1
|
Singh U, Kokkanti RR, Patnaik S. Beyond chemotherapy: Exploring 5-FU resistance and stemness in colorectal cancer. Eur J Pharmacol 2025; 991:177294. [PMID: 39863147 DOI: 10.1016/j.ejphar.2025.177294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, demanding continuous advancements in treatment strategies. This review explores the complexities of targeting colorectal cancer stem cells (CSCs) and the mechanisms contributing to resistance to 5-fluorouracil (5-FU). The efficacy of 5-FU is enhanced by combination therapies such as FOLFOXIRI and targeted treatments like bevacizumab, cetuximab, and panitumumab, particularly in KRAS wild-type tumors, despite associated toxicity. Biomarkers like thymidylate synthase (TYMS), thymidine phosphorylase (TP), and dihydropyrimidine dehydrogenase (DPD) are crucial for predicting 5-FU efficacy and resistance. Targeting CRC-CSCs remains challenging due to their inherent resistance to conventional therapies, marker variability, and the protective influence of the tumor microenvironment which promotes stemness and survival. Personalized treatment strategies are increasingly essential to address CRC's genetic and phenotypic diversity. Advances in immunotherapy, including immune checkpoint inhibitors and cancer vaccines, along with nanomedicine-based therapies, offer promising targeted drug delivery systems that enhance specificity, reduce toxicity, and provide novel approaches for overcoming resistance mechanisms. Integrating these innovative strategies with traditional therapies may enhance the effectiveness of CRC therapy by addressing the underlying causes of 5-FU resistance in CSCs.
Collapse
Affiliation(s)
- Ursheeta Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
2
|
Eloraby DAI, El-Gayar SF, El-Bolok AH, Ammar SG, ElShafei MM. In Vitro Assessment of the Cytotoxic Effect of 5-Fluorouracil, Thymoquinone and their Combination on Tongue Squamous Cell Carcinoma Cell Line. Asian Pac J Cancer Prev 2024; 25:2169-2176. [PMID: 38918680 PMCID: PMC11382834 DOI: 10.31557/apjcp.2024.25.6.2169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Tongue cancer is the most prevalent type of oral cancer. Recently, natural compounds have been considered important resources for several anticancer drugs. Thymoquinone (TQ) exhibits a potent anti-cancer effect. 5-Fluorouracil (5-FU) is a chemotherapeutic drug that has been utilized in the treatment of cancer. Recently, combination therapy has gained popularity as a treatment option for patients with cancer. OBJECTIVES The present study was carried out to assess the cytotoxic effect of 5-Fluorouracil (5-FU), Thymoquinone (TQ), and their combination on tongue squamous cell carcinoma cell line (HNO-97). METHODS Tongue carcinoma cell line (HNO-97) was maintained in cultured flasks and the cells were divided into four groups; group Ι: control untreated group, group ΙΙ: HNO-97-treated cells with different concentrations of 5-FU from 0.5 µM/ml to 3µM/ml, group ΙIΙ: HNO-97-treated cells with different concentrations of TQ from 7.25µM/ml to 23.05µM/ml, and group ΙV: HNO-97-treated cells with both 5-FU and TQ in serial concentrations till (IC50) in a dose of 27.44 µM/ml. Determination of the cytotoxic effect of the tested agents on the HNO-97 cell line was done using methyl thiazole tetrazolium assay, nuclear morphometric analysis, microscopic examination, and annexin-v/ propidium iodide staining assay. RESULT The findings revealed that the cytotoxic effect of 5-FU, TQ, and their combination on tongue squamous cell carcinoma cell line (HNO-97) was dose-dependent. The microscopic examination revealed that 5-FU, TQ alone, or their combination induced apoptotic cell death. P-value < 0.05 was statistically significant. CONCLUSION The combination of 5-FU and TQ produced a marked cytotoxic effect on HNO-97 cells.
Collapse
Affiliation(s)
- Dina Ashraf Ibrahim Eloraby
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Minia University, Minia 61519, Egypt
- Oral and Maxillofacial Pathology Department, Faculty of oral and Dental Medicine, Misr International University, Obour 19648, Egypt
| | - Sherif Farouk El-Gayar
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Minia University, Minia 61519, Egypt
| | - Amr Helmy El-Bolok
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Minia University, Minia 61519, Egypt
| | - Sabreen Gamal Ammar
- Oral and Maxillofacial Pathology Department, Faculty of Dentistry, Minia University, Minia 61519, Egypt
| | - Marwa Mokbel ElShafei
- Oral and Maxillofacial Pathology Department, Faculty of oral and Dental Medicine, Misr International University, Obour 19648, Egypt
| |
Collapse
|
3
|
Kannen V, Grant DM, Matthews J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett 2024; 588:216805. [PMID: 38462035 DOI: 10.1016/j.canlet.2024.216805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Crosstalk between mast cells (MCs) and T lymphocytes (TLs) releases specific signals that create an environment conducive to tumor development. Conversely, they can protect against cancer by targeting tumor cells for destruction. Although their role in immunity and cancer is complex, their potential in anticancer strategies is often underestimated. When peripheral MCs are activated, they can affect cancer development. Tumor-infiltrating TLs may malfunction and contribute to aggressive cancer and poor prognoses. One promising approach for cancer patients is TL-based immunotherapies. Recent reports suggest that MCs modulate TL activity in solid tumors and may be a potential therapeutic layer in multitargeting anticancer strategies. Pharmacologically modulating MC activity can enhance the anticancer cytotoxic TL response in tumors. By identifying tumor-specific targets, it has been possible to genetically alter patients' cells into fully humanized anticancer cellular therapies for autologous transplantation, including the engineering of TLs and MCs to target and kill cancer cells. Hence, recent scientific evidence provides a broader understanding of MC-TL activity in cancer.
Collapse
Affiliation(s)
- Vinicius Kannen
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Denis M Grant
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Wei B, Ma J, Guo H, Wang Y, Guo D, Tang Y. Design, synthesis and bioactivity evaluation of the combination of evodiamine and erlotinib linked by indolequinone. Bioorg Med Chem Lett 2024; 99:129619. [PMID: 38244939 DOI: 10.1016/j.bmcl.2024.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Compared with single-targeted therapy, the design and synthesis of heterozygous molecules is still a significant challenge for the discovery of antitumor drugs. Quinone oxidoreductase-1 (NQO1) is a potential target for selective cancer therapy due to its overexpression in many cancer cells and its unique bioredox properties. Based on the principle of combinatorial drug design, we successfully synthesized a new hybrid molecules 13 with an indolequinone structure. We found that the synthesized compounds exhibited much higher cytotoxicity against the tested cancer cells than free drugs. Further mechanism studies confirmed that compound 13 induced cell apoptosis was achieved by regulating p53-dependent mitochondrial pathway and cell cycle arrest at the G0/G1 phase.
