1
|
Zhuo Z, Wang Y, Kong H, Fu T. GKLF, a transcriptional activator of Txnip, drives microglia activation in kainic acid-induced murine models of epileptic seizures. Int Immunopharmacol 2023; 121:110426. [PMID: 37295029 DOI: 10.1016/j.intimp.2023.110426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
Neuroinflammation is a major component of epilepsy. Gut-enriched Kruppel-like factor (GKLF), a transcription factor of Kruppel-like factor family, has been reported to promote microglia activation and mediate neuroinflammation. However, the role of GKLF in epilepsy remains poorly characterized. This study focused on the function of GKLF in neuron loss and neuroinflammation in epilepsy and the molecular mechanism underlying microglia activation induced by GKLF upon lipopolysaccharides (LPS) treatment. An experimental epileptic model was induced by an intraperitoneal injection of 25 mg/kg kainic acid (KA). Lentivirus vectors (Lv) carrying Gklf CDS or short hairpin RNA targeting Gklf (shGKLF) was injected into the hippocampus, resulting in Gklf overexpression or knockdown in the hippocampus. BV-2 cells were co-infected with Lv-shGKLF or/and Lv carrying thioredoxin interacting protein (Txnip) CDS for 48 h and treated with 1 μg/mL LPS for 24 h. Results showed that GKLF enhanced KA-induced neuronal loss, pro-inflammatory cytokine secretion, activation of NOD-like receptor protein-3 (NLRP3) inflammasomes and microglia, and TXNIP expression in the hippocampus. GKLF inhibition showed negative effects on LPS-induced microglia activation, as evidenced by reduced pro-inflammatory cytokine secretion and activation of NLRP3 inflammasomes. GKLF bound to Txnip promoter and increased TXNIP expression in LPS-activated microglia. Interestingly, Txnip overexpression reversed the inhibitory effect of Gklf knockdown on microglia activation. These findings indicated that GKLF was involved in microglia activation via TXNIP. This study demonstrates the underlying mechanism of GKLF in the pathogenesis of epilepsy and uncovers that GKLF inhibition may be a therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tianjiao Fu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Zhang S, Zou H, Zou X, Ke J, Zheng B, Chen X, Zhou X, Wei J. Transcriptome Sequencing of CeRNA Network Constructing in Status Epilepticus Mice Treated by Low-Frequency Repetitive Transcranial Magnetic Stimulation. J Mol Neurosci 2023; 73:316-326. [PMID: 37133759 DOI: 10.1007/s12031-023-02108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/20/2023] [Indexed: 05/04/2023]
Abstract
It is shown that great progress was recently made in the treatment of repetitive transcranial magnetic stimulation (rTMS) for neurological and psychiatric diseases. This study aimed to address how rTMS exerted it therapeutic effects by regulating competitive endogenous RNAs (ceRNAs) of lncRNA-miRNA-mRNA. The distinction of lncRNA, miRNA and mRNA expression in male status epilepticus (SE) mice treated by two different ways, low-frequency rTMS (LF-rTMS) vs. sham rTMS, was analyzed by high-throughput sequencing. The Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. Gene-Gene Cross Linkage Network was established; pivotal genes were screened out. qRT-PCR was used to verify gene-gene interactions. Our results showed that there were 1615 lncRNAs, 510 mRNAs, and 17 miRNAs differentially which were expressed between the LF-rTMS group and the sham rTMS group. The expression difference of these lncRNAs, mRNAs, and miRNAs by microarray detection were consistent with the results by qPCR. GO functional enrichment showed that immune-associated molecular mechanisms, biological processes, and GABA-A receptor activity played a role in SE mice treated with LF-rTMS. KEGG pathway enrichment analysis revealed that differentially expressed genes were correlated to T cell receptor signaling pathway, primary immune deficiency and Th17 cell differentiation signaling pathway. Gene-gene cross linkage network was established on the basis of Pearson's correlation coefficient and miRNA. In conclusion, LF-rTMS alleviates SE through regulating the GABA-A receptor activity transmission, improving immune functions, and biological processes, suggesting the underlying ceRNA molecular mechanisms of LF-rTMS treatment for epilepsy.
