1
|
Yu K, Chen W, Chen Y, Shen L, Wu B, Zhang Y, Zhou X. De novo and inherited micro-CNV at 16p13.11 in 21 Chinese patients with defective cardiac left-right patterning. Front Genet 2024; 15:1458953. [PMID: 39315310 PMCID: PMC11416941 DOI: 10.3389/fgene.2024.1458953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Copy number changes at Chromosomal 16p13.11 have been implicated in a variety of human diseases including congenital cardiac abnormalities. The clinical correlation of copy number variants (CNVs) in this region with developmental abnormalities remains controversial as most of the patients inherit the duplication from an unaffected parent. Methods We performed CNV analysis on 164 patients with defective left-right (LR) patterning based on whole genome-exome sequencing (WG-ES) followed by multiplex ligation-dependent probe amplification (MLPA) validation. Most cases were accompanied with complex congenital heart disease (CHD). Results CNVs at 16p13.11 were identified in a total of 21 cases, accounting for 12.80% (21/164) evaluated cases. We observed a marked overrepresentation of chromosome 16p13.11 duplications in cases when compared with healthy controls according to literature reports (15/164, 9.14% versus 0.09% in controls). Notably, in two independent family trios, de novo 16p13.11 micro-duplications were identified in two patients with laterality defects and CHD. Moreover, 16p13.11 micro-duplication was segregated with the disease in a family trio containing 2 affected individuals. Notably, five coding genes, NOMO1, PKD1P3, NPIPA1, PDXDC1, and NTAN1, were potentially affected by micro-CNV at 16p13.11 in these patients. Conclusion Our study provides new family-trio based evidences to support 16p13.11 micro-duplications predispose individuals to defective cardiac left-right patterning and laterality disorder.
Collapse
Affiliation(s)
- Kun Yu
- The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Soochow, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, China
| | - Boxuan Wu
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
2
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
4
|
Chen Y, Zhang Y, Zhou X. Non-classical functions of nuclear pore proteins in ciliopathy. Front Mol Biosci 2023; 10:1278976. [PMID: 37908226 PMCID: PMC10614291 DOI: 10.3389/fmolb.2023.1278976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements. Although traditional NUP functions have been extensively researched, evidence of additional vital non-NPC roles, referred to herein as non-classical NUP functions, is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93 or Nup205 knockdown results in cilia loss, impacting cardiac left-right patterning in models and cell lines. Genetic variants of Nup205 and Nup188 have been identified in patients with congenital heart disease and situs inversus totalis or heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP functions to human diseases. This mini-review summarises pivotal NUP interactions with NIMA-related kinases or nephronophthisis proteins that regulate ciliary function and explores other NUPs potentially implicated in cilia-related disorders. Overall, elucidating the non-classical roles of NUPs will enhance comprehension of ciliopathy aetiology.
Collapse
Affiliation(s)
- Yan Chen
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
5
|
Ameen M, Sundaram L, Shen M, Banerjee A, Kundu S, Nair S, Shcherbina A, Gu M, Wilson KD, Varadarajan A, Vadgama N, Balsubramani A, Wu JC, Engreitz JM, Farh K, Karakikes I, Wang KC, Quertermous T, Greenleaf WJ, Kundaje A. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell 2022; 185:4937-4953.e23. [PMID: 36563664 PMCID: PMC10122433 DOI: 10.1016/j.cell.2022.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.
Collapse
Affiliation(s)
- Mohamed Ameen
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Laksshman Sundaram
- Department of Computer Science, Stanford University, Stanford, CA, USA; Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Mengcheng Shen
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Abhimanyu Banerjee
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA; Department of Physics, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Anna Shcherbina
- Department of Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Avyay Varadarajan
- Department of Computer Science, California Institute of Technology, Pasadena, CA, USA
| | - Nirmal Vadgama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, Foster City, CA, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
| | - Kevin C Wang
- Department of Cancer Biology, Stanford University, Stanford, CA, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA.