Collapse
Affiliation(s)
- Binbin Wei
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Jingjing Ma
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Hui Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China.
| | - Yuwei Wang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, China.
| |
Collapse
|
5
|
Kurowska N, Madej M, Strzalka-Mrozik B. Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer. Curr Issues Mol Biol 2023; 46:121-139. [PMID: 38248312 PMCID: PMC10814900 DOI: 10.3390/cimb46010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and is responsible for approximately one million deaths each year. The current standard of care is surgical resection of the lesion and chemotherapy with 5-fluorouracil (5-FU). However, of concern is the increasing incidence in an increasingly younger patient population and the ability of CRC cells to develop resistance to 5-FU. In this review, we discuss the effects of thymoquinone (TQ), one of the main bioactive components of Nigella sativa seeds, on CRC, with a particular focus on the use of TQ in combination therapy with other chemotherapeutic agents. TQ exhibits anti-CRC activity by inducing a proapoptotic effect and inhibiting proliferation, primarily through its effect on the regulation of signaling pathways crucial for tumor progression and oxidative stress. TQ can be used synergistically with chemotherapeutic agents to enhance their anticancer effects and to influence the expression of signaling pathways and other genes important in cancer development. These data appear to be most relevant for co-treatment with 5-FU. We believe that TQ is a suitable candidate for consideration in the chemoprevention and adjuvant therapy for CRC, but further studies, including clinical trials, are needed to confirm its safety and efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Natalia Kurowska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia, 40-752 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (N.K.); (M.M.)
| |
Collapse
|
6
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
7
|
Yang H, Huebner K, Hampel C, Erlenbach-Wuensch K, Selvamani SB, Shukla V, Geppert CI, Hartmann A, Mahadevan V, Schneider-Stock R. ATF2 loss promotes 5-FU resistance in colon cancer cells via activation of the ATR-Chk1 damage response pathway. BMC Cancer 2023; 23:480. [PMID: 37237279 DOI: 10.1186/s12885-023-10940-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The role of ATF2 in colon cancer (CC) is controversial. Recently, we reported that low ATF2 expression is characteristic of highly invasive tumors, suggesting that ATF2 might also be involved in therapy resistance. 5-Fluorouracil (5-FU) is the best-known chemotherapeutic drug for CC, but drug resistance affects its curative effect. To date, the role of ATF2 in the 5-FU response remains elusive. METHODS/RESULTS For our study, we had available HCT116 cells (wild-type p53) and HT29 colon tumor cells (mutant p53) and their corresponding CRISPR‒Cas9-generated ATF2-KO clones. We observed that loss of ATF2 triggered dose- and time-dependent 5-FU resistance in HCT116 cells by activating the DNA damage response (DDR) pathway with high p-ATRThr1989 and p-Chk1Ser317 levels accompanied by an increase in the DNA damage marker γ-H2AX in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. Chk1 inhibitor studies causally displayed the link between DDR and drug resistance. There were contradictory findings in HT29 ATF2-KO cells upon 5-FU exposure with low p-Chk1Ser317 levels, strong apoptosis induction, but no effects on DNA damage. In ATF2-silenced HCT116 p53-/- cells, 5-FU did not activate the DDR pathway. Co-immunoprecipitation and proximity ligation assays revealed that upon 5-FU treatment, ATF2 binds to ATR to prevent Chk1 phosphorylation. Indeed, in silico modelling showed reduced ATR-Chk1 binding when ATF2 was docked into the complex. CONCLUSIONS We demonstrated a novel ATF2 scaffold function involved in the DDR pathway. ATF2-negative cells are highly resistant due to effective ATR/Chk1 DNA damage repair. Mutant p53 seems to overwrite the tumor suppressor function of ATF2.
Collapse
Affiliation(s)
- Hao Yang
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Chuanpit Hampel
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Selva Babu Selvamani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Vikas Shukla
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, 560100, India
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany
| | | | - Regine Schneider-Stock
- Experimental Tumorpathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Universitätsstr. 22, 91504, Erlangen, Germany.
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Krankenhausstr. 8-10, Erlangen, 91504, Germany.
- Comprehensive Cancer Center Erlangen‑EMN (CCC ER‑EMN), Östliche Stadtmauerstr. 30, Erlangen, 91054, Germany.
| |
Collapse
|
8
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
9
|
Moreno-Quintero G, Betancur-Zapata E, Herrera-Ramírez A, Cardona-Galeano W. New Hybrid Scaffolds Based on 5-FU/Curcumin: Synthesis, Cytotoxic, Antiproliferative and Pro-Apoptotic Effect. Pharmaceutics 2023; 15:pharmaceutics15041221. [PMID: 37111708 PMCID: PMC10144058 DOI: 10.3390/pharmaceutics15041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
A series of 5-FU-Curcumin hybrids were synthesized, and their structures were elucidated by spectroscopic analysis. The synthesized hybrid compounds were evaluated in different colorectal cancer cell lines (SW480 and SW620) and in non-malignant cells (HaCaT and CHO-K1), to determine their chemopreventive potential. Hybrids 6a and 6d presented the best IC50 value against the SW480 cell line with results of 17.37 ± 1.16 µM and 2.43 ± 0.33 µM, respectively. Similarly, compounds 6d and 6e presented IC50 results of 7.51 ± 1.47 µM and 14.52 ± 1.31 µM, respectively, against the SW620 cell line. These compounds were more cytotoxic and selective than curcumin alone, the reference drug 5-fluorouracil (5-FU), and the equimolar mixture of curcumin and 5-FU. In addition, hybrids 6a and 6d (in SW480) and compounds 6d and 6e (in SW620) induced cell cycle arrest in S-phase, and, compounds 6d and 6e caused a significant increase in the sub-G0/G1 phase population in both cell lines. Hybrid 6e was also observed to induce apoptosis of SW620 cells with a respective increase in executioner caspases 3 and 7. Taken together, these results suggest that the hybrids could actively act on a colorectal cancer model, making them a privileged scaffold that could be used in future research.
Collapse
Affiliation(s)
- Gustavo Moreno-Quintero
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Emmanuel Betancur-Zapata
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Angie Herrera-Ramírez
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Wilson Cardona-Galeano
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| |
Collapse
|
10
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
11
|
Fischer D, Fluegen G, Garcia P, Ghaffari-Tabrizi-Wizsy N, Gribaldo L, Huang RYJ, Rasche V, Ribatti D, Rousset X, Pinto MT, Viallet J, Wang Y, Schneider-Stock R. The CAM Model-Q&A with Experts. Cancers (Basel) 2022; 15:cancers15010191. [PMID: 36612187 PMCID: PMC9818221 DOI: 10.3390/cancers15010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
The chick chorioallantoic membrane (CAM), as an extraembryonic tissue layer generated by the fusion of the chorion with the vascularized allantoic membrane, is easily accessible for manipulation. Indeed, grafting tumor cells on the CAM lets xenografts/ovografts develop in a few days for further investigations. Thus, the CAM model represents an alternative test system that is a simple, fast, and low-cost tool to study tumor growth, drug response, or angiogenesis in vivo. Recently, a new era for the CAM model in immune-oncology-based drug discovery has been opened up. Although there are many advantages offering extraordinary and unique applications in cancer research, it has also disadvantages and limitations. This review will discuss the pros and cons with experts in the field.
