1
|
Tan S. Molecular mechanism of portal hypertensive gastropathy: An update. Clin Res Hepatol Gastroenterol 2024; 48:102423. [PMID: 39032917 DOI: 10.1016/j.clinre.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Portal hypertensive gastropathy (PHG) is a serious complication and the most common gastric mucosal injury amongst patients afflicted with cirrhotic or non-cirrhotic portal hypertension (PHT). The pathogenesis of PHG is not completely understood and is likely to be complex. The roles of portal hypertension pressure, parenchymal liver disease, Child-Pugh classification, variceal pressure and Helicobacter pylori infection in the development of PHG are controversial. Splanchnic blood flow, the distribution of mucosal blood, vascular ectasia, local disturbances, inflammatory cell infiltration and increased cytokine production have also been examined to elucidate the underlying mechanisms of PHG. Moreover, various other elements, including prostaglandin E2 (PGE2), endothelin-1 (ET-1), tumour necrosis factor-α (TNF-α), Fas ligand (FasL)/Fas, nitric oxide (NO), oxygen free radicals and vascular endothelial growth factor (VEGF), have also been revealed to participate in the pathogenesis of PHG. This review provides an overview of the risk factors, classification and potential molecular processes involved in PHG, followed by a concise summary of our and other studies. This review aims to integrate information to deepen our understanding of the interplay between different signalling pathways involved the pathogenesis of PHG and provides insights into how these signalling pathways are regulated to control the development of PHG.
Collapse
Affiliation(s)
- Siwei Tan
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Xiao Y, Zhang Y, Xie K, Huang X, Liu X, Luo J, Tan S. Mitochondrial Dysfunction by FADDosome Promotes Gastric Mucosal Injury in Portal Hypertensive Gastropathy. Int J Biol Sci 2024; 20:2658-2685. [PMID: 38725851 PMCID: PMC11077381 DOI: 10.7150/ijbs.90835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Mucosal epithelial death is an essential pathological characteristic of portal hypertensive gastropathy (PHG). FADDosome can regulate mucosal homeostasis by controlling mitochondrial status and cell death. However, it remains ill-defined whether and how the FADDosome is involved in the epithelial death of PHG. The FADDosome formation, mitochondrial dysfunction, glycolysis process and NLRP3 inflammasome activation in PHG from both human sections and mouse models were investigated. NLRP3 wild-type (NLRP3-WT) and NLRP3 knockout (NLRP3-KO) littermate models, critical element inhibitors and cell experiments were utilized. The mechanism underlying FADDosome-regulated mitochondrial dysfunction and epithelial death in PHG was explored. Here, we found that FADD recruited caspase-8 and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) to form the FADDosome to promote Drp1-dependent mitochondrial fission and dysfunction in PHG. Also, FADDosome modulated NOX2 signaling to strengthen Drp1-dependent mitochondrial fission and alter glycolysis as well as enhance mitochondrial reactive oxygen species (mtROS) production. Moreover, due to the dysfunction of electron transport chain (ETC) and alteration of antioxidant enzymes activity, this altered glycolysis also contributed to mtROS production. Subsequently, the enhanced mtROS production induced NLRP3 inflammasome activation to result in the epithelial pyroptosis and mucosal injury in PHG. Thus, the FADDosome-regulated pathways may provide a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Yuelin Xiao
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Kaiduan Xie
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xiaoli Huang
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xianzhi Liu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jinni Luo
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| |
Collapse
|
3
|
Li Y, Zhao B, Peng J, Tang H, Wang S, Peng S, Ye F, Wang J, Ouyang K, Li J, Cai M, Chen Y. Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers. Drug Resist Updat 2024; 73:101042. [PMID: 38219532 DOI: 10.1016/j.drup.2023.101042] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Drug resistance in cancer remains a major challenge in oncology, impeding the effectiveness of various treatment modalities. The nuclear factor-kappa B (NF-κB) signaling pathway has emerged as a critical player in the development of drug resistance in cancer cells. This comprehensive review explores the intricate relationship between NF-κB and drug resistance in cancer. We delve into the molecular mechanisms through which NF-κB activation contributes to resistance against chemotherapeutic agents, targeted therapies, and immunotherapies. Additionally, we discuss potential strategies to overcome this resistance by targeting NF-κB signaling, such as small molecule inhibitors and combination therapies. Understanding the multifaceted interactions between NF-κB and drug resistance is crucial for the development of more effective cancer treatment strategies. By dissecting the complex signaling network of NF-κB, we hope to shed light on novel therapeutic approaches that can enhance treatment outcomes, ultimately improving the prognosis for cancer patients. This review aims to provide a comprehensive overview of the current state of knowledge on NF-κB and its role in drug resistance, offering insights that may guide future research and therapeutic interventions in the fight against cancer.