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Liu S, Wei W, Wang P, Liu C, Jiang X, Li T, Li F, Wu Y, Chen S, Sun K, Xu R. LOF variants identifying candidate genes of laterality defects patients with congenital heart disease. PLoS Genet 2022; 18:e1010530. [PMID: 36459505 DOI: 10.1371/journal.pgen.1010530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 12/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Defects in laterality pattern can result in abnormal positioning of the internal organs during the early stages of embryogenesis, as manifested in heterotaxy syndrome and situs inversus, while laterality defects account for 3~7% of all congenital heart defects (CHDs). However, the pathogenic mechanism underlying most laterality defects remains unknown. In this study, we recruited 70 laterality defect patients with CHDs to identify candidate disease genes by exome sequencing. We then evaluated rare, loss-of-function (LOF) variants, identifying candidates by referring to previous literature. We chose TRIP11, DNHD1, CFAP74, and EGR4 as candidates from 776 LOF variants that met the initial screening criteria. After the variants-to-gene mapping, we performed function research on these candidate genes. The expression patterns and functions of these four candidate genes were studied by whole-mount in situ hybridization, gene knockdown, and gene rescue methods in zebrafish models. Among the four genes, trip11, dnhd1, and cfap74 morphant zebrafish displayed abnormalities in both cardiac looping and expression patterns of early signaling molecules, suggesting that these genes play important roles in the establishment of laterality patterns. Furthermore, we performed immunostaining and high-speed cilia video microscopy to investigate Kupffer's vesicle organogenesis and ciliogenesis of morphant zebrafish. Impairments of Kupffer's vesicle organogenesis or ciliogenesis were found in trip11, dnhd1, and cfap74 morphant zebrafish, which revealed the possible pathogenic mechanism of their LOF variants in laterality defects. These results highlight the importance of rare, LOF variants in identifying disease-related genes and identifying new roles for TRIP11, DNHD1, and CFAP74 in left-right patterning. Additionally, these findings are consistent with the complex genetics of laterality defects.
Collapse
Affiliation(s)
- Sijie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Liu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Mutation in XPO5 causes adult-onset autosomal dominant familial focal segmental glomerulosclerosis. Hum Genomics 2022; 16:57. [DOI: 10.1186/s40246-022-00430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Focal and segmental glomerulosclerosis (FSGS) is a histological pathology that characterizes a wide spectrum of diseases. Many genes associated with FSGS have been studied previously, but there are still some FSGS families reported in the literature without the identification of known gene mutations. The aim of this study was to investigate the new genetic cause of adult-onset FSGS.
Methods
This study included 40 FSGS families, 77 sporadic FSGS cases, 157 non-FSGS chronic kidney disease (CKD) families and 195 healthy controls for analyses. Whole-exome sequencing (WES) and Sanger sequencing were performed on probands and family members of all recruited families and sporadic FSGS cases.
Results
Using WES, we have identified a novel heterozygous missense variant (c.T1655C:p.V552A) in exportin 5 gene (XPO5) in two families (FS-133 and CKD-05) affected with FSGS and CKD. Sanger sequencing has confirmed the co-segregation of this identified variant in an autosomal dominant pattern within two families, while this variant was absent in healthy controls. Furthermore, the identified mutation was absent in 195 ethnically matched healthy controls by Sanger sequencing. Subsequently, in silico analysis demonstrated that the identified variant was highly conservative in evolution and likely to be pathogenic.
Conclusions
Our study reports an adult-onset autosomal dominant inheritance of the XPO5 variant in familial FSGS for the first time. Our study expanded the understanding of the genotypic, phenotypic and ethnical spectrum of mutation in this gene.
Collapse
|
8
|
Chen W, Wang F, Zeng W, Zhang X, Shen L, Zhang Y, Zhou X. Biallelic mutations of TTC12 and TTC21B were identified in Chinese patients with multisystem ciliopathy syndromes. Hum Genomics 2022; 16:48. [PMID: 36273201 PMCID: PMC9587637 DOI: 10.1186/s40246-022-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Abnormalities in cilia ultrastructure and function lead to a range of human phenotypes termed ciliopathies. Many tetratricopeptide repeat domain (TTC) family members have been reported to play critical roles in cilium organization and function.