Collapse
Affiliation(s)
- Dagmar Fischer
- Division of Pharmaceutical Technology, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Georg Fluegen
- Department of General, Visceral, Thoracic and Pediatric Surgery (A), Medical Faculty, Heinrich-Heine-University, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Paul Garcia
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, 38700 La Tronche, France
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Nassim Ghaffari-Tabrizi-Wizsy
- SFL Chicken CAM Lab, Department of Immunology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Laura Gribaldo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Ruby Yun-Ju Huang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, 89073 Ulm, Germany
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Marta Texeira Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Jean Viallet
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, 38700 La Tronche, France
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, 94054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8526-069
| |
Collapse
|
12
|
Synthesis and Chemopreventive Potential of 5-FU/Genistein Hybrids on Colorectal Cancer Cells. Pharmaceuticals (Basel) 2022; 15:ph15101299. [PMID: 36297411 PMCID: PMC9606943 DOI: 10.3390/ph15101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
A series of 5-FU-Genistein hybrids were synthesized and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated in human colon adenocarcinoma cells (SW480 and SW620) and non-malignant cell lines (HaCaT and CHO-K1). Hybrid 4a displayed cytotoxicity against SW480 and SW620 cells with IC50 values of 62.73 ± 7.26 µM and 50.58 ± 1.33 µM, respectively; compound 4g induced cytotoxicity in SW620 cells with an IC50 value of 36.84 ± 0.71 µM. These compounds were even more selective than genistein alone, the reference drug (5-FU) and the equimolar mixture of genistein plus 5-FU. In addition, hybrids 4a and 4g induced time- and concentration-dependent antiproliferative activity and cell cycle arrest at the S-phase and G2/M. It was also observed that hybrid 4a induced apoptosis in SW620 cells probably triggered by the extrinsic pathway in response to the activation of p53, as evidenced by the increase in the levels of caspases 3/8 and the tumor suppressor protein (Tp53). Molecular docking studies suggest that the most active compound 4a would bind efficiently to proapoptotic human caspases 3/8 and human Tp53, which in turn could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. On the other hand, molecular dynamics (MD) studies provided strong evidence of the conformational stability of the complex between caspase-3 and hybrid 4a obtained throughout 100 ns all-atom MD simulation. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analyses of the complex with caspase-3 showed that the interaction between the ligand and the target protein is stable. Altogether, the results suggest that the active hybrids, mainly compound 4a, might act by modulating caspase-3 activity in a colorectal cancer model, making it a privileged scaffold that could be used in future investigations.
Collapse
|
13
|
Recent Advances in Natural Product-Based Hybrids as Anti-Cancer Agents. Molecules 2022; 27:molecules27196632. [PMID: 36235168 PMCID: PMC9572494 DOI: 10.3390/molecules27196632] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the top leading causes of death worldwide. It is a heterogenous disease characterized by unregulated cell proliferation and invasiveness of abnormal cells. For the treatment of cancer, natural products have been widely used as a source of therapeutic ingredients since ancient times. Although natural compounds and their derivatives have demonstrated strong antitumor activity in many types of cancer, their poor pharmacokinetic properties, low cell selectivity, limited bioavailability and restricted efficacy against drug-resistant cancer cells hinder their wide clinical application. Conjugation of natural products with other bioactive molecules has given rise to a new field in drug discovery resulting to the development of novel, bifunctional and more potent drugs for cancer therapy to overcome the current drawbacks. This review discusses multiple categories of such bifunctional conjugates and highlights recent trends and advances in the development of natural product hybrids. Among them, ADCs, PDCs, ApDCs, PROTACs and AUTOTACs represent emerging therapeutic agents against cancer.
Collapse
|
14
|
Kim DY, Park S, Yun J, Jang W, Rethineswaran VK, Van LTH, Giang LTT, Choi J, Lim HJ, Kwon SM. Oleuropein induces apoptosis in colorectal tumor spheres via mitochondrial fission. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Saddiq AA, El-Far AH, Mohamed Abdullah SA, Godugu K, Almaghrabi OA, Mousa SA. Curcumin, thymoquinone, and 3, 3′-diindolylmethane combinations attenuate lung and liver cancers progression. Front Pharmacol 2022; 13:936996. [PMID: 35847018 PMCID: PMC9277483 DOI: 10.3389/fphar.2022.936996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer can develop due to abnormal cell proliferation in any body’s cells, so there are over a hundred different types of cancer, each with its distinct behavior and response to treatment. Therefore, many studies have been conducted to slow cancer progression and find effective and safe therapies. Nutraceuticals have great attention for their anticancer potential. Therefore, the current study was conducted to investigate the anticancer effects of curcumin (Cur), thymoquinone (TQ), and 3, 3′-diindolylmethane (DIM) combinations on lung (A549) and liver (HepG2) cancer cell lines’ progression. Results showed that triple (Cur + TQ + DIM) and double (Cur + TQ, Cur + DIM, and TQ + DIM) combinations of Cur, TQ, and DIM significantly increased apoptosis with elevation of caspase-3 protein levels. Also, these combinations exhibited significantly decreased cell proliferation, migration, colony formation activities, phosphatidylinositol 3-kinase (PI3K), and protein kinase B (AKT) protein levels with S phase reduction. Triple and double combinations of Cur, TQ, and DIM hindered tumor weight and angiogenesis of A549 and HepG2 implants in the chorioallantoic membrane model. Interestingly, Cur, TQ, and DIM combinations are considered promising for suppressing cancer progression via inhibiting tumor angiogenesis. Further preclinical and clinical investigations are warranted.
Collapse
Affiliation(s)
- Amna A. Saddiq
- College of Sciences, Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- *Correspondence: Ali H. El-Far,
| | - Shymaa Abdullah Mohamed Abdullah
- Molecular Biology Unit, Medical Technology Center and Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Omar A. Almaghrabi
- College of Sciences, Department of Biology, University of Jeddah, Jeddah, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
16
|
Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone. Int J Mol Sci 2022; 23:ijms23116311. [PMID: 35682990 PMCID: PMC9181073 DOI: 10.3390/ijms23116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer is a life-threatening and multifaceted disease. Pioneering research works in the past three decades have mechanistically disentangled intertwined signaling networks which play contributory roles in carcinogenesis and metastasis. Phenomenal strides have been made in leveraging our scientific knowledge altogether to a new level of maturity. Rapidly accumulating wealth of information has underlined a myriad of transduction cascades which can be pharmaceutically exploited for cancer prevention/inhibition. Natural products serve as a treasure trove and compel interdisciplinary researchers to study the cancer chemopreventive roles of wide-ranging natural products in cell culture and preclinical studies. Experimental research related to thymoquinone has gradually gained momentum because of the extra-ordinary cancer chemopreventive multifunctionalities of thymoquinone. In this mini-review, we provide an overview of different cell signaling cascades reported to be regulated by thymoquinone for cancer chemoprevention. Essentially, thymoquinone efficacy has also been notably studied in animal models, which advocates for a rationale-based transition of thymoquinone from the pre-clinical pipeline to clinical trials.
Collapse
|
17
|
Chen S, Ouyang H, He D, Liu D, Wang X, Chen H, Pan W, Li Q, Xie W, Yu C. Functionalized PAMAM-Based Nanoformulation for Targeted Delivery of 5-Fluorouracil in Hepatocellular Carcinoma. Curr Pharm Des 2022; 28:2113-2125. [PMID: 35524673 DOI: 10.2174/1381612828666220506111918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Efficacy of a traditional anticancer drug is challenged by adverse effects of the drug including its nonspecific bio-distribution, short half-life and side effects. Dendrimer-based targeted drug delivery sysytem has been considered as a promising strategy to increase targeting ability and reduce adverse effects of anti-cancer drugs. OBJECTIVE This study analyzed the feasibility whether the anticancer drug 5-fluorouracil (5-FU) could be delivered by functionalized fifth-poly(amidoamine) (PAMAM) with the peptide WP05 and the acetic anhydride to the liver cancer cells, reducing toxicity of the PAMAM and improving the targeting property of 5-FU during delivery. METHODS The functionalized PAMAM-based nanoformulation (WP05-G5.0NHAC-FUA) was fabricated through an amide condensation reaction to improve therapeutic efficacy of 5-Fluorouracil (5-FU) in hepatocellular carcinoma (HCC). The physicochemical structure, particle size, zeta potential, stability and in vitro release characteristics of WP05-G5.0NHAC-FUA were evaluated. In addition, the targeting, biocompatibility, anti-proliferation and anti-migration of WP05-G5.0NHAC-FUA were investigated. The anti-tumor effect of WP05-G5.0NHAC-FUA in vivo was evaluated by constructing xenograft tumor models of hunman hepatoma cells (Bel-7402) implanted in nude mice. RESULTS The resultant WP05-G5.0NHAC-FUA displayed spherical-like nanoparticles with the size of 174.20 ± 3.59 nm. Zeta potential and the drug loading of WP05-G5.0NHAC-FUA were 5.62 ± 0.41mV and 28.67 ± 1.25 %, respectively. Notably, the optimized 5-FU-loaded formulation showed greater cytotoxicity with an IC50 of 30.80 ±4.04 μg/mL than free 5-FU (114.93 ±1.43 μg/mL) in Bel-7402 cancer liver cells, but a significantly reduced side effect relative to free 5-FU in L02 normal liver cells. In vivo animal study further confirmed efficient tumor accumulation and enhanced therapeutic efficiency. CONCLUSION The developed nanoformulation is a promising platform for the targeting delivery of 5-FU and provides a promising solution for improving the efficacy of hepatocellular carcinoma chemotherapy.