Collapse
Affiliation(s)
- Shaotian Zhang
- Department of Neurology, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, 510315, China
| | - Huihui Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Xiaopei Zou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Jiaqia Ke
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Bofang Zheng
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Xinrun Chen
- Department of Clinical Medicine, The First Clinical College of Guangzhou Medical University, Guangzhou, Guangdong, 510315, China
| | - Xianju Zhou
- Special Medical Service Center, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No.13 Shi Liu Gang Rd, Haizhu District, Guangzhou, Guangdong, China
| | - Jiana Wei
- Department of Neurology, Second Affiliated Hospital, Guangzhou Medical University, No.250 East Changgang Rd, Guangzhou, 510260, China.
| |
Collapse
|
3
|
Zhou Z, Li K, Guo Y, Liu P, Chen Q, Fan H, Sun T, Jiang C. ROS/Electro Dual-Reactive Nanogel for Targeting Epileptic Foci to Remodel Aberrant Circuits and Inflammatory Microenvironment. ACS NANO 2023; 17:7847-7864. [PMID: 37039779 DOI: 10.1021/acsnano.3c01140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Medicinal treatment against epilepsy is faced with intractable problems, especially epileptogenesis that cannot be blocked by clinical antiepileptic drugs (AEDs) during the latency of epilepsy. Abnormal circuits of neurons interact with the inflammatory microenvironment of glial cells in epileptic foci, resulting in recurrent seizures and refractory epilepsy. Herein, we have selected phenytoin (PHT) as a model drug to derive a ROS-responsive and consuming prodrug, which is combined with an electro-responsive group (sulfonate sodium, SS) and an epileptic focus-recognizing group (α-methyl-l-tryptophan, AMT) to form hydrogel nanoparticles (i.e., a nanogel). The nanogel will target epileptic foci, release PHT in response to a high concentration of reactive oxygen species (ROS) in the microenvironment, and inhibit overexcited circuits. Meanwhile, with the clearance of ROS, the nanogel can also reduce oxidative stress and alleviate microenvironment inflammation. Thus, a synergistic regulation of epileptic lesions will be achieved. Our nanogel is expected to provide a more comprehensive strategy for antiepileptic treatment.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Keying Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yun Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Hongrui Fan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
4
|
Molecular machinery regulating organelle dynamics during axon growth and guidance. Semin Cell Dev Biol 2023; 133:3-9. [PMID: 35227625 DOI: 10.1016/j.semcdb.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
Axon growth and guidance in the developing nervous system rely on intracellular membrane dynamics that involve endosome maturation and transport, as well as its regulated tethering to the endoplasmic reticulum (ER). Recent studies have identified several key molecules, such as protrudin, which plays a dynamic role at membrane contact sites between the ER and endosomes/lysosomes, and myosin Va, which acts as a sensor for ER-derived Ca2+ that triggers peri-ER membrane export. These molecules form different types of multiprotein complexes at the interface of organelles and, in response to their surrounding microenvironments, such as Ca2+ concentrations and lipid contents, regulate the directional movement of endosomal vesicles in extending axons. Here, we review the molecular mechanisms underlying membrane dynamics and inter-organelle interactions during neuronal morphogenesis.
Collapse
|
5
|
Tipton AE, Russek SJ. Regulation of Inhibitory Signaling at the Receptor and Cellular Level; Advances in Our Understanding of GABAergic Neurotransmission and the Mechanisms by Which It Is Disrupted in Epilepsy. Front Synaptic Neurosci 2022; 14:914374. [PMID: 35874848 PMCID: PMC9302637 DOI: 10.3389/fnsyn.2022.914374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory signaling in the brain organizes the neural circuits that orchestrate how living creatures interact with the world around them and how they build representations of objects and ideas. Without tight control at multiple points of cellular engagement, the brain’s inhibitory systems would run down and the ability to extract meaningful information from excitatory events would be lost leaving behind a system vulnerable to seizures and to cognitive decline. In this review, we will cover many of the salient features that have emerged regarding the dynamic regulation of inhibitory signaling seen through the lens of cell biology with an emphasis on the major building blocks, the ligand-gated ion channel receptors that are the first transduction point when the neurotransmitter GABA is released into the synapse. Epilepsy association will be used to indicate importance of key proteins and their pathways to brain function and to introduce novel areas for therapeutic intervention.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
| | - Shelley J. Russek
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
- *Correspondence: Shelley J. Russek,
| |
Collapse
|
6
|
