1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
He M, Zhi Y, Li C, Zhao C, Yang G, Lv J, You H, Huang H, Cao X. Consensus clustering and novel risk score model construction based on m6A methylation regulators to evaluate the prognosis and tumor immune microenvironment of early-stage lung adenocarcinoma. Aging (Albany NY) 2024; 16:11318-11338. [PMID: 39028290 PMCID: PMC11315395 DOI: 10.18632/aging.206004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The aim of this study was to investigate the correlation between m6A methylation regulators and cell infiltration characteristics in tumor immune microenvironment (TIME), so as to help understand the immune mechanism of early-stage lung adenocarcinoma (LUAD). METHODS The expression and consensus cluster analyses of m6A methylation regulators in early-stage LUAD were performed. The clinicopathological features, immune cell infiltration, survival and functional enrichment in different subtypes were analyzed. We also constructed a prognostic model. Clinical tissue samples were used to validate the expression of model genes through real-time polymerase chain reaction (RT-PCR). In addition, cell scratch assay and Transwell assay were also performed. RESULTS Expression of m6A methylation regulators was abnormal in early-stage LUAD. According to the consensus clustering of m6A methylation regulators, patients with early-stage LUAD were divided into two subtypes. Two subtypes showed different infiltration levels of immune cell and survival time. A prognostic model consisting of HNRNPC, IGF2BP1 and IGF2BP3 could be used to predict the survival of early-stage LUAD. RT-PCR results showed that HNRNPC, IGF2BP1 and IGF2BP3 were significantly up-regulated in early-stage LUAD tissues. The results of cell scratch assay and Transwell assay showed that overexpression of HNRNPC promotes the migration and invasion of NCI-H1299 cells, while knockdown HNRNPC inhibits the migration and invasion of NCI-H1299 cells. CONCLUSIONS This work reveals that m6A methylation regulators may be potential biomarkers for prognosis in patients with early-stage LUAD. Our prognostic model may be of great value in predicting the prognosis of early-stage LUAD.
Collapse
Affiliation(s)
- Miao He
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Yuxue Zhi
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Chao Li
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Changming Zhao
- Department of Cardiovascular Surgery, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Guangquan Yang
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Jing Lv
- Department of Cardiovascular Surgery, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Hong You
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Hai Huang
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| | - Xiaoyu Cao
- Department of Radiation Oncology, People’s Hospital of Deyang, Deyang 618000, Sichuan, P.R. China
| |
Collapse
|
3
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
4
|
Ma H, Hong Y, Xu Z, Weng Z, Yang Y, Jin D, Chen Z, Yue J, Zhou X, Xu Z, Fei F, Li J, Song W. N 6-methyladenosine (m 6A) modification in hepatocellular carcinoma. Biomed Pharmacother 2024; 173:116365. [PMID: 38452654 DOI: 10.1016/j.biopha.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers of human, the tumor-related death of which ranks third among the common malignances. N6-methyladenosine (m6A) methylation, the most abundant internal modification of RNA in mammals, participates in the metabolism of mRNA and interrelates with ncRNAs. In this paper, we overviewed the complex function of m6A regulators in HCC, including regulating the tumorigenesis, progression, prognosis, stemness, metabolic reprogramming, autophagy, ferroptosis, drug resistance and tumor immune microenvironment (TIME). Furthermore, we elucidated the interplay between m6A modification and non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Finally, we summarized the potential of m6A regulators as diagnostic biomarkers. What's more, we reviewed the inhibitors targeting m6A enzymes as promising therapeutic targets of HCC. We aimed to help understand the function of m6A methylation in HCC systematically and comprehensively so that more effective strategies for HCC treatment will be developed.
Collapse
Affiliation(s)
- Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuxin Hong
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dandan Jin
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyou Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yue
- Department of Gynaecology and Obstetrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
5
|
Zhang Y, Jia Q, Li F, Luo X, Wang Z, Wang X, Wang Y, Zhang Y, Li M, Bian L. Identification of molecular subtypes and a prognostic signature based on m6A/m5C/m1A-related genes in lung adenocarcinoma. Sci Rep 2024; 14:7543. [PMID: 38555384 PMCID: PMC10981664 DOI: 10.1038/s41598-024-57910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Lung cancer, specifically the histological subtype lung adenocarcinoma (LUAD), has the highest global occurrence and fatality rate. Extensive research has indicated that RNA alterations encompassing m6A, m5C, and m1A contribute actively to tumorigenesis, drug resistance, and immunotherapy responses in LUAD. Nevertheless, the absence of a dependable predictive model based on m6A/m5C/m1A-associated genes hinders accurately predicting the prognosis of patients diagnosed with LUAD. In this study, we collected patient data from The Cancer Genome Atlas (TCGA) and identified genes related to m6A/m5C/m1A modifications using the GeneCards database. The "ConsensusClusterPlus" R package was used to produce molecular subtypes by utilizing genes relevant to m6A/m5C/m1A identified through differential expression and univariate Cox analyses. An independent prognostic factor was identified by constructing a prognostic signature comprising six genes (SNHG12, PABPC1, IGF2BP1, FOXM1, CBFA2T3, and CASC8). Poor overall survival and elevated expression of human leukocyte antigens and immune checkpoints were correlated with higher risk scores. We examined the associations between the sets of genes regulated by m6A/m5C/m1A and the risk model, as well as the immune cell infiltration, using algorithms such as ESTIMATE, CIBERSORT, TIMER, ssGSEA, and exclusion (TIDE). Moreover, we compared tumor stemness indices (TSIs) by considering the molecular subtypes related to m6A/m5C/m1A and risk signatures. Analyses were performed based on the risk signature, including stratification, somatic mutation analysis, nomogram construction, chemotherapeutic response prediction, and small-molecule drug prediction. In summary, we developed a prognostic signature consisting of six genes that have the potential for prognostication in patients with LUAD and the design of personalized treatments that could provide new versions of personalized management for these patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Qiuye Jia
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Fangfang Li
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Xuan Luo
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Zhiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Yinglin Zhang
- Wenshan People's Hospital, Yunnan, Yunnan Province, China
| | - Muye Li
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650302, Yunnan, China.