Collapse
Affiliation(s)
- Siwei Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Hu Ouyang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Dongxiu He
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| | - Daquan Liu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Xiao Wang
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Hongyuan Chen
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Wei Pan
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Qi Li
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Weiquan Xie
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China
| | - Cuiyun Yu
- Institute of Pharmacy & Pharmacology, Universityof South China, Hengyang, Hunan, China.,Provincial Key Laboratory of tumor microenvironment responsive drug research,28 Western Changshen Road, Hengyang, Hunan, China
| |
Collapse
|
18
|
Al Bitar S, Ballout F, Monzer A, Kanso M, Saheb N, Mukherji D, Faraj W, Tawil A, Doughan S, Hussein M, Abou-Kheir W, Gali-Muhtasib H. Thymoquinone Radiosensitizes Human Colorectal Cancer Cells in 2D and 3D Culture Models. Cancers (Basel) 2022; 14:1363. [PMID: 35326517 PMCID: PMC8945905 DOI: 10.3390/cancers14061363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells and normal tissue toxicity of ionizing radiation (IR) are known to limit the success of radiotherapy. There is growing interest in using IR with natural compounds to sensitize cancer cells and spare healthy tissues. Thymoquinone (TQ) was shown to radiosensitize several cancers, yet no studies have investigated its radiosensitizing effects on colorectal cancer (CRC). Here, we combined TQ with IR and determined its effects in two-dimensional (2D) and three-dimensional (3D) culture models derived from HCT116 and HT29 CRC cells, and in patient-derived organoids (PDOs). TQ sensitized CRC cells to IR and reduced cell viability and clonogenic survival and was non-toxic to non-tumorigenic intestinal cells. TQ sensitizing effects were associated with G2/M arrest and DNA damage as well as changes in key signaling molecules involved in this process. Combining a low dose of TQ (3 µM) with IR (2 Gy) inhibited sphere formation by 100% at generation 5 and this was associated with inhibition of stemness and DNA repair. These doses also led to ~1.4- to ~3.4-fold decrease in organoid forming ability of PDOs. Our findings show that combining TQ and IR could be a promising therapeutic strategy for eradicating CRC cells.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Farah Ballout
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Alissar Monzer
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| | - Mariam Kanso
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Nour Saheb
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.S.); (A.T.)
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon;
| | - Walid Faraj
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (N.S.); (A.T.)
| | - Samer Doughan
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Maher Hussein
- Division of General Surgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon; (M.K.); (W.F.); (S.D.); (M.H.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon; (S.A.B.); (F.B.); (A.M.)
| |
Collapse
|
19
|
Oliveira LFS, Predes D, Borges HL, Abreu JG. Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020403. [PMID: 35053565 PMCID: PMC8774030 DOI: 10.3390/cancers14020403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is an emerging public health problem and the second leading cause of death worldwide, with a significant socioeconomic impact in several countries. The 5-year survival rate is only 12% due to the lack of early diagnosis and resistance to available treatments, and the canonical Wnt signaling pathway is involved in this process. This review underlines the importance of understanding the fundamental roles of this pathway in physiological and pathological contexts and analyzes the use of naturally occurring small molecules that inhibits the Wnt/β-catenin pathway in experimental models of CRC. We also discuss the progress and challenges of moving these small molecules off the laboratory bench into the clinical platform. Abstract Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/β-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/β-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/β-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.
Collapse
|
20
|
Eftekhar SP, Kazemi S, Moghadamnia AA. Effect of thymoquinone on pharmacokinetics of 5-fluorouracil in rats and its effect on human cell line in vitro. Hum Exp Toxicol 2022; 41:9603271221145422. [PMID: 36510676 DOI: 10.1177/09603271221145422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ) is one of the components extracted from Nigella sativa seeds and has antioxidant, anti-inflammatory, and anticancer effects. We evaluated the effect of TQ on 5-fluorouracil (5-FU) pharmacokinetics (PK) in vivo and in vitro on human colorectal cancer cell line. Ten Adult male Wistar rats were assigned to two groups. TQ treated group received intraperitoneal TQ once daily for 14 consecutive days (5 mg/kg). Both groups received intraperitoneal 5-FU (50 mg/kg) on day 15 and blood samples were collected from retro-orbital plexus. The pharmacokinetics parameters were analyzed using high-performance liquid chromatography (HPLC). Moreover, various concentrations of 5-FU, TQ, and combination of 5-FU and TQ were added to the HT-29 cell line and cell viability was measured using 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay. The maximum serum concentration (Cmax), area under the curve (AUC), and time of maximum concentration (Tmax) of 5-FU in TQ treated group were significantly increased approximately by 61, 60, and 24% compared to the control group, respectively. The combination of 5-FU with TQ (0.284 mM) showed a greater inhibitory effect on HT-29 cell growth compared to the alone 5-FU (0.027 and 0.055 mM) administration. TQ increases the AUC, Cmax, and Tmax of 5-FU and has a synergistic effect on the PK of 5-FU. Moreover, low concentration of TQ enhances the inhibitory effects of 5-FU on cell growth in colorectal cancer cell line. This synergistic effect might enhance the anticancer effects of low concentration of 5-FU, leading to drug dose reduction and reduced systemic toxicity of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Seyed Parsa Eftekhar
- Department of Pharmacology and Toxicology, School of Medicine, 114456Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, 114456Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, 114456Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Zheng M, Mei Z, Junaid M, Tania M, Fu J, Chen HC, Khan MA. Synergistic Role of Thymoquinone on Anticancer Activity of 5-Fluorouracil in Triple Negative Breast Cancer Cells. Anticancer Agents Med Chem 2022; 22:1111-1118. [PMID: 34170813 DOI: 10.2174/1871520621666210624111613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) is considered as the most deadly subtype of breast cancer, because of heterogeneity, less treatment options and resistance to chemotherapy. OBJECTIVE To find out an efficient chemotherapeutic options, in this study we have investigated the combined therapy of 5-Fluorouracil (5-FU) and thymoquinone (TQ) against TNBC cell lines BT-549 and MDA-MB-231. METHODS We have tested 5-FU and TQ alone and in combination (5-FU + TQ) to observe the cellular growth, cell cycle and apoptosis status of BT-549 and MDA-MB-231 cells. Also we have measured the mRNA level expression of genes related to cell cycle and apoptosis. RESULTS Experimental results suggest that both of 5-FU and TQ are effective in controlling cell growth, cell cycle and inducing apoptosis, but their combination is much more effective. 5-FU was found to be more effective in controlling cell growth, while TQ was found to be more effective in inducing apoptosis, but in both cases, their combination was most effective. TQ was found more effective in increasing and BAX/BCL-2 ratio, while 5-FU was more effective in inhibiting thymidylate synthase. They showed significant increasing effects on caspases and P53 and decreasing effect on CDK-2, where their combination was found most effective. CONCLUSION Thus, TQ and 5-FU probably showed synergistic effect on both of cell cycle and apoptosis of tested TNBC cell lines. Our study reveals that TQ can synergise 5-FU action, and increase its anticancer efficiency against TNBC cells, which might be good choice in drug development for TNBC treatment.