Collapse
Affiliation(s)
- Yuanfang Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baiwei Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Juzheng Peng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sicheng Wang
- School of Medicine, Sun Yat-sen University, China
| | - Sicheng Peng
- School of Medicine, Sun Yat-sen University, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junye Wang
- School of Medicine, Sun Yat-sen University, China
| | - Kai Ouyang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jianjun Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Manbo Cai
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
4
|
Zhang Y, Lu H, Ji H, Li Y. p53 upregulated by HIF-1α promotes gastric mucosal epithelial cells apoptosis in portal hypertensive gastropathy. Dig Liver Dis 2023; 55:81-92. [PMID: 35780066 DOI: 10.1016/j.dld.2022.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Portal hypertensive gastropathy (PHG) is a serious complication of liver cirrhosis and a potential cause of gastrointestinal bleeding. Mucosal apoptosis is an essential pathological feature of PHG. However, whether HIF-1α and p53 are involved in mucosal apoptosis and whether HIF-1α induces PHG by mediating p53 remains unclear. METHODS Gastric mucosal injury and apoptosis were examined in PHG patients and animal models. The mechanisms of HIF-1α- and p53-mediated apoptosis were analyzed. The GES-1 cell line was used to elucidate the underlying mechanisms using siRNA knockdown of HIF-1α and p53 in a hypoxic environment in vitro. RESULTS Epithelial apoptosis, HIF-1α, and p53 were markedly induced in the gastric mucosa of PHG. Apoptosis was attenuated in mice with HIF-1α- and p53-specific inhibitors. Apoptotic signaling factors were markedly induced in the gastric mucosa of PHG. Inhibition of p53 demonstrably attenuated the mucosal apoptosis; however, it did not affect HIF-1α expression. Conversely, targeted deletion of HIF-1α significantly inhibited p53 expression and attenuated the injury and p53-mediated apoptosis. Bax and Bcl-2 expression can be upregulated and downregulated by p53, respectively, to increasecleaved caspase-3 expression, which can be regulated by HIF-1α. CONCLUSIONS These results indicate that HIF-1α regulates the p53-induced mucosal epithelial apoptotic signaling pathway and that HIF-1α and p53 are potential therapeutic targets for PHG.
