IHC) technology to detect the expression levels of PLOD3. The clinical value of PLOD3 in predicting RCC progression was then explored. Cell-Counting Kit-8 (CCK-8), wound healing, transwell chambers and tumor-bearing experiments were applied to monitor cell proliferation, migration, invasion and tumorigenesis. Protein levels were determined by using western blotting technology to assess cell apoptosis and epithelial to mesenchymal transition (EMT). PLOD3 expression was enhanced in RCC tissues and cells, which predicted higher T (tumor), N (lymph node) and M (metastasis) stages, histological grade and TNM (tumor, lymph node, metastasis) stage. PLOD3 downregulation in RCC A498 cells obviously inhibited cell proliferation, migration, invasion, EMT and tumorigenesis and increased cell apoptosis. PLOD3 overexpression led to opposite results in RCC A704 cells. PLOD3 downregulation reduced the expression levels of TWIST1, β-catenin and p-AKT. In addition, TWIST1 overexpression rescued the repressions of cell proliferation, migration, invasion, EMT and the activation of β-catenin and AKT signaling in addition to apoptosis promotion induced by PLOD3 downregulation. Collectively, this study illustrated that PLOD3 knockdown suppressed RCC malignance via inhibiting TWIST1-mediated activation of β-catenin and AKT signaling.
Collapse
Affiliation(s)
- Da Xie
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jin Li
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Pan Qi
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Hongxia Ji
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Nan Du
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China.
| |
Collapse
|
35
|
Wu X, Xiang H, Cong W, Yang H, Zhang G, Wang Y, Guo Z, Shen Y, Chen B. PLOD1, a target of miR-34c, contributes to cell growth and metastasis via repressing LATS1 phosphorylation and inactivating Hippo pathway in osteosarcoma. Biochem Biophys Res Commun 2020; 527:29-36. [PMID: 32446383 DOI: 10.1016/j.bbrc.2020.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Although dysregulated PLOD1 was reported in many cancers, its function in osteocarcoma (OS) progression and potential mechanism are totally unknown. In the present study, we found that the mRNA expression of PLOD1 was significantly upregulated in OS cells and tissues. The high expression of PLOD1 was correlated with the aggressive phenotypes of OS and poor prognosis. Gain- or loss-of-function assays demonstrated that PLOD1 promoted proliferation, migration, and invasion of OS cells in vitro, as well as tumorigenicity and metastasis in vivo. We found that PLOD1 inactivated Hippo-YAP pathway through inhibiting phosphorylation-LATS1 (p-LATS1) and -YAP (p-YAP). Immunofluorescence results validated that nuclear distribution of YAP was increased by PLOD1 overexpression and was decreased by PLOD1 depletion. Furthermore, PLOD1 was demonstrated as a target of miR-34c, which inhibited the luciferase activity of PLOD1 mRNA 3'-UTR and PLOD1 expression at both mRNA and protein levels. The expression of miR-34c was downregulated in OS tissues and negatively correlated with PLOD1 mRNA expression. We found that restoration of PLOD1 abolished the miR-34c induced inhibition of cell growth and invasion. More importantly, miR-34c led to upregulation of p-LATS1 and p-YAP, and reducing of nuclear YAP and TAZ in OS cells. The mice tumors, which formed from miR-34c lentivirus vectors, have relatively low expression of PLOD1 and nuclear YAP staining. Taken together, our findings revealed that PLOD1 promoted tumorigenesis and metastasis in OS, and the dysregulated miR-34c/PLOD1/Hippo pathway affected OS progression, providing a potential therapeutic strategy for treatment.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huiying Yang
- Department of Pathology, Dezhou Municipal Hospital, Dezhou, China
| | - Guoqing Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanqing Shen
- Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
36
|
Lv P, Yang S, Liu W, Qin H, Tang X, Wu F, Liu Z, Gao H, Liu X. Circulating plasma lncRNAs as novel markers of EGFR mutation status and monitors of epidermal growth factor receptor-tyrosine kinase inhibitor therapy. Thorac Cancer 2019; 11:29-40. [PMID: 31691525 PMCID: PMC6938758 DOI: 10.1111/1759-7714.13216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) gene mutations predict tumor response to EGFR tyrosine kinase inhibitors (EGFR‐TKIs) in non‐small cell lung cancer (NSCLC). However, even patients with EGFR‐sensitive mutations in NSCLC have limited efficacy with EGFR‐TKI. Studies have shown that long noncoding RNA (lncRNA) is related to diagnosis and prognosis with NSCLC. This study aimed to explore the correlation between lncRNA in NSCLC patients with EGFR mutation status and EGFR‐TKI efficacy. Methods The amplification‐refractory mutation system method was used to test the EGFR mutation status in tumor tissues and pleural effusions of NSCLC patients. Three EGFR‐mutant patients and three EGFR wild‐type patients were selected. Differential lncRNA was performed on the pleural effusions of the two selected groups of patients using Clariom D Human chip technology. Five lncRNAs significantly associated with EGFR mutation status were screened by FC value and GO analysis, and then evaluated by real‐time quantitative polymerase chain reaction in NSCLC patients' pleural effusions. Three were further analyzed in NSCLC patients' plasma. Results There were 61 significant differences in lncRNA between EGFR mutation‐positive and wild‐type patients. Among them, SCARNA7, MALAT1, NONHSAT017369, NONHSAT051892, and FTH1P2 were significantly associated with EGFR mutation status. SCARNA7, MALAT1, and NONHSAT017369 showed consistent results with plasma in pleural effusions compared to EGFR wild‐type, all upregulated in the EGFR mutation group. Conclusion This study shows that lncRNAs can be used not only as potential biomarkers for predicting the mutation status of EGFR and the efficacy of EGFR‐TKI, but also for monitoring the efficacy of EGFR‐TKI.