Collapse
Affiliation(s)
- Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Md Junaid
- Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, Chattogram, Bangladesh
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka, Bangladesh
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Han-Chun Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
A Gene Signature Derived from the Loss of CDKN1A (p21) Is Associated with CMS4 Colorectal Cancer. Cancers (Basel) 2021; 14:cancers14010136. [PMID: 35008299 PMCID: PMC8750372 DOI: 10.3390/cancers14010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A gene signature derived from the loss of CDKN1A (p21) gene, obtained in HCT116 p21-/- colorectal cancer cells, is identified in a large cohort of primary colorectal (CRC) tumors and is associated with the Consensus Molecular Subtype (CMS) of colon cancer that has a worse relapse-free and overall survival, that is, CMS4 (also called mesenchymal subtype). The presented gene signature can help to uncover the early molecular mechanisms of epithelial–mesenchymal transition (EMT), which is known to be associated with high stemness and drug resistance. Abstract The epithelial–mesenchymal transition (EMT) is associated with tumor aggressiveness and increased invasion, migration, metastasis, angiogenesis, and drug resistance. Although the HCT116 p21-/- cell line is well known for its EMT-associated phenotype, with high Vimentin and low E-cadherin protein levels, the gene signature of this rather intermediate EMT-like cell line has not been determined so far. In this work, we present a robust molecular and bioinformatics analysis, to reveal the associated gene expression profile and its correlation with different types of colorectal cancer tumors. We compared the quantitative signature obtained with the NanoString platform with the expression profiles of colorectal cancer (CRC) Consensus Molecular Subtypes (CMS) as identified, and validated the results in a large independent cohort of human tumor samples. The expression signature derived from the p21-/- cells showed consistent and reliable numbers of upregulated and downregulated genes, as evaluated with two machine learning methods against the four CRC subtypes (i.e., CMS1, 2, 3, and 4). High concordance was found between the upregulated gene signature of HCT116 p21-/- cells and the signature of the CMS4 mesenchymal subtype. At the same time, the upregulated gene signature of the native HCT116 cells was similar to that of CMS1. Using a multivariate Cox regression model to analyze the survival data in the CRC tumor cohort, we selected genes that have a predictive risk power (with a significant gene risk incidence score). A set of genes of the mesenchymal signature was proven to be significantly associated with poor survival, specifically in the CMS4 CRC human cohort. We suggest that the gene signature of HCT116 p21-/- cells could be a suitable metric for mechanistic studies regarding the CMS4 signature and its functional consequences in CRC. Moreover, this model could help to discover the molecular mechanisms of intermediate EMT, which is known to be associated with extraordinarily high stemness and drug resistance.
Collapse
|
23
|
Fatfat Z, Fatfat M, Gali-Muhtasib H. Therapeutic potential of thymoquinone in combination therapy against cancer and cancer stem cells. World J Clin Oncol 2021; 12:522-543. [PMID: 34367926 PMCID: PMC8317652 DOI: 10.5306/wjco.v12.i7.522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The long-term success of standard anticancer monotherapeutic strategies has been hampered by intolerable side effects, resistance to treatment and cancer relapse. These monotherapeutic strategies shrink the tumor bulk but do not effectively eliminate the population of self-renewing cancer stem cells (CSCs) that are normally present within the tumor. These surviving CSCs develop mechanisms of resistance to treatment and refuel the tumor, thus causing cancer relapse. To ensure durable tumor control, research has moved away from adopting the monotreatment paradigm towards developing and using combination therapy. Combining different therapeutic modalities has demonstrated significant therapeutic outcomes by strengthening the anti-tumor potential of monotreatment against cancer and cancer stem cells, mitigating their toxic adverse effects, and ultimately overcoming resistance. Recently, there has been growing interest in combining natural products from different sources or with clinically used chemotherapeutics to further improve treatment efficacy and tolerability. Thymoquinone (TQ), the main bioactive constituent of Nigella sativa, has gained great attention in combination therapy research after demonstrating its low toxicity to normal cells and remarkable anticancer efficacy in extensive preclinical studies in addition to its ability to target chemoresistant CSCs. Here, we provide an overview of the therapeutic responses resulting from combining TQ with conventional therapeutic agents such as alkylating agents, antimetabolites and antimicrotubules as well as with topoisomerase inhibitors and non-coding RNA. We also review data on anticancer effects of TQ when combined with ionizing radiation and several natural products such as vitamin D3, melatonin and other compounds derived from Chinese medicinal plants. The focus of this review is on two outcomes of TQ combination therapy, namely eradicating CSCs and treating various types of cancers. In conclusion, the ability of TQ to potentiate the anticancer activity of many chemotherapeutic agents and sensitize cancer cells to radiotherapy makes it a promising molecule that could be used in combination therapy to overcome resistance to standard chemotherapeutic agents and reduce their associated toxicities.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
24
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
25
|
Idris M, Alves MM, Hofstra RMW, Mahe MM, Melotte V. Intestinal multicellular organoids to study colorectal cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188586. [PMID: 34216725 DOI: 10.1016/j.bbcan.2021.188586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023]
Abstract
Modeling colorectal cancer (CRC) using organoids has burgeoned in the last decade, providing enhanced in vitro models to study the development and possible treatment options for this type of cancer. In this review, we describe both normal and CRC intestinal organoid models and their utility in the cancer research field. Besides highlighting studies that develop epithelial CRC organoid models, i.e. organoids without tumor microenvironment (TME) cellular components, we emphasize on the need for TME in CRC modeling, to help reduce translational disparities in this area. Also, we discuss the utilization of CRC organoids derived from pluripotent stem cells, as well as their potential to be used in cancer research. Finally, limitations and challenges in the current CRC organoids field, are discussed.
Collapse
Affiliation(s)
- Musa Idris
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, OH, USA; TENS - Inserm UMR 1235, INSERM, University of Nantes, Nantes, France
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
26
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
27
|
Wang K, Liu W, Xu Q, Gu C, Hu D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153553. [PMID: 33906076 DOI: 10.1016/j.phymed.2021.153553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most malignant tumors worldwide with poor prognosis and low survival rate. Since the clinical efficacy of the commonly used 5-fluorouracil (5-FU) based chemotherapy in CRC patients is limited because of its intolerable adverse effects, there is an urgent need to explore agents that can enhance the anti-cancer activity of 5-FU, reduce adverse effects and prevent resistance. PURPOSE This study aims to investigate Tenacissoside G (TG)'s synergistic potentiation with 5-FU in inhibitory activity to colorectal cancer cells. METHODS The anti-proliferation effect of TG on 5 colorectal cancer cell lines was assessed by CCK-8 assay. The isobologram analysis and combination index methods were used to detect the synergistic effect of TG and 5-FU by the CompuSyn software using the T.C. Chou Method. The effects of TG/5-FU combination on cell cycle distribution and apoptosis induction were detected by flow cytometry. DNA damage degrees of cells treated with TG, 5-FU and their combination were evaluated by the alkaline comet assay. Protein expression regulated by the TG/5-FU combination was investigated by western blotting. Furthermore, a xenograft mouse model was established to investigate the synergistic anti-tumor effect in vivo. RESULTS In this work, we observed a dose-dependent growth inhibitory activity and cell cycle arrest induction of TG, a monomeric substance originated from Marsdenia tenacissima (Roxb.) Wight et Arn, in colorectal cancer cells. It was found that TG potentiated the anticancer effects of 5-FU with a synergism for the first time. And the co-treatment effects were also validated by in vivo experiments. The underlying mechanisms involved in the synergistic effects were probably included: (1) increased activation of caspase cascade; (2) enhancement of DNA damage degree and (3) induction of p53 phosphorylation at Serine 46. CONCLUSION TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU.