| |
Collapse
|
6
|
Sun P, Luan Y, Cai X, Liu Q, Ren P, Peng P, Yu Y, Song B, Wang Y, Chang H, Ma H, Chen Y. LINC00858 facilitates formation of hepatic metastases from colorectal cancer via regulating the miR-132-3p/IGF2BP1 axis. Biol Chem 2024; 405:129-141. [PMID: 36857196 DOI: 10.1515/hsz-2022-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023]
Abstract
Hepatic metastasis is a major cause of colorectal cancer (CRC)-related deaths. Presently, the role of long non-coding RNAs (lncRNAs) in hepatic metastases from CRC is elusive. We dissected possible interplay between LINC00858/miR-132-3p/IGF2BP1 via bioinformatics approaches. Subsequently we analyzed mRNA expression of LINC00858, miR-132-3p and IGF2BP1 through qRT-PCR. Western blot was used to detect protein expression of IGF2BP1. RNA immunoprecipitation chip and dual-luciferase assay validated interaction between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Cell viability, invasion, and migration were examined via CCK-8, colony formation, transwell and wound healing assays. Effect of LINC00858 on CRC hepatic metastases was validated via in vivo assay. Upregulated LINC00858 and IGF2BP1, and downregulated miR-132-3p were predicted in tumor tissues of patients with hepatic metastases from CRC. There were targeting relationships between LINC00858 and miR-132-3p, as well as miR-132-3p and IGF2BP1. Besides, LINC00858 facilitated progression of CRC cells. Rescue assay suggested that silencing LINC00858 suppressed CRC cell progression, while further silencing miR-132-3p or overexpressing IGF2BP1 reversed such effects. LINC00858 could facilitate CRC tumor growth and hepatic metastases. LINC00858 induced CRC hepatic metastases via regulating miR-132-3p/ IGF2BP1, and this study may deliver a new diagnostic marker for the disease.
Collapse
Affiliation(s)
- Peng Sun
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yusong Luan
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Xuhao Cai
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Peide Ren
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Panxin Peng
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yonggang Yu
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Bolun Song
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yangyang Wang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Huijing Chang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Haoyue Ma
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| | - Yinggang Chen
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 113 Baohe Road, Shenzhen 518116, Guangdong, Province, China
| |
Collapse
|
7
|
Xu Q, Ren N, Ren L, Yang Y, Pan J, Shang H. RNA m6A methylation regulators in liver cancer. Cancer Cell Int 2024; 24:1. [PMID: 38166832 PMCID: PMC10763310 DOI: 10.1186/s12935-023-03197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is one of the most common cancers in the world and a primary cause of cancer-related death. In recent years, despite the great development of diagnostic methods and targeted therapies for liver cancer, the incidence and mortality of liver cancer are still on the rise. As a universal post-transcriptional modification, N6-methyladenosine (m6A) modification accomplishes a dynamic and reversible m6A modification process, which is executed by three types of regulators, methyltransferases (called writers), demethylases (called erasers) and m6A-binding proteins (called readers). Many studies have shown that m6A RNA methylation has an important impact on RNA metabolism, whereas its regulation exception is bound up with the occurrence of human malignant tumors. Aberrant methylation of m6A RNA and the expression of related regulatory factors may be of the essence in the pathogenesis and progression of liver cancer, yet the precise molecular mechanism remains unclear. In this paper, we review the current research situations of m6A methylation in liver cancer. Among the rest, we detail the mechanism by which methyltransferases, demethylases and m6A binding proteins regulate the occurrence and development of liver cancer by modifying mRNA. As well as the potential effect of m6A regulators in hepatocarcinogenesis and progression. New ideas and approaches will be given to the prevention and treatment of liver cancer through the following relevant research results.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Hongkai Shang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Gynecology, Hangzhou First People's Hospital, Hangzhou, China.
- Department of Gynecology, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Wang JJ, Chen DX, Zhang Y, Xu X, Cai Y, Wei WQ, Hao JJ, Wang MR. Elevated expression of the RNA-binding protein IGF2BP1 enhances the mRNA stability of INHBA to promote the invasion and migration of esophageal squamous cancer cells. Exp Hematol Oncol 2023; 12:75. [PMID: 37644505 PMCID: PMC10466848 DOI: 10.1186/s40164-023-00429-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The mechanisms underlying the occurrence and development of esophageal squamous cell carcinoma (ESCC) remains to be elucidated. The present study aims to investigate the roles and implications of IGF2BP1 overexpression in ESCC. METHODS IGF2BP1 protein expression in ESCC samples was assessed by immunohistochemistry (IHC), and the mRNA abundance of IGF2BP1 and INHBA was analyzed with TCGA datasets and by RNA in situ hybridization (RISH). The methylation level of the IGF2BP1 promoter region was detected by methylation-specific PCR (MSP-PCR). Cell viability, migration, invasion and in vivo metastasis assays were performed to explore the roles of IGF2BP1 overexpression in ESCC. RNA immunoprecipitation sequencing (RIP-seq) and mass spectrometry were applied to identify the target RNAs and interacting proteins of IGF2BP1, respectively. RIP-PCR, RNA pulldown, immunofluorescence (IF), gene-specific m6A PCR and RNA stability assays were used to uncover the molecular mechanisms underlying the malignant phenotypes of ESCC cells caused by IGF2BP1 dysregulation. BTYNB, a small molecular inhibitor of IGF2BP1, was evaluated for its inhibitory effect on the malignant phenotypes of ESCC cells. RESULTS IGF2BP1 overexpression was detected in ESCC tissues and associated with the depth of tumor invasion. In addition, IGF2BP1 mRNA expression in ESCC cells was negatively correlated with the level of its promoter methylation. Knockdown of IGF2BP1 inhibited ESCC cell invasion and migration as well as tumor metastasis. Mechanistically, we observed that IGF2BP1 bound and stabilized INHBA mRNA and then resulted in higher protein expression of INHBA, leading to the activation of Smad2/3 signaling, thus promoting malignant phenotypes. The mRNA level of INHBA was upregulated in ESCC tissues as well. Furthermore, IGF2BP1 interacted with G3BP stress granule assembly factor 1 (G3BP1). Knockdown of G3BP1 also down-regulated the INHBA-Smad2/3 signaling. BTYNB abolished this activated signaling and significantly attenuated the malignant phenotypes of ESCC cells. CONCLUSIONS Elevated expression of IGF2BP1 is a frequent event in ESCC tissues and might be a candidate biomarker for the disease. IGF2BP1 overexpression promotes the invasion and migration of ESCC cells by activating the INHBA-Smad2/3 pathway, providing a potential therapeutic target for ESCC patients with high expression of IGF2BP1.
