1
|
Cao H, Gao H, Li Y, Li L, Liu S, Jin T, Wang Y, Gong Y, Yuan S, Dong W. Zinc finger DHHC-type palmitoyltransferase 13-mediated S-palmitoylation of GNA13 from Sertoli cell-derived extracellular vesicles inhibits autophagy in spermatogonial stem cells. Cell Commun Signal 2025; 23:178. [PMID: 40205436 PMCID: PMC11983822 DOI: 10.1186/s12964-025-02177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Extracellular vesicles (EVs) originating from testicular somatic cells act as pivotal intermediaries in cell signaling crosstalk between spermatogenic cells and the testicular microenvironment. The intricate balance between palmitoylation and depalmitoylation governs the positioning of protein cargos on the membrane, thereby influencing cellular activities by concentrating these proteins in EVs for delivery to recipient cells. Here, we reveal that GNA13 undergoes specific S-palmitoylation at Cys14 and Cys18 residues in Sertoli cells (SCs), a modification essential for its localization to the plasma membrane. We identify DHHC13, a member of the zinc finger DHHC-type palmitoyltransferase family that catalyzes protein S-palmitoylation, as the enzyme responsible for this critical post-translational modification. Additionally, GNA13 palmitoylation is indispensable for its selective enrichment in EVs emanating from SCs. Intriguingly, we discovered the presence of palmitoylated GNA13 in SC-derived EVs significantly downregulates autophagy levels in spermatogonial stem cells (SSCs), and the inhibition of GNA13 palmitoylation attenuates its interaction with ARHGEF12 which leads to diminished RhoA activity and consequent elevation of autophagy in SSCs. Our results illuminate the crucial role of DHHC13-mediated GNA13 S-palmitoylation in modulating autophagy levels in SSCs through SCs-derived EVs, suggesting that PM-GNA13-EV may serve as a potential candidate for further exploration in addressing fertility-related challenges during spermatogenesis.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, P. R. China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Kurz KS, Steinlein S, Kreuz M, Ziepert M, Staiger AM, Barth TFE, Möller P, Bernd H, Feller AC, Richter J, Klapper W, Stein H, Hartmann S, Hansmann M, Trümper L, Loeffler M, Schmitz N, Rosenwald A, Ott G, Horn H. Age- and gender-specific molecular characteristics of diffuse large B-cell lymphoma: Results from clinical trials of the DSHNHL/GLA. Hemasphere 2025; 9:e70093. [PMID: 40060117 PMCID: PMC11888124 DOI: 10.1002/hem3.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 03/27/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Despite a high cure rate, too many patients show refractory (ref) or relapsed (rel) disease. This study examines the frequency of recurring gene mutations and their interplay with well-known biomarkers in female and male patients between 18 and 80 years with ref/rel DLBCL compared to patients with complete remission (CR) to identify biological risk factors associated with treatment response, using cohorts of R-CHOP-like treated DLBCL enrolled in clinical trials of the DSHNHL. The biomarker profile of patients differed between younger and elderly patients with ref/rel DLBCL, with a higher frequency of BCL2 translocations in younger patients, and higher numbers of ABC subtypes and MYC protein expression in the elderly. Amplicon sequencing revealed generally higher mutation frequencies in the younger cohort. Mutations in CREBBP and TNFRSF14 were associated with shorter overall survival (OS) only in younger patients. A higher proportion of GNA13 mutations was detected in female patients of the elderly DLBCL patient cohort, clearly emphasizing the striking differences in biomarker distribution between younger and elderly as well as female and male patients.