Collapse
Affiliation(s)
- Kaichun Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Clinical Pharmacology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Qinfen Xu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Gu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
28
|
Pal RR, Rajpal V, Singh P, Saraf SA. Recent Findings on Thymoquinone and Its Applications as a Nanocarrier for the Treatment of Cancer and Rheumatoid Arthritis. Pharmaceutics 2021; 13:775. [PMID: 34067322 PMCID: PMC8224699 DOI: 10.3390/pharmaceutics13060775] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer causes a considerable amount of mortality in the world, while arthritis is an immunological dysregulation with multifactorial pathogenesis including genetic and environmental defects. Both conditions have inflammation as a part of their pathogenesis. Resistance to anticancer and disease-modifying antirheumatic drugs (DMARDs) happens frequently through the generation of energy-dependent transporters, which lead to the expulsion of cellular drug contents. Thymoquinone (TQ) is a bioactive molecule with anticancer as well as anti-inflammatory activities via the downregulation of several chemokines and cytokines. Nevertheless, the pharmacological importance and therapeutic feasibility of thymoquinone are underutilized due to intrinsic pharmacokinetics, including short half-life, inadequate biological stability, poor aqueous solubility, and low bioavailability. Owing to these pharmacokinetic limitations of TQ, nanoformulations have gained remarkable attention in recent years. Therefore, this compilation intends to critically analyze recent advancements in rheumatoid arthritis and cancer delivery of TQ. This literature search revealed that nanocarriers exhibit potential results in achieving targetability, maximizing drug internalization, as well as enhancing the anti-inflammatory and anticancer efficacy of TQ. Additionally, TQ-NPs (thymoquinone nanoparticles) as a therapeutic payload modulated autophagy as well as enhanced the potential of other drugs when given in combination. Moreover, nanoformulations improved pharmacokinetics, drug deposition, using EPR (enhanced permeability and retention) and receptor-mediated delivery, and enhanced anti-inflammatory and anticancer properties. TQ's potential to reduce metal toxicity, its clinical trials and patents have also been discussed.
Collapse
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Vasundhara Rajpal
- Department of Biotechology, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India;
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India; (R.R.P.); (P.S.)
| |
Collapse
|
29
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
30
|
The Combination of Zerumbone and 5-FU: A Significant Therapeutic Strategy in Sensitizing Colorectal Cancer Cells to Treatment. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6635874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objectives. Chemotherapy is considered to be essential in the treatment of patients with colorectal cancer (CRC), but drug resistance reduces its efficacy. Many patients with advanced CRC eventually show resistance to 5-fluorouracil (5-FU) therapy. Synergistic and potentiating effects of combination therapy, using herbal and chemical drugs, can improve patients’ response. Zerumbone (ZER), which is derived from ginger, has been studied for its growth inhibitory function in various types of cancer. Methods. The cytotoxic effects of ZER and 5-FU alone and their combination, on the SW48 and HCT-116 cells, were examined, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The mRNA and protein levels of β-catenin, survivin, and vimentin were measured in treated CRC cells, using qRT-PCR and western blot. Colony formation assay, scratch test, and flow cytometry were performed to detect the changes of proliferation, migration, and apoptosis. Key Findings. In HCT-116- and SW48-treated cells, the proliferation, the gene and protein expression levels of the markers, the migration, the colony formation, and the survival rates were all significantly reduced compared to the control groups, and the sharpest decline was observed in the 5-FU+ZER treatment groups. Conclusions. Combination therapy has shown promising results in CRC cells, especially in drug-resistant cells.
Collapse
|
31
|
Haiaty S, Rashidi MR, Akbarzadeh M, Bazmany A, Mostafazadeh M, Nikanfar S, Zibaei Z, Rahbarghazi R, Nouri M. Thymoquinone inhibited vasculogenic capacity and promoted mesenchymal-epithelial transition of human breast cancer stem cells. BMC Complement Med Ther 2021; 21:83. [PMID: 33663486 PMCID: PMC7931333 DOI: 10.1186/s12906-021-03246-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Background Vasculogenic mimicry (VM) is characterized by the formation of tubular structure inside the tumor stroma. It has been shown that a small fraction of cancer cells, namely cancer stem cells (CSCs), could stimulate the development of vascular units in the tumor niche, leading to enhanced metastasis to the remote sites. This study aimed to study the inhibitory effect of phytocompound, Thymoquinone (TQ), on human breast MDA-MB-231 cell line via monitoring Wnt/PI3K signaling pathway. Methods MDA-MB-231 CSCs were incubated with different concentrations of TQ for 48 h. The viability of CSCs was determined using the MTT assay. The combination of TQ and PI3K and Wnt3a inhibitors was examined in CSCs. By using the Matrigel assay, we measured the tubulogenesis capacity. The percent of CD24− CSCs and Rhodamine 123 efflux capacity was studied using flow cytometry analysis. Protein levels of Akt, p-Akt, Wnt3a, vascular endothelial-cadherin (VE-cadherin), and matrix metalloproteinases-2 and -9 (MMP-2 and -9) were detected by western blotting. Results TQ decreased the viability of CSCs in a dose-dependent manner. The combination of TQ with PI3K and Wnt3a inhibitors reduced significantly the survival rate compared to the control group (p < 0.05). TQ could blunt the stimulatory effect of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF) on CSCs (p < 0.05). The vasculogenic capacity of CSCs was reduced after being-exposed to TQ (p < 0.05). Western blotting revealed the decrease of CSCs metastasis by suppressing MMP-2 and -9. The protein level of VE-cadherin was also diminished in TQ-treated CSCs as compared to the control cell (p < 0.05), indicating inhibition of mesenchymal-endothelial transition (MendT). TQ could suppress Wnt3a and PI3K, which coincided with the reduction of the p-Akt/Akt ratio. TQ had the potential to decrease the number of CD24− CSCs and Rhodamine 123 efflux capacity after 48 h. Conclusion TQ could alter the vasculogenic capacity and mesenchymal-epithelial transition of human breast CSCs in vitro. Thus TQ together with anti-angiogenic therapies may be a novel therapeutic agent in the suppression of VM in breast cancer.