Collapse
Affiliation(s)
- Juan-Juan Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
- Stem cell Translational laboratory, Shanxi Technological Innovation Center for Clinical Diagnosis and Treatment of Immune and Rheumatic Diseases, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ding-Xiong Chen
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
9
|
Du X, Zhou P, Zhang H, Peng H, Mao X, Liu S, Xu W, Feng K, Zhang Y. Downregulated liver-elevated long intergenic noncoding RNA (LINC02428) is a tumor suppressor that blocks KDM5B/IGF2BP1 positive feedback loop in hepatocellular carcinoma. Cell Death Dis 2023; 14:301. [PMID: 37137887 PMCID: PMC10156739 DOI: 10.1038/s41419-023-05831-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and poor prognoses worldwide. Many studies have reported that long noncoding RNAs (lncRNAs) are related to the progression and prognosis of HCC. However, the functions of downregulated liver-elevated (LE) lncRNAs in HCC remain elusive. Here we report the roles and mechanisms of downregulated LE LINC02428 in HCC. Downregulated LE lncRNAs played significant roles in HCC genesis and development. LINC02428 was upregulated in liver tissues compared with other normal tissues and showed low expression in HCC. The low expression of LINC02428 was attributed to poor HCC prognosis. Overexpressed LINC02428 suppressed the proliferation and metastasis of HCC in vitro and in vivo. LINC02428 was predominantly located in the cytoplasm and bound to insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) to prevent it from binding to lysine demethylase 5B (KDM5B) mRNA, which decreased the stability of KDM5B mRNA. KDM5B was found to preferentially bind to the promoter region of IGF2BP1 to upregulate its transcription. Therefore, LINC02428 interrupts the KDM5B/IGF2BP1 positive feedback loops to inhibit HCC progression. The KDM5B/IGF2BP1 positive feedback loop is involved in tumorigenesis and progression of HCC.
Collapse
Affiliation(s)
- Xuanlong Du
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pengcheng Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Shiwei Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
10
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Chen M, Li Z, Gu C, Zheng H, Chen Y, Cheng L. Identification of G protein subunit alpha i2 as a promising therapeutic target of hepatocellular carcinoma. Cell Death Dis 2023; 14:143. [PMID: 36805440 PMCID: PMC9941495 DOI: 10.1038/s41419-023-05675-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a global health problem. Its incidence and mortality are increasing. Exploring novel therapeutic targets against HCC is important and urgent. We here explored the expression and potential function of Gαi2 (G protein subunit alpha i2) in HCC. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) database shows that the number of Gαi2 transcripts in HCC tissues is significantly higher than that in the normal liver tissues. Moreover, Gαi2 overexpression in HCC correlates with poor prognosis of the patients. Gαi2 mRNA and protein expression are also elevated in local HCC tissues and different human HCC cells. In patient-derived primary HCC cells and immortalized HepG2 cells, Gαi2 silencing (by targeted shRNA) or knockout (KO, by the dCas9-sgRNA method) largely suppressed cell proliferation and motility, while inducing cell cycle arrest and caspase-apoptosis activation. Moreover, Gαi2 silencing or KO-induced reactive oxygen species (ROS) production and oxidative injury in primary and HepG2 HCC cells. Whereas different antioxidants ameliorated Gαi2-shRNA-induced anti-HCC cell activity. Using a lentiviral construct, Gαi2 overexpression further augmented proliferation and motility of primary and immortalized HCC cells. Further studies revealed that the binding between the transcription factor early growth response zinc finger transcription factor 1 (EGR1) and Gαi2 DNA promoter was significantly increased in HCC tissues and cells. In vivo, intratumoral injection of Gαi2 shRNA adeno-associated virus significantly hindered HCC xenograft growth in nude mice. Moreover, the growth of Gαi2-KO HCC xenografts in the nude mice was remarkably slow. Gαi2 depletion, oxidative injury, and apoptosis induction were detected in Gαi2-silenced or Gαi2-KO HCC xenografts. Together, overexpressed Gαi2 is required for HCC cell growth in vitro and in vivo, representing as a novel and promising diagnosis marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Zhifei Li
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Chengtao Gu
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Hao Zheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Yan Chen
- General Surgery Department, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Long Cheng
- Department of Interventional and Vascular surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Wang Y, Pan J, Sun Z. LncRNA NCK1-AS1-mediated regulatory functions in human diseases. Clin Transl Oncol 2023; 25:323-332. [PMID: 36131072 DOI: 10.1007/s12094-022-02948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Disease development requires the activation of complex multi-factor processes involving numerous long noncoding RNAs (lncRNAs), which describe non-protein-coding RNAs longer than 200 nucleotides. Emerging evidence indicates that lncRNAs act as essential regulators that perform pivotal roles in the pathogenesis and progression of human diseases. The mechanisms underlying lncRNA involvement in diverse diseases have been extensively explored, and lncRNAs are considered powerful biomarkers for clinical practice. The lncRNA noncatalytic region of tyrosine kinase adaptor protein 1 (NCK1) antisense 1 (NCK1-AS1), also known as NCK1 divergent transcript (NCK1-DT), is encoded on human chromosome 3q22.3 and produces a 27,274-base-long transcript. NCK1-AS1 has increasingly been characterized as a causative agent for multiple diseases. The abnormal expression and involvement of NCK1-AS1 in various biological processes have been associated with several diseases. Further exploration of the mechanisms through which NCK1-AS1 contributes to disease development and progression will provide a foundation for potential clinical applications of NCK1-AS1 in the diagnosis and treatment of various diseases. This review summarizes the current understanding of the various functions and mechanisms through which NCK1-AS1 contributes to various diseases and the clinical application prospects for NCK1-AS1.