Collapse
Affiliation(s)
- Katrin S. Kurz
- Department of Clinical PathologyRobert‐Bosch‐KrankenhausStuttgartGermany
| | - Sophia Steinlein
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgart and University of TübingenTübingenGermany
| | - Markus Kreuz
- Institute for Medical Informatics, Statistics, and EpidemiologyUniversität LeipzigLeipzigGermany
- Department of DiagnosticsFraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
| | - Marita Ziepert
- Institute for Medical Informatics, Statistics, and EpidemiologyUniversität LeipzigLeipzigGermany
| | - Annette M. Staiger
- Department of Clinical PathologyRobert‐Bosch‐KrankenhausStuttgartGermany
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgart and University of TübingenTübingenGermany
| | | | - Peter Möller
- Institute of PathologyUniversitätsklinikum UlmUlmGermany
| | | | | | - Julia Richter
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig‐Holstein, Campus KielKielGermany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig‐Holstein, Campus KielKielGermany
| | | | - Sylvia Hartmann
- Institute of Pathology, Universitätsklinikum FrankfurtFrankfurtGermany
| | | | - Lorenz Trümper
- Department of Hematology and OncologyGeorg‐August UniversitätGöttingenGermany
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics, and EpidemiologyUniversität LeipzigLeipzigGermany
| | - Norbert Schmitz
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | | | - German Ott
- Department of Clinical PathologyRobert‐Bosch‐KrankenhausStuttgartGermany
| | - Heike Horn
- Department of Clinical PathologyRobert‐Bosch‐KrankenhausStuttgartGermany
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgart and University of TübingenTübingenGermany
| |
Collapse
|
3
|
Shi A, Yun F, Shi L, Liu X, Jia Y. Research progress on the mechanism of common inflammatory pathways in the pathogenesis and development of lymphoma. Ann Med 2024; 56:2329130. [PMID: 38489405 PMCID: PMC10946270 DOI: 10.1080/07853890.2024.2329130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
In recent years, the incidence and mortality rates of lymphoma have gradually increased worldwide. Tumorigenesis and drug resistance are closely related to intracellular inflammatory pathways in lymphoma. Therefore, understanding the biological role of inflammatory pathways and their abnormal activation in relation to the development of lymphoma and their selective modulation may open new avenues for targeted therapy of lymphoma. The biological functions of inflammatory pathways are extensive, and they are central hubs for regulating inflammatory responses, immune responses, and the tumour immune microenvironment. However, limited studies have investigated the role of inflammatory pathways in lymphoma development. This review summarizes the relationship between abnormal activation of common inflammatory pathways and lymphoma development to identify precise and efficient targeted therapeutic options for patients with advanced, drug-resistant lymphoma.
Collapse
Affiliation(s)
- Aorong Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Lin Shi
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Xia Liu
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medical Sciences College, Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
4
|
Liu C, Sun Y, Li D, Wang F, Wang H, An S, Sun S. A multifunctional nanogel encapsulating layered double hydroxide for enhanced osteoarthritis treatment via protection of chondrocytes and ECM. Mater Today Bio 2024; 26:101034. [PMID: 38596826 PMCID: PMC11002310 DOI: 10.1016/j.mtbio.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) is characterized by progressive and irreversible damage to the articular cartilage and a consecutive inflammatory response. However, the majority of clinical drugs for OA treatment only alleviate symptoms without addressing the fundamental pathology. To mitigate this issue, we developed an inflammation-responsive carrier and encapsulated bioactive material, namely, LDH@TAGel. The LDH@TAGel was designed with anti-inflammatory and antioxidative abilities, aiming to directly address the pathology of cartilage damage. In particular, LDH was confirmed to restore the ECM secretion function of damaged chondrocytes and attenuate the expression of catabolic matrix metalloproteinases (Mmps). While TAGel showed antioxidant properties by scavenging ROS directly. In vitro evaluation revealed that the LDH@TAGel could protect chondrocytes from inflammation-induced oxidative stress and apoptosis via the Nrf2/Keap1 system and Pi3k-Akt pathway. In vivo experiments demonstrated that the LDH@TAGel could alleviated the degeneration and degradation of cartilage induced by anterior cruciate ligament transection (ACLT). The OARSI scores indicating OA severity decreased significantly after three weeks of intervention. Moreover, the IVIS image revealed that LDH@TAGel enhances the controlled release of LDH in a manner that can be customized according to the severity of OA, allowing adaptive, precise treatment. In summary, this novel design effectively alleviates the underlying pathological causes of OA-related cartilage damage and has emerged as a promising biomaterial for adaptive, cause-targeted OA therapies.