Collapse
Affiliation(s)
- Sanya Haiaty
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ahad Bazmany
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran.,Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mostafa Mostafazadeh
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohre Zibaei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran. .,Departmnt of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St, Tabriz, Iran.
| |
Collapse
|
32
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
33
|
Xu F, Wang Z, Song X, Zhang M, Cui L, Liu Y, Yan H, Gao S, Liu Y, Chen W. A Direct and Sensitive Method for Determination of 5-Fluorouracil in Colorectal Cancer Cells: Evaluating the Effect of Stromal Cell on Drug Resistance of Cancer Cells. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6689488. [PMID: 33708454 PMCID: PMC7932793 DOI: 10.1155/2021/6689488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Fibroblasts in the stroma play a critical role in tumor evolution. In this study, we assessed the influence of colonic fibroblasts on colon cancer cells treated with 5-fluorouracil (5-FU), and mouse colon cancer cell lines MC38 and colonic fibroblasts NIH3T3 were used in this study. A sensitive and rapid UHPLC-MS/MS method for the quantitation of 5-FU from the cell and their medium has been successfully developed and validated. The cells were lysed with methanol, and the mixture was evaporated and then redissolved to extract intracellular 5-FU. The analysis was performed on UHPLC-MS/MS using an Atlantis T3-C18 column (3 μm, 2. 1 ∗ 100 mm) and gradient elution with acetonitrile and 0.1% formic acid in water. Method validation included the following parameters: the matrix effect range 88.82%-93.64% and the recovery range 93.52%-94.56%. The intraday and interday precision and accuracy were <11% and within ±6%, and the stability, specificity, carry-over, dilution effect, and linearity all conformed to the criteria. The method was applied to detect the concentration of 5-FU inside cells and cell culture medium. The preliminary results present that NIH3T3 could enhance the drug resistance of MC38 to 5-FU with a decreased intracellular concentration of 5-FU in MC38, which showed a positive relationship with NIH3T3 number.
Collapse
Affiliation(s)
- Fengjing Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xinhua Song
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Mengwei Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Lili Cui
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Yanping Liu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Hongxia Yan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
34
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
35
|
Babu LT, Paira P. 9-Arylacenaphtho[1,2- b]quinoxalines via Suzuki coupling reaction as cancer therapeutic and cellular imaging agents. NEW J CHEM 2021. [DOI: 10.1039/d1nj03915f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of 9-arylacenaphtho[1,2-b]quinoxaline analogues have been synthesized via a Suzuki coupling reaction in a one pot sequence. These are capable of imaging, as well as terminating, cancer cells in the human body.
Collapse
Affiliation(s)
- Lavanya Thilak Babu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India
| |
Collapse
|
36
|
Carullo G, Mazzotta S, Koch A, Hartmann KM, Friedrich O, Gilbert DF, Vega-Holm M, Schneider-Stock R, Aiello F. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9111077. [PMID: 33153029 PMCID: PMC7692320 DOI: 10.3390/antiox9111077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Nowadays, the beneficial role of a healthy lifestyle, particularly emphasizing the quality of foods and cancer management, is accepted worldwide. Polyphenols and oleic acid play a key role in this context, but are still scarcely used as anti-cancer agents due to their bio-accessibility limits. Therefore, we aimed to synthesize a set of new oleoyl-hybrids of quercetin, morin, pinocembrin, and catechin to overcome the low bioavailability of polyphenols, throughout a bio-catalytic approach using pancreatic porcine lipase as a catalyst. The in vitro assays, using a wide panel of human cancer cell lines showed, mainly for two novel regioisomer oleoyl-hybrids of quercetin, a remarkable increase in apoptotic cell populations. We suggested that the DNA damage shown as ɣH2AX signals might be the major cause of apoptotic cell death. Finally, we demonstrated convincing data about two novel polyphenol-based hybrids displaying a highly selective anti-cancer cytotoxicity and being superior compared to their reference/parental compounds.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Sarah Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Department of Pharmaceutical Sciences, University of Milan Via Luigi Mangiagalli 25, 20133 Milano, Italy;
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Adrian Koch
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
| | - Kristin M. Hartmann
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Regine Schneider-Stock
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
- Correspondence: (R.S.-S.); (F.A.)
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Correspondence: (R.S.-S.); (F.A.)
| |
Collapse
|
37
|
Alhosin M, Razvi SSI, Sheikh RA, Khan JA, Zamzami MA, Choudhry H. Thymoquinone and Difluoromethylornithine (DFMO) Synergistically Induce Apoptosis of Human Acute T Lymphoblastic Leukemia Jurkat Cells Through the Modulation of Epigenetic Pathways. Technol Cancer Res Treat 2020; 19:1533033820947489. [PMID: 32912061 PMCID: PMC7488875 DOI: 10.1177/1533033820947489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thymoquinone (TQ), a natural anticancer agent exerts cytotoxic effects on several tumors by targeting multiple pathways, including apoptosis. Difluoromethylornithine (DFMO), an irreversible inhibitor of the ornithine decarboxylase (ODC) enzyme, has shown promising inhibitory activities in many cancers including leukemia by decreasing the biosynthesis of the intracellular polyamines. The present study aimed to investigate the combinatorial cytotoxic effects of TQ and DFMO on human acute T lymphoblastic leukemia Jurkat cells and to determine the underlying mechanisms. Here, we show that the combination of DFMO and TQ significantly reduced cell viability and resulted in significant synergistic effects on apoptosis when compared to either DFMO or TQ alone. RNA-sequencing showed that many key epigenetic players including Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) and its 2 partners DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1) were down-regulated in DFMO-treated Jurkat cells. The combination of DFMO and TQ dramatically decreased the expression of UHRF1, DNMT1 and HDAC1 genes compared to either DFMO or TQ alone. UHRF1 knockdown led to a decrease in Jurkat cell viability. In conclusion, these results suggest that the combination of DFMO and TQ could be a promising new strategy for the treatment of human acute T lymphoblastic leukemia by targeting the epigenetic code.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Shoeb I Razvi
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Math and Science Department, 441417Community College of Qatar, Doha, Qatar
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin A Khan
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, 37848King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Rashidi G, Rezaeepoor M, Mohammadi C, Solgi G, Najafi R. Inhibition of semaphorin 4D enhances chemosensitivity by increasing 5-fluorouracile-induced apoptosis in colorectal cancer cells. Mol Biol Rep 2020; 47:7017-7027. [PMID: 32888127 DOI: 10.1007/s11033-020-05761-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Overexpression of semaphorin 4D (SEMA4D), an immune semaphorin, is found in various human malignancies, including colorectal cancer (CRC). In this study, we explored the relationship between silencing SEMA4D expression and 5-fluorouracil (5-FU) response in the colorectal cancer cell line. SW48 cells were transfected with a short interfering RNA (siRNA) in order to silence SEMA4D gene expression and then exposed to 5-FU for 48 h. The down-regulation of SEMA4D expression was confirmed by qRT-PCR and the particular concentration of 5-FU was acquired using MTT assay. Flow cytometry and western blot were used to evaluate apoptosis rate and pro- and anti-apoptotic expression levels of proteins involved in apoptosis including Bax, Bcl-2, P53, and caspase-3. Other oncogenic activities including epithelial-mesenchymal transition (EMT) process, cancer stem cell (CSC) markers, and β-catenin pathway were investigated using qRT-PCR, and western blot. The proliferation was analyzed via colony formation test and cell invasion was assessed by transwell assay. Our data demonstrate that SEMA4D silencing results in strikingly elevated apoptosis in response to 5-FU treatment and leads to down-regulation of Bcl-2 and overexpression of Bax, P53, and caspase-3 in protein levels. Furthermore, the mRNA and protein expression levels of β-catenin, as well as transcript expressions of CSCs and EMT markers, were remarkably diminished. However, mRNA expression of E-cadherin as an epithelial marker was significantly increased in 5-FU treatment combined with siRNA SEMA4D. This study implicates that the silencing of SEMA4D by siRNA promotes the chemosensitivity of SW48 cells to 5-FU and it may be a potential therapeutic agent for colon cancer therapy.