Collapse
Affiliation(s)
- Yingfan Wang
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Li YT, Liu CJ, Kao JH, Lin LF, Tu HC, Wang CC, Huang PH, Cheng HR, Chen PJ, Chen DS, Wu HL. Metastatic tumor antigen 1 contributes to hepatocarcinogenesis posttranscriptionally through RNA-binding function. Hepatology 2023; 77:379-394. [PMID: 35073601 DOI: 10.1002/hep.32356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Both nuclear and cytoplasmic overexpression of metastatic tumor antigen 1 (MTA1) contributes to tumorigenesis of HCC. Most studies have focused on nuclear MTA1 whose function is mainly a chromatin modifier regulating the expression of various cancer-promoting genes. By contrast, the molecular mechanisms of cytoplasmic MTA1 in carcinogenesis remain elusive. Here, we reveal a role of MTA1 in posttranscriptional gene regulation. APPROACH AND RESULTS We conducted the in vitro and in vivo RNA-protein interaction assays indicating that MTA1 could bind directly to the 3'-untranslated region of MYC RNA. Mutation at the first glycine of the conserved GXXG loop within a K-homology II domain-like structure in MTA1 (G78D) resulted in the loss of RNA-binding activity. We used gain- and loss-of-function strategy showing that MTA1, but not the G78D mutant, extended the half-life of MYC and protected it from the lethal -7-mediated degradation. The G78D mutant exhibited lower activity in promoting tumorigenesis than wild-type in vitro and in vivo. Furthermore, RNA-immunoprecipitation sequencing analysis demonstrated that MTA1 binds various oncogenesis-related mRNAs besides MYC . The clinical relevance of cytoplasmic MTA1 and its interaction with MYC were investigated using HBV-HCC cohorts with or without early recurrence. The results showed that higher cytoplasmic MTA1 level and MTA1- MYC interaction were associated with early recurrence. CONCLUSIONS MTA1 is a generic RNA-binding protein. Cytoplasmic MTA1 and its binding to MYC is associated with early recurrence in patients with HBV-HCC. This function enables it to regulate gene expression posttranscriptionally and contributes to hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yung-Tsung Li
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chun-Jen Liu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Jia-Horng Kao
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Li-Feng Lin
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Hui-Chu Tu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Chiang Wang
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Po-Hsi Huang
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
| | - Huei-Ru Cheng
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
- Genomics Research Center , Academia Sinica , Taipei , Taiwan
| | - Hui-Lin Wu
- Hepatitis Research Center , National Taiwan University Hospital , Taipei , Taiwan
- Graduate Institute of Clinical Medicine , National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
14
|
Chen S, Xia H, Sheng L. WTAP-mediated m6A modification on circCMTM3 inhibits hepatocellular carcinoma ferroptosis by recruiting IGF2BP1 to increase PARK7 stability. Dig Liver Dis 2022:S1590-8658(22)00827-1. [PMID: 36586770 DOI: 10.1016/j.dld.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has poor prognosis and high mortality. CircCMTM3 was significantly up-regulated in HCC. However, the mechanism of circCMTM3 in HCC is not full elucidated. METHODS The expression level of circCMTM3, PARK7, GPX4, and Ki67 in HCC cells and tissues were quantified by qRT-PCR, IHC, and Western blotting. The level of GSH, total iron, Fe2+, and MDA were detected by their kits. CCK-8 and flow cytometry analysis were used to evaluated cell proliferation and lipid ROS level, respectively. m6A level of circCMTM3 was assessed by MeRIP-PCR. RNA pulldown, RIP, and FISH detected the interaction between circCMTM3, WTAP, and PARK7. Tumor xenograft model was constructed to validate the function of cicrCMTM3 and WTAP. RESULTS CircCMTM3 and WTAP were enhanced in HCC tissues and cells. Knockdown of WTAP inhibited m6A modification of circCMTM3, which promoted HCC ferroptosis. circCMTM3 silencing suppressed the expression and stability of PARK7 through binding with IGF2BP1 in HCC cells, which finally induced ferroptosis. In vivo studies demonstrated that silencing WTAP and circCMTM3 suppressed tumor growth and promoted HCC ferroptosis in nude mice by regulating PARK7 signaling. CONCLUSION CircCMTM3 promoted the carcinogenesis through inhibiting ferroptosis by recruiting IGF2BP1 to increase PARK7 stability in HCC, suggesting that cicrCMTM3 may be an important marker for HCC treatment.
Collapse
Affiliation(s)
- Shuwei Chen
- Department of Hepatobiliary Surgery, Chenzhou First People's Hospital of Hunan Province, Chenzhou, Hunan 423000, PR China
| | - Hongxiang Xia
- Interventional Diagnosis and Treatment Center, Chenzhou First People's Hospital of Hunan Province, Chenzhou, Hunan 423000, PR China
| | - Langqing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and Standards, Changsha, Hunan 410008, PR China.
| |
Collapse
|
15
|
Lu J, Liu Q, Zhu L, Liu Y, Zhu X, Peng S, Chen M, Li P. Endothelial cell-specific molecule 1 drives cervical cancer progression. Cell Death Dis 2022; 13:1043. [PMID: 36522312 PMCID: PMC9755307 DOI: 10.1038/s41419-022-05501-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The expression, biological functions and underlying molecular mechanisms of endothelial cell-specific molecule 1 (ESM1) in human cervical cancer remain unclear. Bioinformatics analysis revealed that ESM1 expression was significantly elevated in human cervical cancer tissues, correlating with patients' poor prognosis. Moreover, ESM1 mRNA and protein upregulation was detected in local cervical cancer tissues and various cervical cancer cells. In established and primary cervical cancer cells, ESM1 shRNA or CRISPR/Cas9-induced ESM1 KO hindered cell proliferation, cell cycle progression, in vitro cell migration and invasion, and induced significant apoptosis. Whereas ESM1 overexpression by a lentiviral construct accelerated proliferation and migration of cervical cancer cells. Further bioinformatics studies and RNA sequencing data discovered that ESM1-assocaited differentially expressed genes (DEGs) were enriched in PI3K-Akt and epithelial-mesenchymal transition (EMT) cascades. Indeed, PI3K-Akt cascade and expression of EMT-promoting proteins were decreased after ESM1 silencing in cervical cancer cells, but increased following ESM1 overexpression. Further studies demonstrated that SYT13 (synaptotagmin 13) could be a primary target gene of ESM1. SYT13 silencing potently inhibited ESM1-overexpression-induced PI3K-Akt cascade activation and cervical cancer cell migration/invasion. In vivo, ESM1 knockout hindered SiHa cervical cancer xenograft growth in mice. In ESM1-knockout xenografts tissues, PI3K-Akt inhibition, EMT-promoting proteins downregulation and apoptosis activation were detected. In conclusion, overexpressed ESM1 is important for cervical cancer growth in vitro and in vivo, possibly by promoting PI3K-Akt activation and EMT progression. ESM1 represents as a promising diagnostic marker and potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Jingjing Lu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qin Liu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Lixia Zhu
- grid.452273.50000 0004 4914 577XDepartment of Gynaecology and Obstetrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yuanyuan Liu
- grid.452273.50000 0004 4914 577XClinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, 215300 Kunshan, China
| | - Xiaoren Zhu
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Shiqing Peng
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ping Li
- grid.452273.50000 0004 4914 577XDepartment of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
16
|
Zhao X, Sang M, Han P, Gao J, Liu Z, Li H, Gu Y, Wang C, Sun F. Peptides from the croceine croaker ( Larimichthys crocea) swim bladder attenuate busulfan-induced oligoasthenospermia in mice. PHARMACEUTICAL BIOLOGY 2022; 60:319-325. [PMID: 35148224 PMCID: PMC8843205 DOI: 10.1080/13880209.2022.2034895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT The swim bladder of the croceine croaker is believed to have a therapeutic effect on various diseases. However, there is no research about its effect on mammalian spermatogenesis. OBJECTIVE We investigated the swim bladder peptides (SBPs) effect on busulfan-induced oligoasthenospermia in mice. MATERIALS AND METHODS We first extracted SBP from protein hydrolysate of the croceine croaker swim bladder, and then five groups of ICR male mice were randomly assigned: control, control + SBP 60 mg/kg, busulfan, busulfan + SBP 30 mg/kg and busulfan + SBP 60 mg/kg. Mice received bilateral intratesticular injections of busulfan to establish oligoasthenospermia model. After treatment with SBP for 4 weeks, testis and epididymis were collected from all mice for further analysis. RESULTS After treatment with SBP 30-60 mg/kg for 4 weeks, epididymal sperm concentration and motility increased by 3.9-9.6- and 1.9-2.4-fold than those of oligoasthenospermia mice induced by busulfan. Meanwhile, histology showed that spermatogenic cells decreased, leading to increased lumen diameters and vacuolization in the busulfan group. These features were reversed by SBP treatment. RNA-sequencing analysis revealed that, compared with the busulfan group, Lin28b and Igf2bp1 expression related to germ cell proliferation, increased with a >1.5-fold change after SBP treatment. Additionally, PGK2 and Cfap69 mRNAs associated with sperm motility, also increased with a >1.5-fold change. Furthermore, these findings were validated by quantitative real-time PCR and Western blotting. DISCUSSION AND CONCLUSIONS This is the first reported evidence for the therapeutic effect of SBP on oligoasthenospermia. SBP may be a promising drug for oligoasthenospermia in humans.