Collapse
Affiliation(s)
- Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yawei Sun
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Fan Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Senbo An
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
5
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
7
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
8
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
9
|
Panda D, Das N, Thakral D, Gupta R. Genomic landscape of mature B-cell non-Hodgkin lymphomas - an appraisal from lymphomagenesis to drug resistance. J Egypt Natl Canc Inst 2022; 34:52. [PMID: 36504392 DOI: 10.1186/s43046-022-00154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mature B-cell non-Hodgkin lymphomas are one of the most common hematological malignancies with a divergent clinical presentation, phenotype, and course of disease regulated by underlying genetic mechanism. MAIN BODY Genetic and molecular alterations are not only critical for lymphomagenesis but also largely responsible for differing therapeutic response in these neoplasms. In recent years, advanced molecular tools have provided a deeper understanding regarding these oncogenic drives for predicting progression as well as refractory behavior in these diseases. The prognostic models based on gene expression profiling have also been proved effective in various clinical scenarios. However, considerable overlap does exist between the genotypes of individual lymphomas and at the same time where additional molecular lesions may be associated with each entity apart from the key genetic event. Therefore, genomics is one of the cornerstones in the multimodality approach essential for classification and risk stratification of B-cell non-Hodgkin lymphomas. CONCLUSION We hereby in this review discuss the wide range of genetic aberrancies associated with tumorigenesis, immune escape, and chemoresistance in major B-cell non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- Devasis Panda
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Nupur Das
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Deepshi Thakral
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India
| | - Ritu Gupta
- Department of Laboratory Oncology, Dr. BRAIRCH, AIIMS, New Delhi, 110029, India.
| |
Collapse
|
10
|
Identification of potentially functional modules and diagnostic genes related to amyotrophic lateral sclerosis based on the WGCNA and LASSO algorithms. Sci Rep 2022; 12:20144. [PMID: 36418457 PMCID: PMC9684499 DOI: 10.1038/s41598-022-24306-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically and phenotypically heterogeneous disease results in the loss of motor neurons. Mounting information points to involvement of other systems including cognitive impairment. However, neither the valid biomarker for diagnosis nor effective therapeutic intervention is available for ALS. The present study is aimed at identifying potentially genetic biomarker that improves the diagnosis and treatment of ALS patients based on the data of the Gene Expression Omnibus. We retrieved datasets and conducted a weighted gene co-expression network analysis (WGCNA) to identify ALS-related co-expression genes. Functional enrichment analysis was performed to determine the features and pathways of the main modules. We then constructed an ALS-related model using the least absolute shrinkage and selection operator (LASSO) regression analysis and verified the model by the receiver operating characteristic (ROC) curve. Besides we screened the non-preserved gene modules in FTD and ALS-mimic disorders to distinct ALS-related genes from disorders with overlapping genes and features. Altogether, 4198 common genes between datasets with the most variation were analyzed and 16 distinct modules were identified through WGCNA. Blue module had the most correlation with ALS and functionally enriched in pathways of neurodegeneration-multiple diseases', 'amyotrophic lateral sclerosis', and 'endocytosis' KEGG terms. Further, some of other modules related to ALS were enriched in 'autophagy' and 'amyotrophic lateral sclerosis'. The 30 top of hub genes were recruited to a LASSO regression model and 5 genes (BCLAF1, GNA13, ARL6IP5, ARGLU1, and YPEL5) were identified as potentially diagnostic ALS biomarkers with validating of the ROC curve and AUC value.
Collapse
|
11
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Liu Y, Vandekeere A, Xu M, Fendt SM, Altea-Manzano P. Metabolite-derived protein modifications modulating oncogenic signaling. Front Oncol 2022; 12:988626. [PMID: 36226054 PMCID: PMC9549695 DOI: 10.3389/fonc.2022.988626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant growth is defined by multiple aberrant cellular features, including metabolic rewiring, inactivation of tumor suppressors and the activation of oncogenes. Even though these features have been described as separate hallmarks, many studies have shown an extensive mutual regulatory relationship amongst them. On one hand, the change in expression or activity of tumor suppressors and oncogenes has extensive direct and indirect effects on cellular metabolism, activating metabolic pathways required for malignant growth. On the other hand, the tumor microenvironment and tumor intrinsic metabolic alterations result in changes in intracellular metabolite levels, which directly modulate the protein modification of oncogenes and tumor suppressors at both epigenetic and post-translational levels. In this mini-review, we summarize the crosstalk between tumor suppressors/oncogenes and metabolism-induced protein modifications at both levels and explore the impact of metabolic (micro)environments in shaping these.