Collapse
Affiliation(s)
- Panpan Lv
- Academy of Military Medical Science, Beijing, China.,PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shaoxing Yang
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Haifeng Qin
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Tang
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Wu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zeyuan Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Gao
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Li F, Li X, Li Z, Ji W, Lu S, Xia W. βKlotho is identified as a target for theranostics in non-small cell lung cancer. Theranostics 2019; 9:7474-7489. [PMID: 31695781 PMCID: PMC6831461 DOI: 10.7150/thno.35582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a great challenge, calling for the identification of novel molecular targets with diagnostic/therapeutic value. Here, we sought to characterize the expression of βKlotho and its anti-tumor roles in NSCLC. Methods: The expression of βKlotho was examined in NSCLC cells and tissues by western blot, qRT-PCR and immunohistochemistry staining respectively. Biological roles of βKlotho were revealed by a series of functional in vitro and in vivo studies. Serum βKlotho concentrations of patients were measured using specific ELISA methods. Results: Serum βKlotho concentrations of NSCLC patients were significantly lower than the control group. Moreover, βKlotho expression was negatively associated with lymph node metastasis, overall survival and progression-free survival. Overexpression of βKlotho or exogenous βKlotho administration inhibited the proliferation and migration of NSCLC cells, accompanied by induction of apoptosis, G1 to S phase arrest, and inactivation of ERK1/2, AKT and STAT3 signaling. Furthermore, βKlotho overexpression inhibited NSCLC tumor growth in vivo. Conclusions: βKlotho serves as a novel target for theranostics in NSCLC, which has potential clinical applications in the future.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiyao Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Wei L, Lun Y, Zhou X, He S, Gao L, Liu Y, He Z, Li B, Wang C. Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacol Res 2019; 143:73-85. [PMID: 30862605 DOI: 10.1016/j.phrs.2019.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
Abstract
Advanced hepatocellular carcinoma (HCC) is a highly aggressive malignancy that is a serious threat to the public health system of China. Urokinase-plasminogen activator (uPA) can promote the invasive growth and metastasis of HCC cells by activating matrix metalloproteinases (MMPs), leading to the breakage of the extra-cellular matrix. uPA is a promising target for advanced HCC treatment. In this stuy the expression of uPA was examined by quantitative polymerase chain reaction in hepatic cell lines. Protein interaction between uPA and SPINK13 was identified by immunoprecipitation. In vitro biochemical assay was used to examine the inhibitory effect of the SPINK13 on the direct cleaving of the recombinant pro-MMP9 by uPA. The antitumor effect of SPINK13 was examined by transwell assay or the nude mice tumor model.The expression of uPA was much higher in highly aggressive HCC cell lines than in lowly aggressive HCC cell lines or non-tumor hepatic cell lines. SPINK13 interacted with uPA in HCC cells and directly inhibited the cleaving of MMP9 by uPA. Treatment of the recombinant SPINK13 protein inhibited the invasion of HCC cells in several experiments, such as transwell experiments or the intrahepatic growth model. The results of the study indicated that SPINK13 could function as a promising therapeutic approach for patients with advanced HCC.
Collapse
Affiliation(s)
- Ling Wei
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China; Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yongzhi Lun
- Department of Laboratory Medicine, School of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian Province, PR China
| | - Xiaoping Zhou
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Shang He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Lijuan Gao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Yan Liu
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China
| | - Zheng He
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Baoming Li
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, PR China.
| | - Chengbin Wang
- Medical School of Chinese PLA & Department of Clinical Laboratory, Medical Laboratory Center, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|