Results Here, we describe five unrelated family trios with multisystem ciliopathy syndromes, including situs abnormality, complex congenital heart disease, nephronophthisis or neonatal cholestasis. Through whole-exome sequencing and Sanger sequencing confirmation, we identified compound heterozygous mutations of TTC12 and TTC21B in six affected individuals of Chinese origin. These nonsynonymous mutations affected highly conserved residues and were consistently predicted to be pathogenic. Furthermore, ex vivo cDNA amplification demonstrated that homozygous c.1464 + 2 T > C of TTC12 would cause a whole exon 16 skipping. Both mRNA and protein levels of TTC12 were significantly downregulated in the cells derived from the patient carrying TTC12 mutation c.1464 + 2 T > C by real-time qPCR and immunofluorescence assays when compared with two healthy controls. Transmission electron microscopy analysis further identified ultrastructural defects of the inner dynein arms in this patient. Finally, the effect of TTC12 deficiency on cardiac LR patterning was recapitulated by employing a morpholino-mediated knockdown of ttc12 in zebrafish. Conclusions To the best of our knowledge, this is the first study reporting the association between TTC12 variants and ciliopathies in a Chinese population. In addition to nephronophthisis and laterality defects, our findings demonstrated that TTC21B should also be considered a candidate gene for biliary ciliopathy, such as TTC26, which further expands the phenotypic spectrum of TTC21B deficiency in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00421-z.
Collapse
Affiliation(s)
- Weicheng Chen
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Feifei Wang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Weijia Zeng
- State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xinyan Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China
| | - Libing Shen
- International Human Phenome Institutes (IHPI), Shanghai, 200433, China
| | - Yuan Zhang
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Pediatric Cardiovascular Center at Children's Hospital of Fudan University, Fudan University Shanghai Medical College, Shanghai, 200011, China. .,Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China. .,, Shanghai, China.
| |
Collapse
|
9
|
Wells JR, Padua MB, Ware SM. The genetic landscape of cardiovascular left-right patterning defects. Curr Opin Genet Dev 2022; 75:101937. [PMID: 35777348 PMCID: PMC10698510 DOI: 10.1016/j.gde.2022.101937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Heterotaxy is a disorder with complex congenital heart defects and diverse left-right (LR) patterning defects in other organ systems. Despite evidence suggesting a strong genetic component in heterotaxy, the majority of molecular causes remain unknown. Established genes often involve a ciliated, embryonic structure known as the left-right organizer (LRO). Herein, we focus on genetic discoveries in heterotaxy in the past two years. These include complex genetic architecture, novel mechanisms regulating cilia formation, and evidence for conservation of LR patterning between distant species. We feature new insights regarding established LR signaling pathways, bring attention to heterotaxy candidate genes in novel pathways, and provide an extensive overview of genes previously associated with laterality phenotypes in humans.
Collapse
Affiliation(s)
- John R Wells
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria B Padua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
10
|
Biallelic DNAH9 mutations are identified in Chinese patients with defective left-right patterning and cilia-related complex congenital heart disease. Hum Genet 2022; 141:1339-1353. [PMID: 35050399 DOI: 10.1007/s00439-021-02426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
Defective left-right (LR) pattering results in a spectrum of laterality disorders including situs inversus totalis (SIT) and heterotaxy syndrome (Htx). Approximately, 50% of patients with primary ciliary dyskinesia (PCD) displayed SIT. Recessive variants in DNAH9 have recently been implicated in patients with situs inversus. Here, we describe six unrelated family trios and 2 sporadic patients with laterality defects and complex congenital heart disease (CHD). Through whole exome sequencing (WES), we identified compound heterozygous mutations in DNAH9 in the affected individuals of these family trios. Ex vivo cDNA amplification revealed that DNAH9 mRNA expression was significantly downregulated in these patients carrying biallelic DNAH9 mutations, which cause a premature stop codon or exon skipping. Transmission electron microscopy (TEM) analysis identified ultrastructural defects of the outer dynein arms in these affected individuals. dnah9 knockdown in zebrafish lead to the disturbance of cardiac left-right patterning without affecting ciliogenesis in Kupffer's vesicle (KV). By generating a Dnah9 knockout (KO) C57BL/6n mouse model, we found that Dnah9 loss leads to compromised cardiac function. In this study, we identified recessive DNAH9 mutations in Chinese patients with cardiac abnormalities and defective LR pattering.
Collapse
|