Collapse
Affiliation(s)
- Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Ping Han
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Gao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Zhenhua Liu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Hu Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Yayun Gu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Chengniu Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
17
|
Wu H, Xu H, Huang S, Tang Y, Tang J, Zhou H, Xie L, Qiao G. m 6A-binding protein IGF2BP1 promotes the malignant phenotypes of lung adenocarcinoma. Front Oncol 2022; 12:989817. [PMID: 36249006 PMCID: PMC9554348 DOI: 10.3389/fonc.2022.989817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD), the most common type of lung cancer, poses a significant threat to the life of patients. N6-methyladenosine modification is the most abundant epigenetic modification and may play an important role in the lung carcinogenesis. IGF2BP1 is a newly discovered m6A-binding protein, but little is known about its role in LUAD. METHODS Data from TCGA, GEO, Kaplan-Meier Plotter, and GEPIA databases were systematically analyzed to access the expression and prognostic value of IGF2BP1 on LUAD. Real-time polymerase chain reaction, Western blot, and immunohistochemistry were performed to detect the mRNA and protein level of IGF2BP1 in LUAD tissues and para-carcinoma tissues. Functional cell experiments, including Cell Counting Kit-8 assay, Transwell invasion assay, wound healing assay, Annexin V-FITC/PI double-staining assay, and TUNEL assay, were used to investigate the functions of IGF2BP1 on LUAD cell proliferation, invasion, migration, and apoptosis, respectively. The top 50 genes that were positively or negatively related to the expression of IGF2BP1 were identified, and pathway enrichment analysis was performed. m6A modification sites within IGF2BP1-related genes were predicted by SRAMP. RESULT 16 m6A regulators were significantly differentially expressed in LUAD tissues. IGF2BP1 was upregulated in LUAD tissues compared with para-carcinoma tissues. High expression of IGF2PB1 was significantly associated with higher clinical stages and poor prognosis of LUAD patients. Furthermore, our functional experiments indicated that IGF2BP1 facilitated cell proliferation, invasion, and migration and suppressed apoptosis in LUAD. Functional enrichment analysis of IGF2BP1-related genes indicated enrichment in several pathways related to oncogenesis. Additionally, m6A modification sites were detected within IGF2BP1-related genes. CONCLUSIONS Our findings demonstrate that IGF2BP1 plays a contributory role in the development and progression of LUAD. IGF2BP1 has the potential to become a prognostic predictor and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Hansheng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haijie Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Shujie Huang
- Shantou University Medical College, Shantou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiming Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Xie
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guibin Qiao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
18
|
Yu H, Wang C, Ke S, Bai M, Xu Y, Lu S, Feng Z, Qian B, Xu Y, Zhou M, Li Z, Yin B, Li X, Hua Y, Zhou Y, Pan S, Fu Y, Ma Y. Identification of CFHR4 as a Potential Prognosis Biomarker Associated With lmmune Infiltrates in Hepatocellular Carcinoma. Front Immunol 2022; 13:892750. [PMID: 35812416 PMCID: PMC9257081 DOI: 10.3389/fimmu.2022.892750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Background Complement factor H-related 4 (CFHR4) is a protein-coding gene that plays an essential role in multiple diseases. However, the prognostic value of CFHR4 in hepatocellular carcinoma (HCC) is unknown. Methods Using multiple databases, we investigated CFHR4 expression levels in HCC and multiple cancers. The relationship between CFHR4 expression levels and clinicopathological variables was further analyzed. Various potential biological functions and regulatory pathways of CFHR4 in HCC were identified by performing a Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA). Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between CFHR4 expression and immune cell infiltration. The correlations between CFHR4 expression levels in HCC and N6-methyladenosine (m6A) modifications and the competing endogenous RNA (ceRNA) regulatory networks were confirmed in TCGA cohort. Results CFHR4 expression levels were significantly decreased in HCC tissues. Low CFHR4 expression in HCC tissues was significantly correlated with the patients’ sex, race, age, TNM stage, pathological stage, tumor status, residual tumor, histologic grade and alpha fetal protein (AFP) level. GO and KEGG analyses revealed that differentially expressed genes related to CFHR4 may be involved in the synaptic membrane, transmembrane transporter complex, gated channel activity, chemical carcinogenesis, retinol metabolism, calcium signaling pathway, PPAR signaling pathway, insulin and gastric acid secretion. GSEA revealed that the FCGR-activated reaction, PLK1 pathway, ATR pathway, MCM pathway, cascade reactions of PI3K and FGFR1, reactant-mediated MAPK activation and FOXM1 pathway were significantly enriched in HCC with low CFHR4 expression. Moreover, CFHR4 expression was inversely correlated the levels of infiltrating Th2 cells, NK CD56bright cells and Tfh cells. In contrast, we observed positive correlations with the levels of infiltrating DCs, neutrophils, Th17 cells and mast cells. CFHR4 expression showed a strong correlation with various immunomarker groups in HCC. In addition, high CFHR4 expression significantly prolonged the overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). We observed a substantial correlation between the expression of CFHR4 and multiple N6-methyladenosine genes in HCC and constructed potential CFHR4-related ceRNA regulatory networks. Conclusions CFHR4 might be a potential therapeutic target for improving the HCC prognosis and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Menghua Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihao Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yao Fu, ; Yong Ma,
| |
Collapse
|
19
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
20
|
Shi J, Zhou B, Tian Z. DOCK9 antisense RNA2 interacts with LIN28B to stabilize Wnt5a and boosts proliferation and migration of oxidized low densitylipoprotein-induced vascular smooth muscle cells. Bioengineered 2022; 13:7564-7578. [PMID: 35282771 PMCID: PMC9278968 DOI: 10.1080/21655979.2022.2033401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Study has suggested that long non-coding RNA DOCK9 antisense RNA2 (LncRNA DOCK9-AS2) may play an important role in atherosclerosis, but the specific role is unclear. In this article, we aim to explore the role and mechanism of DOCK9-AS2 in the proliferation and migration of vascular smooth muscle cells (VSMCs) in atherosclerosis. VSMCs were treated with oxidized low densitylipoprotein (ox-LDL) for 24 h to establish the model of atherosclerosis in vitro. Gain- and loss-of function experiments were conducted. Cell Counting Kit-8 (CCK-8) assay and Ki67 staining were used to evaluate the ability cell proliferation. Transwell assay and immunofluorescence staining of N-Cadherin and E-cadherin were carried out to detect cell migration. RNA immunoprecipitation (RIP) experiment, pull down assay and mRNA stability analysis were used to assess the relationship of DOCK9-AS2, Wnt5a and LIN28B. Western blot analysis was used to measure the protein expression levels. The results showed that DOCK9-AS2 knockdown inhibited the proliferation and migration of ox-LDL-induced VSMCs. Further study on the interaction between DOCK9-AS2, Wnt5a and LIN28B revealed that LIN28B could both directly interact with DOCK9-AS2 and Wnt5a, and DOCK9-AS2 regulated Wnt5a by targeting LIN28B. In addition, Overexpression of Wnt5a partly abolished the inhibitory effects of LIN28B knockdown or DOCK9-AS2 knockdown on cell proliferation and migration induced by in ox-LDL-induced proliferation and migration. In conclusion, the results showed that DOCK9-AS2 promoted the proliferation and migration of vascular smooth muscle cells in atherosclerosis through regulating Wnt5a by targeting LIN28B.
