1
|
LIANG HAISU, YAN WEI, LIU ZHI, HE YUNBO, HU JIAO, SHU ZHIWEI, LI HUIHUANG, OTHMANE BELAYDI, REN WENBIAO, QUAN CHAO, QIU DONGXU, CHEN MINFENG, XIONG WEI, ZHANG BINGNAN, LIU PEIHUA. Immunomodulatory behavior of CircRNAs in tumor microenvironment. Oncol Res 2025; 33:1105-1119. [PMID: 40296917 PMCID: PMC12034001 DOI: 10.32604/or.2024.054623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/13/2024] [Indexed: 04/30/2025] Open
Abstract
Circular RNAs (circRNAs) are a type of non coding RNA that possess unique single stranded circular structures formed through reverse splicing mechanisms. Due to the lack of a free end that is typically susceptible to degradation by nucleases, circular RNAs exhibit resistance to ribonuclease R, making them highly stable in eukaryotic cells. The complex relationship between circRNA dysregulation and various pathophysiological conditions, especially cancer. Tumor microenvironment (TME) is a collective term for various components surrounding tumors and is an important factor affecting tumor development. Simultaneous infiltration of TME by different types of immune cells; These immune cells interact with the TME, collectively forming the so-called "tumor immune microenvironment". The complex interactions between tumor cells and TME profoundly affect the behavior of malignant tumors, and circRNAs derived from tumor cells and TME cell components have become important mediators of immune response and evasion within the TME. CircRNAs can directly or indirectly regulate immune cells, thereby modulating anti-tumor immunity. This review highlights how circRNAs, especially those encapsulated in extracellular vesicles like exosomes, influence the differentiation, chemotaxis, and anti-tumor immune functions of immune cells within the TME. Metabolic reprogramming plays an important role in this process. The process of circRNAs regulating tumor immunity is affected by multiple factors, such as hypoxia and viral infection. This review emphasizes the roles of the interaction between circRNAs and the TME in tumor immune regulation and prospects the guiding significance of circRNAs in tumor immune checkpoint therapy.
Collapse
Affiliation(s)
- HAISU LIANG
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - WEI YAN
- Department of Urology, Shimen Hospital of TCM, Changde, 415300, China
| | - ZHI LIU
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Department of Urology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, 556000, China
| | - YUNBO HE
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, China
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - JIAO HU
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - ZHIWEI SHU
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - HUIHUANG LI
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - BELAYDI OTHMANE
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - WENBIAO REN
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
- George Whipple Lab for Cancer Research, University of Rochester Medical Institute, Rochester, NY 14627, USA
| | - CHAO QUAN
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - DONGXU QIU
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - MINFENG CHEN
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - WEI XIONG
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - BINGNAN ZHANG
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - PEIHUA LIU
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, China
| |
Collapse
|
2
|
Wang J, Zhang C, Zhang Y, Guo J, Xie C, Liu Y, Chen L, Ma L. Circular RNA in liver cancer research: biogenesis, functions, and roles. Front Oncol 2025; 15:1523061. [PMID: 40224186 PMCID: PMC11985449 DOI: 10.3389/fonc.2025.1523061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Liver cancer, characterized by its insidious nature, aggressive invasiveness, and propensity for metastasis, has witnessed a sustained increase in both incidence and mortality rates in recent years, underscoring the urgent need for innovative diagnostic and therapeutic approaches. Emerging research indicates that CircRNAs (circular RNAs) are abundantly and stably present within cells, with their expression levels closely associated with the progression of various malignancies, including hepatocellular carcinoma. In the context of liver cancer progression, circRNAs exhibit promising potential as highly sensitive diagnostic biomarkers, offering novel avenues for early detection, and also function as pivotal regulatory factors within the carcinogenic process. This study endeavors to elucidate the biogenesis, functional roles, and underlying mechanisms of circRNAs in hepatocellular carcinoma, thereby providing a fresh perspective on the pathogenesis of liver cancer and laying a robust foundation for the development of more precise and effective early diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Jiayi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yinghui Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiaojiao Guo