Wang Y, Yuan J, Yu X, Liu X, Tan C, Chen Y, Xu T. Vezatin regulates seizures by controlling AMPAR-mediated synaptic activity. Cell Death Dis 2021; 12:936. [PMID: 34642320 PMCID: PMC8511046 DOI: 10.1038/s41419-021-04233-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Although many studies have explored the mechanism of epilepsy, it remains unclear and deserves further investigation. Vezatin has been reported to be a synaptic regulatory protein involved in regulating neuronal synaptic transmission (NST). However, the role of vezatin in epilepsy remains unknown. Therefore, the aims of this study are to investigate the underlying roles of vezatin in epilepsy. In this study, vezatin expression was increased in hippocampal tissues from pilocarpine (PILO)-induced epileptic mice and a Mg2+-free medium-induced in vitro seizure-like model. Vezatin knockdown suppressed seizure activity in PILO-induced epileptic mice. Mechanistically, vezatin knockdown suppressed AMPAR-mediated synaptic events in epileptic mice and downregulated the surface expression of the AMPAR GluA1 subunit (GluA1). Interestingly, vezatin knockdown decreased the phosphorylation of GluA1 at serine 845 and reduced protein kinase A (PKA) phosphorylation; when PKA phosphorylation was suppressed by H-89 (a selective inhibitor of PKA phosphorylation) in vitro, the effects of vezatin knockdown on reducing the phosphorylation of GluA1 at serine 845 and the surface expression of GluA1 were blocked. Finally, we investigated the pattern of vezatin in brain tissues from patients with temporal lobe epilepsy (TLE), and we found that vezatin expression was also increased in patients with TLE. In summary, the vezatin expression pattern is abnormal in individuals with epilepsy, and vezatin regulates seizure activity by affecting AMPAR-mediated NST and the surface expression of GluA1, which is involved in PKA-mediated phosphorylation of GluA1 at serine 845, indicating that vezatin-mediated regulation of epileptic seizures represents a novel target for epilepsy.
Collapse
Affiliation(s)
- You Wang
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xinyuan Yu
- Department of Neurology, Chongqing Hospital of Traditional Chinese Medicine, 400021, Chongqing, China
| | - Xi Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Changhong Tan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Tao Xu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China.
| |
Collapse
|
7
|
Broekaart DW, Bertran A, Jia S, Korotkov A, Senkov O, Bongaarts A, Mills JD, Anink JJ, Seco J, Baayen JC, Idema S, Chabrol E, Becker AJ, Wadman WJ, Tarragó T, Gorter JA, Aronica E, Prades R, Dityatev A, van Vliet EA. The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J Clin Invest 2021; 131:138332. [PMID: 33141761 DOI: 10.1172/jci138332] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are synthesized by neurons and glia and released into the extracellular space, where they act as modulators of neuroplasticity and neuroinflammatory agents. Development of epilepsy (epileptogenesis) is associated with increased expression of MMPs, and therefore, they may represent potential therapeutic drug targets. Using quantitative PCR (qPCR) and immunohistochemistry, we studied the expression of MMPs and their endogenous inhibitors tissue inhibitors of metalloproteinases (TIMPs) in patients with status epilepticus (SE) or temporal lobe epilepsy (TLE) and in a rat TLE model. Furthermore, we tested the MMP2/9 inhibitor IPR-179 in the rapid-kindling rat model and in the intrahippocampal kainic acid mouse model. In both human and experimental epilepsy, MMP and TIMP expression were persistently dysregulated in the hippocampus compared with in controls. IPR-179 treatment reduced seizure severity in the rapid-kindling model and reduced the number of spontaneous seizures in the kainic acid model (during and up to 7 weeks after delivery) without side effects while improving cognitive behavior. Moreover, our data suggest that IPR-179 prevented an MMP2/9-dependent switch-off normally restraining network excitability during the activity period. Since increased MMP expression is a prominent hallmark of the human epileptogenic brain and the MMP inhibitor IPR-179 exhibits antiseizure and antiepileptogenic effects in rodent epilepsy models and attenuates seizure-induced cognitive decline, it deserves further investigation in clinical trials.
Collapse
Affiliation(s)
- Diede Wm Broekaart
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Shaobo Jia
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anatoly Korotkov
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anika Bongaarts
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - James D Mills
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jasper J Anink
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jesús Seco
- Accure Therapeutics S.L., Barcelona, Spain
| | - Johannes C Baayen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Elodie Chabrol
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Wytse J Wadman
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | | | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | | | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany
| | - Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Synaptic Reshaping and Neuronal Outcomes in the Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms22083860. [PMID: 33917911 PMCID: PMC8068229 DOI: 10.3390/ijms22083860] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.