Collapse
Affiliation(s)
- Yafei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hongwei Lu
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hong Ji
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiming Li
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Yi Z, Zhang M, Ma Z, Tuo B, Liu A, Deng Z, Zhao Y, Li T, Liu X. Role of the posterior mucosal defense barrier in portal hypertensive gastropathy. Biomed Pharmacother 2021; 144:112258. [PMID: 34614465 DOI: 10.1016/j.biopha.2021.112258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Portal hypertensive gastropathy (PHG) is a complication of cirrhotic or noncirrhotic portal hypertension. PHG is very important in the clinic because it can cause acute or even massive blood loss, and its treatment efficacy and prognosis are poor. Currently, the incidence of PHG in patients with cirrhosis is 20-80%, but its pathogenesis is complicated and poorly understood. Studies have shown that portal hypertension can cause changes in gastric mucosal microcirculation hemodynamics, leading to changes in gastric mucosal histology and function and thereby weakening the mucosal defense barrier. However, no specific drug treatment plans are currently available. This article reviews the current literature to further our understanding of the mechanism underlying PHG and the relationship between PHG and the posterior mucosal defense barrier and to explore new therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Aimin Liu
- Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
6
|
Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis 2021; 12:474. [PMID: 33980818 PMCID: PMC8115181 DOI: 10.1038/s41419-021-03749-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
Fas/Fas ligand (FasL)-mediated cell apoptosis involves a variety of physiological and pathological processes including chronic hepatic diseases, and hepatocytes apoptosis contributes to the development of liver fibrosis following various causes. However, the mechanism of the Fas/FasL signaling and hepatocytes apoptosis in liver fibrogenesis remains unclear. The Fas/FasL signaling and hepatocytes apoptosis in liver samples from both human sections and mouse models were investigated. NF-κBp65 wild-type mice (p65f/f), hepatocytes specific NF-κBp65 deletion mice (p65Δhepa), p53-upregulated modulator of apoptosis (PUMA) wild-type (PUMA-WT) and PUMA knockout (PUMA-KO) littermate models, and primary hepatic stellate cells (HSCs) were also used. The mechanism underlying Fas/FasL-regulated hepatocytes apoptosis to drive HSCs activation in fibrosis was further analyzed. We found Fas/FasL promoted PUMA-mediated hepatocytes apoptosis via regulating autophagy signaling and NF-κBp65 phosphorylation, while inhibition of autophagy or PUMA deficiency attenuated Fas/FasL-modulated hepatocytes apoptosis and liver fibrosis. Furthermore, NF-κBp65 in hepatocytes repressed PUMA-mediated hepatocytes apoptosis via regulating the Bcl-2 family, while NF-κBp65 deficiency in hepatocytes promoted PUMA-mediated hepatocytes apoptosis and enhanced apoptosis-linked inflammatory response, which contributed to the activation of HSCs and liver fibrogenesis. These results suggest that Fas/FasL contributes to NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to enhance liver fibrogenesis, and this network could be a potential therapeutic target for liver fibrosis.
Collapse
|
7
|
Interleukin-18 levels and mouse Leydig cell apoptosis during lipopolysaccharide-induced acute inflammatory conditions. J Reprod Immunol 2020; 141:103167. [PMID: 32629316 DOI: 10.1016/j.jri.2020.103167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-18 is an inflammasome-mediated cytokine produced by germ cells, Leydig cells, and resident macrophages that is indispensable in the maintenance of homeostasis in the testis. We previously demonstrated that endogenous IL-18 induces testicular germ cell apoptosis during acute inflammation when plasma IL-18 levels are very high. However, the impact of acute inflammation and IL-18 on Leydig cells remained unclear. TM3 cells, a mouse Leydig cell line, and RAW264.7 cells, a mouse macrophage cell line, were stimulated with lipopolysaccharide (LPS) or recombinant IL-18 (rIL-18). We assessed the expression of inflammatory cytokines, caspase cleavage, and markers of apoptotic pathways. In Leydig cells, caspase 3 cleavage was increased and death-receptor-mediated apoptotic pathways were activated after LPS stimulation. However, LPS stimulation did not increase IL-18 expression in the Leydig cell line. When high-dose rIL-18 was administered to the Leydig cell line to mimic levels seem after inflammation, rIL-18 upregulated Tnf-α mRNA, Fadd mRNA, and Fas protein, promoted cleavage of caspase-8 and caspase-3, and induced apoptosis. Low-dose rIL-18 did not stimulate apoptosis. To determine if the high level of IL-18 seen in the testes after inflammation was derived from immune cells, we examined IL-18 protein expression in a macrophage cell line, RAW264.7. In contrast to the TM3 cells, IL-18 was significantly increased in RAW264.7 cells after LPS stimulation. These results suggest that high-dose IL-18 derived from macrophages is harmful to Leydig cells. Reducing the overexpression of IL-18 could be a new therapeutic approach to prevent Leydig cell apoptosis as a result of acute inflammation.
Collapse
|