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chenyu Xie
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yulu Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lidian Chen
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Wang Z, Xie X, Xue Y, Chen Y. Tryptophan-2,3-Dioxygenase as a Therapeutic Target in Digestive System Diseases. BIOLOGY 2025; 14:295. [PMID: 40136551 PMCID: PMC11939885 DOI: 10.3390/biology14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Tryptophan (Trp) is an essential amino acid that must be acquired exclusively through dietary intake. The metabolism of tryptophan plays a critical role in maintaining immune homeostasis and tolerance, as well as in preventing excessive inflammatory responses. Tryptophan-2,3-dioxygenase (TDO2) is a tetrameric heme protein and serves as one of the pivotal rate-limiting enzymes in the first step of tryptophan metabolism. Dysregulation of TDO2 expression has been observed in various digestive system diseases, encompassing those related to the oral cavity, esophagus, liver, stomach, pancreas, and colon and rectum. Digestive system diseases are the most common clinical diseases, with complex clinical manifestations and interrelated symptoms, and have become a research hotspot in the field of medicine. Studies have demonstrated that aberrant TDO2 expression is closely associated with various clinical manifestations and disease outcomes in patients with digestive system disorders. Consequently, TDO2 has garnered increasing recognition as a promising therapeutic target for digestive system diseases in recent years, attracting growing attention. This article provides a brief overview of the role of TDO2 in the tryptophan pathway, emphasizing its significant involvement in diseases of the digestive system. Strategies targeting TDO2 through specific inhibitors suggest considerable promise in enhancing therapeutic outcomes for digestive diseases. Thus, this review concludes by discussing recent advancements in the development of TDO2 inhibitors. We believe that targeted inhibition of TDO2 combined with immunotherapy, the screening of a large number of natural products, and the assistance of artificial intelligence in drug design will be important directions for developing more effective TDO2 inhibitors and improving treatment outcomes in the future.
Collapse
Affiliation(s)
| | | | | | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
4
|
Zhu Y, Shang L, Tang Y, Li Q, Ding L, Wang Y, Zhang T, Xie B, Ma J, Li X, Chen S, Yi X, Peng J, Liang Y, He A, Yan H, Zhu H, Zhang B, Zhu Y. Genome-Wide Profiling of H3K27ac Identifies TDO2 as a Pivotal Therapeutic Target in Metabolic Associated Steatohepatitis Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404224. [PMID: 39364706 PMCID: PMC11615751 DOI: 10.1002/advs.202404224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/13/2024] [Indexed: 10/05/2024]
Abstract
H3K27ac has been widely recognized as a representative epigenetic marker of active enhancer, while its regulatory mechanisms in pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remain elusive. Here, a genome-wide comparative study on H3K27ac activities and transcriptome profiling in high fat diet (HFD)-induced MASLD model is performed. A significantly enhanced H3K27ac density with abundant alterations of regulatory transcriptome is observed in MASLD rats. Based on integrative analysis of ChIP-Seq and RNA-Seq, TDO2 is identified as a critical contributor for abnormal lipid accumulation, transcriptionally activated by YY1-promoted H3K27ac. Furthermore, TDO2 depletion effectively protects against hepatic steatosis. In terms of mechanisms, TDO2 activates NF-κB pathway to promote macrophages M1 polarization, representing a crucial event in MASLD progression. A bovine serum albumin nanoparticle is fabricated to provide sustained release of Allopurinol (NPs-Allo) for TDO2 inhibition, possessing excellent biocompatibility and desired targeting capacity. Venous injection of NPs-Allo robustly alleviates HFD-induced metabolic disorders. This study reveals the pivotal role of TDO2 and its underlying mechanisms in pathogenesis of MASLD epigenetically and genetically. Targeting H3K27ac-TDO2-NF-κB axis may provide new insights into the pathogenesis of abnormal lipid accumulation and pave the way for developing novel strategies for MASLD prevention and treatment.