Collapse
Affiliation(s)
- Jiachong Shi
- Department of Cardiovascular Medicine, Qianjiang Central Hospital of Hubei Province, Qianjiang City, Hubei, China
| | - Bo Zhou
- Department of Endocrinology, Qianjiang Central Hospital of Hubei Province, Qianjiang City, Hubei, China
| | - Zhi Tian
- Department of Cardiology, Chongqing General Hospital, Chongqing City, China
| |
Collapse
|
21
|
Wu H, Ding X, Hu X, Zhao Q, Chen Q, Sun T, Li Y, Guo H, Li M, Gao Z, Yao W, Zhao L, Li K, Wei M. LINC01021 maintains tumorigenicity by enhancing N6-methyladenosine reader IMP2 dependent stabilization of MSX1 and JARID2: implication in colorectal cancer. Oncogene 2022; 41:1959-1973. [PMID: 35173309 DOI: 10.1038/s41388-022-02189-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 01/16/2023]
Abstract
Insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2, also known as IMP2), a novel class III N6-methyladenosine (m6A) reader, has recently gained attention due to its critical functions in recognizing and stabilizing m6A modified oncogenic transcripts. However, whether and how long non-coding RNAs (lncRNAs) facilitate IMP2's role as m6A "reader" remains elusive, particularly in colorectal cancer (CRC). Here, we demonstrated that oncogenic LINC021 specifically bound with the m6A "reader" IMP2 protein and enhanced the mRNA stability of MSX1 and JARID2 in an m6A regulatory manner during CRC tumorigenesis and pathogenesis. Specifically, a remarkable upregulation of LINC021 was confirmed in CRC cell lines and clinical tissues (n = 130). High level of LINC021acted as an independent prognostic predictor for CRC clinical outcomes. Functional assays demonstrated that LINC021 exerted its functions as an oncogene to aggravate CRC malignant phenotypes including enhanced cell proliferation, colony formation, migration capabilities, and reduced cell apoptosis. Mechanistically, LINC021 directly recognized IMP2 protein, the latter enhanced the mRNA stability of transcripts such as MSX1 and JARID2 by recognizing their m6A-modified element RGGAC. Thus, these findings uncovered an essential LINC021/IMP2/MSX1 and JARID2 signaling axis in CRC tumorigenesis, which provided profound insights into our understanding of m6A modification regulated by lncRNA in CRC initiation and progression and shed light on the targeting of this axis for CRC treatment.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Yalun Li
- Department of Anorectal Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Hao Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Meng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Ziming Gao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Affiliated Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, PR China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, PR China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, PR China.
| |
Collapse
|
22
|
Zhou J, Xiong R, Zhou J, Guan X, Jiang G, Chen Y, Yang Q. Involvement of m6A regulatory factor IGF2BP1 in malignant transformation of human bronchial epithelial Beas-2B cells induced by tobacco carcinogen NNK. Toxicol Appl Pharmacol 2022; 436:115849. [PMID: 34974052 DOI: 10.1016/j.taap.2021.115849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a Group 1 human carcinogen, as classified by the International Agency for Research of Cancer (IARC), and plays a significant role in lung carcinogenesis. However, its carcinogenic mechanism has not yet been fully elucidated. In this study, we performed colony formation assays, soft-agar assays, and tumor growth in nude mice to show that 100 mg/L NNK facilitates the malignant transformation of human bronchial epithelial Beas-2B cells. Transcriptome sequencing showed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a post-transcriptional regulator, was differentially expressed in NNK-induced malignant transformed Beas-2B cells (2B-NNK cells). Small interfering RNA (SiRNA) was used to downregulate the expression of the IGF2BP1 gene. The reduction in protein expression, cell proliferation rate, and colony-forming ability and the increase in the apoptosis rate of Beas-2B cells transfected with the SiRNA indicated a role for IGF2BP1 in NNK-induced malignant transformation. IGF2BP1 is an N6-methyladenosine (m6A) regulatory factor, but it is not known whether its association with m6A mediates the malignant transformation of cells. Therefore, we measured the overall levels of m6A in Beas-2B cells. We found that the overall m6A level was lower in 2B-NNK cells, and knocking down IGF2BP1, the overall level of m6A was restored. Hence, we concluded that IGF2BP1 is involved in the NNK-induced malignant transformation of Beas-2B cells, possibly via m6A modification. This study therefore contributes novel insights into the environmental pathogenesis of lung cancer and the gene regulatory mechanisms of chemical carcinogenesis.
Collapse
Affiliation(s)
- Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Rui Xiong
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Jiazhen Zhou
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Xinchao Guan
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Guanqing Jiang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yuyang Chen
- School of Anesthesiology, Southern Medical University, 1023-1063 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang Road, Yuexiu District, Guangzhou 510120, China.
| |
Collapse
|
23
|
Chen DH, Zhang JG, Wu CX, Li Q. Non-Coding RNA m6A Modification in Cancer: Mechanisms and Therapeutic Targets. Front Cell Dev Biol 2022; 9:778582. [PMID: 35004679 PMCID: PMC8728017 DOI: 10.3389/fcell.2021.778582] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, N6-methyl-adenosine (m6A) ribonucleic acid (RNA) modification, a critical and common internal RNA modification in higher eukaryotes, has generated considerable research interests. Extensive studies have revealed that non-coding RNA m6A modifications (e.g. microRNAs, long non-coding RNAs, and circular RNAs) are associated with tumorigenesis, metastasis, and other tumour characteristics; in addition, they are crucial molecular regulators of cancer progression. In this review, we discuss the relationship between non-coding RNA m6A modification and cancer progression from the perspective of various cancers. In particular, we focus on important mechanisms in tumour progression such as proliferation, apoptosis, invasion and metastasis, tumour angiogenesis. In addition, we introduce clinical applications to illustrate more vividly that non-coding RNA m6A modification has broad research prospects. With this review, we aim to summarize the latest insights and ideas into non-coding RNA m6A modification in cancer progression and targeted therapy, facilitating further research.