Collapse
Affiliation(s)
- Golnaz Rashidi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Rezaeepoor
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Chiman Mohammadi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
39
|
Ballout F, Monzer A, Fatfat M, Ouweini HE, Jaffa MA, Abdel-Samad R, Darwiche N, Abou-Kheir W, Gali-Muhtasib H. Thymoquinone induces apoptosis and DNA damage in 5-Fluorouracil-resistant colorectal cancer stem/progenitor cells. Oncotarget 2020; 11:2959-2972. [PMID: 32821342 PMCID: PMC7415406 DOI: 10.18632/oncotarget.27426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The high recurrence rates of colorectal cancer have been associated with a small population of cancer stem cells (CSCs) that are resistant to the standard chemotherapeutic drug, 5-fluorouracil (5FU). Thymoquinone (TQ) has shown promising antitumor properties on numerous cancer systems both in vitro and in vivo; however, its effect on colorectal CSCs is poorly established. Here, we investigated TQ's potential to target CSCs in a three-dimensional (3D) sphere-formation assay enriched for a population of colorectal cancer stem/progenitor cells. Our results showed a significant decrease in self-renewal potential of CSC populations enriched from 5FU-sensitive and resistant HCT116 cells at 10-fold lower concentrations when compared to 2D monolayers. TQ decreased the expression levels of colorectal stem cell markers CD44 and Epithelial Cell Adhesion Molecule EpCAM and proliferation marker Ki67 in colonospheres derived from both cell lines and reduced cellular migration and invasion. Further investigation revealed that TQ treatment led to increased TUNEL positivity and a dramatic increase in the amount of the DNA damage marker gamma H2AX particularly in 5FU-resistant colonospheres, suggesting that the diminished sphere forming ability in TQ-treated colonospheres is due to induction of DNA damage and apoptotic cell death. The intraperitoneal injection of TQ in mice inhibited tumor growth of spheres derived from 5FU-sensitive and 5FU-resistant HCT116 cells. Furthermore, TQ induced apoptosis and inhibited NF-κB and MEK signaling in mouse tumors. Altogether, our findings document TQ's effect on colorectal cancer stem-like cells and provide insights into its underlying mechanism of action.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Biology, American University of Beirut, Lebanon
| | - Alissar Monzer
- Department of Biology, American University of Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Lebanon
| | - Hala El Ouweini
- Department of Biology, American University of Beirut, Lebanon
| | - Miran A. Jaffa
- Department of Epidemiology and Population Health, American University of Beirut, Lebanon
| | - Rana Abdel-Samad
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Lebanon
| | - Wassim Abou-Kheir
- Center for Drug Discovery and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Lebanon
- Center for Drug Discovery and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Lebanon
| |
Collapse
|
40
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
41
|
Thymoquinone-chemotherapeutic combinations: new regimen to combat cancer and cancer stem cells. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1581-1598. [PMID: 32458010 DOI: 10.1007/s00210-020-01898-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Cancer is a worldwide disease that causes millions of cases of mortality and morbidity. The major problem associated with the cancer is its resistance to conventional therapy and a high relapse rate. The use of chemotherapy to treat cancer began at the start of the twentieth century with attempts to control cancer. In time advance, many cancer chemotherapeutic agents have been developed for cancer treatment with different mechanisms of action including the alkylating agents, antimetabolites, antimicrotubule, topoisomerase inhibitors, and cytotoxic antibiotics, all of which have toxic effects toward normal cells in the body. Here, we reviewed chemotherapeutics' anticancer role potentiation and safety by thymoquinone (TQ) alone or in combination with the most common therapeutic drugs. Our search was done through PubMed, Science Direct, Springer Link, Taylor & Francis Online, Wiley Online Library, Nature publication group, SAGE Journals, and Web of Science databases. We recognized that TQ-chemotherapeutics combination increased chemo-modulation to the anticancer effect of different chemotherapeutics and protected the normal body cells from the toxic injuries that are induced by chemotherapeutics based on its antioxidant power. Moreover, the current study investigates the possible combinatory effect of TQ and chemotherapeutics to control cancer stem cells through molecular docking targeting of wingless/integrated (Wnt) and Hedgehog (Hh). We found that TQ modulates the Wnt and Hh pathways, by binding with tankyrase-2 and smoothened 7TM receptor, respectively, more efficiently than most chemotherapeutics drugs, while methotrexate showed high-binding affinity compared with TQ. Therefore, we encourage researchers to investigate the chemo-modulatory potential and protective effects of TQ in combination with chemotherapeutics for either cancer or cancer stem cell treatment.
Collapse
|
42
|
Li Q, Zhou X, Fang Z, Pan Z, Zhou H. Up-regulation of FAT4 enhances the chemosensitivity of colorectal cancer cells treated by 5-FU. Transl Cancer Res 2020; 9:309-322. [PMID: 35117185 PMCID: PMC8798996 DOI: 10.21037/tcr.2019.12.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/03/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) has high mortality, and 5-fluorouracil (5-FU) is a common clinical chemotherapeutic drug. The current study aimed to investigate the role of FAT4 in chemosensitivity of CRC cells treated by 5-FU. METHODS The immunohistochemistry and qRT-PCR was conducted to measure the FAT4 expression in CRC and adjacent tissues. The FAT4 expression was determined by qRT-PCR and Western blot, comparison of FAT expression between normal and several CRC cell lines was then made, so as to identify cell lines with the highest (LS174T) and the lowest (SW-620) expressions of FAT4. The effects of 5-FU stimulation at various doses on cell viability were determined by CCK-8, and the level of FAT4 was also measured. After FAT4 knockdown in LS174T or FAT4 overexpression in SW-620 with or without pretreatment of 5-FU (30 µg/mL), cell growth, colony formation, cell migration and invasion, angiogenesis were determined by flow cytometry, wound-healing, transwell assay and tube formation assay, respectively. The expression levels of epithelial-mesenchymal transition (EMT) markers were detected by qRT-PCR and Western blot. RESULTS FAT4 was down-regulated in CRC tissues and cells, cell viability of CRC cells was decreased. The level of FAT4 was increased with the increase of 5-FU concentrations. Moreover, 5-FU stimulation increased FAT4 expression, and reduced cell proliferation, migration, invasion, angiogenesis and cell EMT process, furthermore, such effects of 5-FU stimulation could be enhanced by FAT4 overexpression but reversed by FAT4 knockdown. CONCLUSIONS Upregulation of FAT4 could increase the sensitivity of CRC cells to 5-FU.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiukou Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhengyu Fang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhiyun Pan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | |
Collapse
|
43
|
Schneider-Stock R, Ribatti D. The CAM Assay as an Alternative In Vivo Model for Drug Testing. Handb Exp Pharmacol 2020; 265:303-323. [PMID: 32776283 DOI: 10.1007/164_2020_375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last decade, the chicken chorioallantoic membrane (CAM) assay has been re-discovered in cancer research to study the molecular mechanisms of anti-cancer drug effects. Literature about the CAM assay as an alternative in vivo cancer xenograft model according to the 3R principles has exploded in the last 3 years. Following a summary of the basic knowledge about the chicken embryo, we compare advantages and disadvantages with the classical mouse xenograft model, exemplify established and innovative imaging techniques that are used in the CAM model, and give examples of its successful utilization for studying major hallmarks of cancer such as angiogenesis, proliferation, invasion, and metastasis.
Collapse
Affiliation(s)
- Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|