Collapse
Affiliation(s)
- Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metaboli Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- *Correspondence: Sarah-Maria Fendt, ; Patricia Altea-Manzano,
| |
Collapse
|
13
|
Zhang Y, Zhang B, Li Y, Dai Y, Li J, Li D, Xia Z, Zhang J, Liu P, Chen M, Jiao B, Ren R. Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma. Front Med 2022; 16:784-798. [PMID: 35997986 DOI: 10.1007/s11684-021-0911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Biology, Brandeis University, Waltham, MA, 02454, USA.
| |
Collapse
|
14
|
van Bladel DAG, Stevens WBC, van den Brand M, Kroeze LI, Groenen PJTA, van Krieken JHJM, Hebeda KM, Scheijen B. Novel Approaches in Molecular Characterization of Classical Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14133222. [PMID: 35805000 PMCID: PMC9264882 DOI: 10.3390/cancers14133222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The unique tumor composition of classical Hodgkin lymphoma (cHL), with only a small fraction of malignant Hodgkin and Reed–Sternberg cells within the tumor tissue, has created many challenges to characterize the genetic alterations that drive this lymphoid malignancy. Major advances in sequencing technologies and detailed analysis of circulating tumor DNA in blood samples of patients have provided important contributions to enhance our understanding of the pathogenesis of cHL. In this review, we provide an overview of the recent advances in genotyping the clonal and mutational landscape of cHL. In addition, we discuss different next-generation sequencing applications to characterize tumor tissue and cell-free DNA, which are now available to improve the diagnosis of cHL, and to monitor therapeutic response or disease progression during treatment and follow up of cHL patients. Abstract Classical Hodgkin lymphoma (cHL) represents a B-cell lymphoproliferative disease characterized by clonal immunoglobulin gene rearrangements and recurrent genomic aberrations in the Hodgkin Reed–Sternberg cells in a reactive inflammatory background. Several methods are available for the molecular analysis of cHL on both tissue and cell-free DNA isolated from blood, which can provide detailed information regarding the clonal composition and genetic alterations that drive lymphoma pathogenesis. Clonality testing involving the detection of immunoglobulin and T cell receptor gene rearrangements, together with mutation analysis, represent valuable tools for cHL diagnostics, especially for patients with an atypical histological or clinical presentation reminiscent of a reactive lesion or another lymphoma subtype. In addition, clonality assessment may establish the clonal relationship of composite or subsequent lymphoma presentations within one patient. During the last few decades, more insight has been obtained on the molecular mechanisms that drive cHL development, including recurrently affected signaling pathways (e.g., NF-κB and JAK/STAT) and immune evasion. We provide an overview of the different approaches to characterize the molecular composition of cHL, and the implementation of these next-generation sequencing-based techniques in research and diagnostic settings.
Collapse
Affiliation(s)
- Diede A. G. van Bladel
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Radboud University Medical Center, Department of Hematology, 6525 GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Pathology-DNA, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Leonie I. Kroeze
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Patricia J. T. A. Groenen
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - J. Han J. M. van Krieken
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Konnie M. Hebeda
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
| | - Blanca Scheijen
- Radboud University Medical Center, Department of Pathology, 6525 GA Nijmegen, The Netherlands; (D.A.G.v.B.); (M.v.d.B.); (L.I.K.); (P.J.T.A.G.); (J.H.J.M.v.K.); (K.M.H.)
- Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Gao J, Li W, Zhang Z, Gao W, Kong E. Proteome-wide identification of palmitoylated proteins in mouse testis. Reprod Sci 2022; 29:2299-2309. [PMID: 35477839 DOI: 10.1007/s43032-022-00919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
The reversible lipid modification, S-palmitoylation, plays regulatory roles in various physiological processes, e.g., neuronal plasticity and organs development; however, the roles of palmitoylation engaged in testis have yet remained unexplored. Here, we used combined approaches of palm-proteomics, informatics and quantitative PCR to systematically analyze the expression of key enzymes related to protein palmitoylation and identify proteome-wide palmitoylated proteins during the processes of spermatogenesis. Specifically, different timepoints were chosen to collect samples to cover the initiation of meiosis (postnatal, P12), the appearance of the first batch of sperm (P36) and fully fertile status (P60) in mouse. Interestingly, our results showed that only a few enzymes related to protein palmitoylation are highly expressed at later stages (from P36 to P60), rather than in the earlier phase of testis development (P12). To focus on the molecular event of spermatogenesis, we examined the palm-proteomics of testes in P36 and P60 mouse. In total, we identified 4,883 palmitoylated proteins, among which 3,310 proteins match the published palmitoyl-proteome datasets and 1,573 proteins were firstly identified as palmitoylated proteins in this study. Informatics analysis suggested that palmitoylation is involved in events of protein transport, metabolic process, protein folding and cell adhesion, etc. Importantly, further analysis revealed that several networks of palmitoylated proteins are closely associated with sperm morphology and motility. Together, our study laid a solid ground for understanding the roles of protein palmitoylation in spermatogenesis for future studies.
Collapse
Affiliation(s)
- Jun Gao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China.,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenchao Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wenshan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, 453000, China.
| | - Eryan Kong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453000, China. .,Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
16
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
17
|
Gao F, Tian L, Shi H, Zheng P, Wang J, Dong F, Hu K, Ke X. Genetic Landscape of Relapsed and Refractory Diffuse Large B-Cell Lymphoma: A Systemic Review and Association Analysis With Next-Generation Sequencing. Front Genet 2021; 12:677650. [PMID: 34925435 PMCID: PMC8675234 DOI: 10.3389/fgene.2021.677650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
In our research, we screened 1,495 documents, compiled the whole-exome sequencing data of several studies, formed a data set including 92 observations of RRDLBCL (Relapsed and refractory diffuse large B-cell lymphoma), and performed association analysis on the high-frequency mutations among them. The most common mutations in the data set include TTN, KMT2D, TP53, IGLL5, CREBBP, BCL2, MYD88, and SOCS1 etc. Among these, CREBBP, KMT2D, and BCL2 have a strong association with each other, and SOCS1 has a strong association with genes such as STAT6, ACTB, CIITA, ITPKB, and GNA13. TP53 lacks significant associations with most genes. Through SOM clustering, expression-level analysis and protein interaction analysis of common gene mutations, we believe that RRDLBCL can be divided into five main types. We tested the function of the model and described the clinical characteristics of each subtype through a targeted sequencing RRDLBCL cohort of 96 patients. The classification is stated as follows: 1) JAK-STAT-related type: including STAT6, SOCS1, CIITA, etc. The genetic lineage is similar to PMBL and cHL. Retrospective analysis suggests that this subtype responds poorly to induction therapy (R-CHOP, p < 0.05). 2) BCL-CREBBP type: Epigenetic mutations such as KMT2D and CREBBP are more common in this type, and are often accompanied by BCL2 and EZH2 mutations. 3) MCD type: including MYD88 and CD79B, PIM1 is more common in this subtype. 4) TP53 mutation: TP53 mutant patients, which suggests the worst prognosis (p < 0.05) and worst response to CART treatment. 5) Undefined type (Sparse item type): Major Genetic Change Lacking Type, which has a better prognosis and better response to CART treatment. We also reviewed the literature from recent years concerning the previously mentioned common gene mutations.
Collapse
Affiliation(s)
- Fan Gao
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Lei Tian
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Hui Shi
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Peihao Zheng
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Fei Dong
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Kai Hu
- Department of Adult Lymphoma, Beijing Boren Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology, Peking University Third Hospital, Beijing, China
| |
Collapse
|