Collapse
Affiliation(s)
- Da-Hong Chen
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Gang Zhang
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xing Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Wang F, Zhu L, Xue Q, Tang C, Tang W, Zhang N, Dai C, Chen Z. Novel lncRNA AL033381.2 Promotes Hepatocellular Carcinoma Progression by Upregulating PRKRA Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1125932. [PMID: 35035655 PMCID: PMC8759831 DOI: 10.1155/2022/1125932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that is characterized by aggressiveness and poor prognosis. Accumulating evidence indicates that oxidative stress plays a crucial role in carcinogenesis, whereas the potential mechanism between oxidative stress and carcinogenic effects remains elusive. In recent years, long noncoding RNAs (lncRNAs) in cancers have attracted extensive attention and have been shown to be involved in oxidative stress response and carcinogenesis. Nevertheless, the roles of lncRNA AL033381.2 in regulating the development and progression of HCC still remain unclear. The purpose of our study was to evaluate the potential effects and molecular mechanisms of AL033381.2 that may be involved in oxidative stress response in HCC. Using bioinformatics analyses based on the TCGA database, we screened and identified a novel lncRNA AL033381.2 in HCC, which may be involved in oxidative stress responses. qRT-PCR analysis revealed that AL033381.2 is upregulated in HCC tissues. Through in vitro and in vivo experiments, we found that AL033381.2 dramatically facilitates the growth and metastasis of HCC. Mechanistically, RNA pull-down experiments, mass spectrometry, PathArray™, and RIP were used to determine that AL033381.2 binds to PRKRA and may be involved in AL033381.2-mediated oncogenic functions in HCC cells. Moreover, rescue experiments demonstrated that PRKRA overexpression rescues the abilities of HCC cell proliferation, migration, and invasion that were affected by AL033381.2 knockdown. Furthermore, we produced a nanoparticle-based siRNA delivery system and tested its therapeutic effects in vivo. The results showed that the in vivo growth rate of the tumors treated with the nanoparticle/AL033381.2 siRNA complexes was dramatically lower than those treated with the nanoparticle/scramble siRNA complexes. Taken together, our results suggest that the novel lncRNA AL033381.2 may be involved in oxidative stress response by targeting oxidative stress-related genes in HCC. AL033381.2 plays vital oncogenic roles in HCC progression and may be a novel therapeutic marker for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Feiran Wang
- Medical College of Nantong University, Nantong, Jiangsu 226000, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Qiang Xue
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Chong Tang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, China
| | - Weidong Tang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Nannan Zhang
- Medical College of Nantong University, Nantong, Jiangsu 226000, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Zhong Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| |
Collapse
|
25
|
Jiao PF, Tang PJ, Chu D, Li YM, Xu WH, Ren GF. Long Non-Coding RNA THOR Depletion Inhibits Human Non-Small Cell Lung Cancer Cell Growth. Front Oncol 2021; 11:756148. [PMID: 34868966 PMCID: PMC8635526 DOI: 10.3389/fonc.2021.756148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNA (LncRNA) THOR (Lnc-THOR) is expressed in testis and multiple human malignancies. Lnc-THOR association with IGF2BP1 (IGF2 mRNA-binding protein 1) is essential for stabilization and transcription of IGF2BP1 targeted mRNAs. We tested its expression and potential functions in non-small cell lung cancer (NSCLC). In primary NSCLC cells and established cell lines, Lnc-THOR shRNA or CRISPR/Cas9-mediated knockout (KO) downregulated IGF2BP1 target mRNAs (IGF2, Gli1, Myc and SOX9), inhibiting cell viability, growth, proliferation, migration and invasion. Significant apoptosis activation was detected in Lnc-THOR-silenced/-KO NSCLC cells. Conversely, ectopic overexpression of Lnc-THOR upregulated IGF2BP1 mRNA targets and enhanced NSCLC cell proliferation, migration and invasion. RNA-immunoprecipitation and RNA pull-down assay results confirmed the direct binding between Lnc-THOR and IGF2BP1 protein in NSCLC cells. Lnc-THOR silencing and overexpression were ineffective in IGF2BP1-KO NSCLC cells. Forced IGF2BP1 overexpression failed to rescue Lnc-THOR-KO NSCLC cells. In vivo, intratumoral injection of Lnc-THOR shRNA adeno-associated virus potently inhibited A549 xenograft tumor growth in nude mice. At last we show that Lnc-THOR is overexpressed in multiple NSCLC tissues and established/primary NSCLC cells. Collectively, these results highlighted the ability of Lnc-THOR in promoting NSCLC cell growth by associating with IGF2BP1, suggesting that Lnc-THOR represents a promising therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Peng-Fei Jiao
- Department of Respiration and Intensive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei-Jun Tang
- Department of Pulmonary, The Affiliated Infectious Diseases Hospital of Soochow University, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Dan Chu
- Department of Respiration and Intensive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ya-Meng Li
- Department of Respiration and Intensive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Hua Xu
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gao-Fei Ren
- Department of Respiration and Intensive, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Sun A, Sun N, Liang X, Hou Z. Circ-FBXW12 aggravates the development of diabetic nephropathy by binding to miR-31-5p to induce LIN28B. Diabetol Metab Syndr 2021; 13:141. [PMID: 34863268 PMCID: PMC8642853 DOI: 10.1186/s13098-021-00757-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The involvement of circular RNAs (circRNAs) in diabetic nephropathy (DN) has been gradually identified. In this study, we aimed to explore the functions of circRNA F-box/WD repeat-containing protein 12 (circ-FBXW12) in DN development. METHODS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was performed for the levels of circ-FBXW12, FBXW12 mRNA, microRNA-31-5p (miR-31-5p) and Lin-28 homolog B (LIN28B) mRNA. RNase R assay was used to analyze the stability of circ-FBXW12. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis and 5-ethynyl-2'- deoxyuridine (EdU) assay were employed to evaluate cell viability, cell cycle and proliferation, respectively. Enzyme linked immunosorbent assay (ELISA) was done to measure the concentrations of inflammatory cytokines. Western blot assay was conducted for protein levels. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationships among circ-FBXW12, miR-31-5p and LIN28B. RESULTS Circ-FBXW12 level was increased in DN patients' serums and high glucose (HG)-induced human mesangial cells (HMCs). Circ-FBXW12 knockdown suppressed cell proliferation, arrested cell cycle, reduced extracellular matrix (ECM) production and oxidative stress in HG-induced HMCs. Circ-FBXW12 was identified as the sponge for miR-31-5p, which then directly targeted LIN28B. MiR-31-5p inhibition reversed circ-FBXW12 knockdown-mediated effects on cell proliferation, cell cycle process, ECM production and oxidative in HG-triggered HMCs. Moreover, miR-31-5p overexpression showed similar results with circ-FBXW12 knockdown in HG-stimulated HMC progression, while LIN28B elevation reversed the effects. CONCLUSION Circ-FBXW12 knockdown suppressed HG-induced HMC growth, inflammation, ECM accumulation and oxidative stress by regulating miR-31-5p/LIN28B axis.