Collapse
|
9
|
Yang CS, Chiu SC, Liu PY, Wu SN, Lai MC, Huang CW. Gastrodin alleviates seizure severity and neuronal excitotoxicities in the rat lithium-pilocarpine model of temporal lobe epilepsy via enhancing GABAergic transmission. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113751. [PMID: 33359863 DOI: 10.1016/j.jep.2020.113751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Temporal lobe epilepsy remains one of the most drug-resistant focal epilepsy, leading to enormous healthcare burden. Among traditional herb medicine, some ingredients have the potential to treat seizure and alleviate the neuronal excitoxicity. The dried rhizome of Gastrodia elata Blume has been used to treat convulsive disorder, dizziness, dementia and migraine in eastern Asia. AIM OF THE STUDY To determine whether gastrodin, an active ingredient of Gastrodia elata Blume, can reduce lithium-pilocarpine induced seizure severity and neuronal excitotoxicity and explore the underlying mechanism. MATERIALS AND METHODS We divided the Sprague-Dawley rats into an experimental group (gastrodin group) and a control group (Dimethyl sulfoxide, vehicle group) and performed the behavioral analysis and electroencephalography to determine the effect of gastrodin on the seizure severity induced by lithium-pilocarpine injection. Nissl-stained histopathology elucidated the degree of rat hippocampal neuronal damage as markers of acute and subacute neuronal excitotoxicity. Besides, the Western blotting of dissected hippocampus was carried out to demonstrate the protein expression involving GABAergic transmission and metabolic pathway. RESULTS Gastrodin reduced the acute seizure severity in lithium-pilocarpine-induced seizure model. In electroencephalography recording, gastrodin exerted inhibitory action on epileptiform discharge. Compared with control group, gastrodin exhibited neuroprotective effect against seizure related hippocampal neuronal damage at acute and subacute stages. The Western blotting showed that gastrodin reversed the degradation of GABAA receptor after pilocarpine-induced seizures. CONCLUSIONS In the experimental seizure model, gastrodin showed anti-seizure and neuroprotective abilities. Enhancing the expression of GABAA receptor plays an important role in its antiepileptic mechanism. The results offer a new insight of developing new antiepileptic drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City, 42743, Taiwan.
| | - Ping-Yen Liu
- Department of Cardiology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, 70101, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, 40402, Taiwan.
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City, 70101, Taiwan.
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
10
|
Dong YY, Xia M, Wang L, Cui S, Li QB, Zhang JC, Meng SS, Zhang YK, Kong QX. Spatiotemporal Expression of SphK1 and S1PR2 in the Hippocampus of Pilocarpine Rat Model and the Epileptic Foci of Temporal Lobe Epilepsy. Front Cell Dev Biol 2020; 8:800. [PMID: 33134289 PMCID: PMC7578367 DOI: 10.3389/fcell.2020.00800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a severe chronic neurological disease caused by abnormal discharge of neurons in the brain and seriously affect the long-term life quality of patients. Currently, new insights into the pathogenesis of TLE are urgently needed to provide more personalized and effective therapeutic strategies. Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1PR2) signaling pathway plays a pivotal role in central nervous system (CNS) diseases. However, the precise altered expression of SphK1 and S1PR2 in TLE is remaining obscure. Here, we have confirmed the expression of SphK1 and S1PR2 in the pilocarpine-induced epileptic rat hippocampus and report for the first time the expression of SphK1 and S1PR2 in the temporal cortex of TLE patients. We found an increased expression of SphK1 in the brain from both epileptic rats and TLE patients. Conversely, S1PR2 expression level was markedly decreased. We further investigated the localization of SphK1 and S1PR2 in epileptic brains. Our study showed that both SphK1 and S1PR2 co-localized with activated astrocytes and neurons. Surprisingly, we observed different subcellular localization of SphK1 and S1PR2 in epileptic brain specimens. Taken together, our study suggests that the alteration of the SphK1/S1PR2 signaling axis is closely associated with the course of TLE and provides a new target for the treatment of TLE.
Collapse
Affiliation(s)
- Yuan-Yuan Dong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Min Xia
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuai Cui
- Department of Surgery, Weifang Medical University, Weifang, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shu-Shu Meng
- Qingdao West Coast New Area Central Hospital, Qingdao, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|