Collapse
Affiliation(s)
- Aidong Sun
- Department of Endocrinology, Zibo First Hospital, Zibo, 255200, Shandong, China
| | - Ningshuang Sun
- Chinese Traditional College of Changchun University of Chinese Medicine, Changchun, 130022, Jilin, China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Zeng C, Tang Y, Jiang Y, Zuo Z, Tao H. Long noncoding RNAs as biomarkers for the diagnosis of hepatocellular carcinoma: A meta-analysis. Pathol Res Pract 2021; 224:153546. [PMID: 34332221 DOI: 10.1016/j.prp.2021.153546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are often aberrantly expressed in hepatocellular carcinoma (HCC). The role of lncRNAs in the diagnosis of HCC has attracted increasing attention. Hence, we performed a meta-analysis based on current studies to assess the diagnostic value of lncRNAs for HCC. METHODS A systematic search was performed using PubMed, Web of Science, and Embase databases for relevant studies. The quality of the studies was assessed with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). A fixed-effect model was used if the value of I2 statistics < 50%; otherwise, a bivariate random effects model was applied (I2 ≥ 50%). In addition, subgroup analysis and meta-regression analysis were conducted to explore the sources of heterogeneity. Statistical analyses were based on Meta-Disc statistical software (Version 1.4) and STATA software (Version 15.1). RESULTS A total of 52 studies in 20 related articles were selected for this meta-analysis, including 4930 patients and 4614 controls. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were 0.85 [95% confidence interval (CI) 0.82-0.88], 0.76 (95% CI 0.73-0.80), 3.6 (95% CI 3.1-4.2), 0.19 (95% CI 0.16-0.24), 19 (95% CI 14-26), and 0.88 (95% CI 0.85-0.91), respectively. The publication bias was evaluated by the Deek's funnel plot in our meta-analysis. CONCLUSIONS LncRNAs can serve as feasible HCC diagnostic biomarkers. However, further studies are necessary to confirm its diagnostic and clinical value.
Collapse
Affiliation(s)
- Chuyi Zeng
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Tang
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Yao Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhihua Zuo
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hualin Tao
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
28
|
Wu X, Liu Y, Ji Y. Carboxymethylated chitosan alleviated oxidative stress injury in retinal ganglion cells via IncRNA-THOR/IGF2BP1 axis. Genes Genomics 2021; 43:643-651. [PMID: 33811613 DOI: 10.1007/s13258-021-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Glaucoma is an advanced nerve disorder described by the deterioration of axon and RGCs. CMCS has been previously used as an anti-apoptotic and anti-oxidant agent. OBJECTIVE The current study aimed to explore the protective impact of CMCS against H2O2-induced injury in glaucoma in vitro. METHODS The relative expression of lncRNA THOR and the protein expression of IGF2BP1 in H2O2-induced RGC-5 cells were detected by RT-PCR and western blot methods respectively. The cell viability was measured using MTT assay while apoptosis rate was measured by flow cytometry. Moreover, ROS level was measured using ROS assay kit. Furthermore, the relations between THOR and IGF2BP1 were determined by using RNA pull-down. RESULTS The expression of THOR was reduced in H2O2-induced RGCs. Also, RGCs viability was inhibited while the level of ROS and cell apoptosis were enhanced. CMCS treatment considerably enhanced the expression of THOR and IGF2BP1 protein and cell viability but reduced ROS level and cell apoptosis. Moreover, IGF2BP1 protein was positively regulated by lncRNA THOR. CMCS protected the RGCs from oxidative stress via regulating lncRNA THOR/IGF2BP1. CONCLUSION CMCS enhanced the cell viability and reduced the cell apoptosis and ROS level and protected RGCs from oxidative stress via lncRNATHOR/IGF2BP1 pathway, potentially suggesting a new therapeutic strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Xiaoli Wu
- Ophthalmology Department, Shandong Rongjun General Hospital, Jinan, Shandong Province, China
| | - Yingying Liu
- Neurology Department, Shandong Rongjun General Hospital, Jinan, Shandong Province, China
| | - Yun Ji
- Yantai Laiyang Central Hospital, Yantai, Shandong, China.
| |
Collapse
|
29
|
Decoding the Roles of Long Noncoding RNAs in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063137. [PMID: 33808647 PMCID: PMC8003515 DOI: 10.3390/ijms22063137] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide. HCC is associated with several etiological factors, including HBV/HCV infections, cirrhosis, and fatty liver diseases. However, the molecular mechanism underlying HCC development remains largely elusive. The advent of high-throughput sequencing has unveiled an unprecedented discovery of a plethora of long noncoding RNAs (lncRNAs). Despite the lack of coding capacity, lncRNAs have key roles in gene regulation through interacting with various biomolecules. It is increasingly evident that the dysregulation of lncRNAs is inextricably linked to HCC cancer phenotypes, suggesting that lncRNAs are potential prognostic markers and therapeutic targets. In light of the emerging research in the study of the regulatory roles of lncRNAs in HCC, we discuss the association of lncRNAs with HCC. We link the biological processes influenced by lncRNAs to cancer hallmarks in HCC and describe the associated functional mechanisms. This review sheds light on future research directions, including the potential therapeutic applications of lncRNAs.
Collapse
|
30
|
Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T, Chen C. RNA m 6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation (N Y) 2020; 1:100066. [PMID: 34557726 PMCID: PMC8454620 DOI: 10.1016/j.xinn.2020.100066] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N6-Methyladenosine (m6A) RNA modification brings a new dawn for RNA modification researches in recent years. This posttranscriptional RNA modification is dynamic and reversible, and is regulated by methylases ("writers"), demethylases ("erasers"), and proteins that preferentially recognize m6A modifications ("readers"). The change of RNA m6A modification regulates RNA metabolism in eucaryon, including translation, splicing, exporting, decay, and processing. Thereby the dysregulation of m6A may lead to tumorigenesis and progression. Given the tumorigenic role of abnormal m6A expression, m6A regulators may function as potential clinical therapeutic targets for cancers. In this review, we emphasize on the underlying mechanisms of m6A modifications in tumorigenesis and further introduce the potential m6A regulators-associated therapeutic targets for tumor therapy.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhengyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|