Collapse
Affiliation(s)
- Yaling Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Limeng Shang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yunshu Tang
- Laboratory Animal Research CenterSchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Qiushuang Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Lin Ding
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Yi Wang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Tiantian Zhang
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Bin Xie
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jinhu Ma
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinyu Li
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Shuwen Chen
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Xinrui Yi
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Jin Peng
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Youfeng Liang
- Department of CardiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230001China
| | - Anyuan He
- School of Life SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Hong Yan
- Department of PathologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Department of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of BiochemistryAnhui Medical UniversityHefeiAnhui230032China
| | - Buchun Zhang
- Department of CardiologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yong Zhu
- Department of PathophysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiAnhui230032China
| |
Collapse
|
5
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Ding X, Jin Y, Shi X, Wang Y, Jin Z, Yin L, Gao S, Lei Y, Yang J. TDO2 promotes bladder cancer progression via AhR-mediated SPARC/FILIP1L signaling. Biochem Pharmacol 2024; 223:116172. [PMID: 38552852 DOI: 10.1016/j.bcp.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The enzyme tryptophan 2,3-dioxygenase (TDO2) has been implicated in the dysregulation across a variety of human cancers. Despite this association, the implications of TDO2 in the progression of bladder cancer have eluded thorough understanding. In this study, we demonstrate that TDO2 expression is notably elevated in bladder cancer tissues and serves as an unfavorable prognostic factor for overall survival. Through a series of biological functional assays, we have determined that TDO2 essentially enhances cell proliferation, metastatic potential, and imparts a decreased sensitivity to the chemotherapeutic agent cisplatin. Our mechanistic investigations reveal that TDO2 augments aryl hydrocarbon receptor (AhR) signaling pathways and subsequently upregulates the expression of SPARC and FILIP1L. Importantly, we have identified a positive correlation between TDO2 levels and the basal/squamous subtype of bladder cancer, and we provide evidence to suggest that TDO2 expression is modulated by the tumor suppressors RB1 and TP53. From a therapeutic perspective, we demonstrate that the targeted inhibition of TDO2 with the molecular inhibitor 680C91 markedly attenuates tumor growth and metastasis while concurrently enhancing the efficacy of cisplatin. These findings open a new therapeutic avenue for the management of bladder cancer.
Collapse
Affiliation(s)
- Xiaoju Ding
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunjie Jin
- Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaokai Shi
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yidi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Yin
- Department of Oncology, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China; Department of Urology, Gonghe County Hospital of Traditional Chinese Medicine, Qinghai, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China.
| | - Yibo Lei
- Department of Otology, Otolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Wu L, Zhang Y, Ren J. Targeting non-coding RNAs and N 6-methyladenosine modification in hepatocellular carcinoma. Biochem Pharmacol 2024; 223:116153. [PMID: 38513741 DOI: 10.1016/j.bcp.2024.116153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancers, accounts for a significant portion of cancer-related death globally. However, the molecular mechanisms driving the onset and progression of HCC are still not fully understood. Emerging evidence has indicated that non-protein-coding regions of genomes could give rise to transcripts, termed non-coding RNA (ncRNA), forming novel functional driving force for aberrant cellular activity. Over the past decades, overwhelming evidence has denoted involvement of a complex array of molecular function of ncRNAs at different stages of HCC tumorigenesis and progression. In this context, several pre-clinical studies have highlighted the potentials of ncRNAs as novel therapeutic modalities in the management of human HCC. Moreover, N6-methyladenosine (m6A) modification, the most prevalent form of internal mRNA modifications in mammalian cells, is essential for the governance of biological processes within cells. Dysregulation of m6A in ncRNAs has been implicated in human carcinogenesis, including HCC. In this review, we will discuss dysregulation of several hallmark ncRNAs (miRNAs, lncRNAs, and circRNAs) in HCC and address the latest advances for their involvement in the onset and progression of HCC. We also focus on dysregulation of m6A modification and various m6A regulators in the etiology of HCC. In the end, we discussed the contemporary preclinical and clinical application of ncRNA-based and m6A-targeted therapies in HCC.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
8
|
Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22:174. [PMID: 38462620 PMCID: PMC10926624 DOI: 10.1186/s12964-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a crucial role in influencing the development of digestive system tumors. Dysregulation of Trp and its metabolites has been identified in various digestive system cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers. Aberrantly expressed Trp metabolites are associated with diverse clinical features in digestive system tumors. Moreover, the levels of these metabolites can serve as prognostic indicators and predictors of recurrence risk in patients with digestive system tumors. Trp metabolites exert their influence on tumor growth and metastasis through multiple mechanisms, including immune evasion, angiogenesis promotion, and drug resistance enhancement. Suppressing the expression of key enzymes in Trp metabolism can reduce the accumulation of these metabolites, effectively impacting their role in the promotion of tumor progression and metastasis. Strategies targeting Trp metabolism through specific enzyme inhibitors or tailored drugs exhibit considerable promise in enhancing therapeutic outcomes for digestive system tumors. In addition, integrating these approaches with immunotherapy holds the potential to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Weibo Du
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
9
|
Li ZD, Li YL, Lu J, Liang S, Zhang C, Zeng LH. Recent research progress of circular RNAs in hepatocellular carcinoma. Front Oncol 2024; 13:1192386. [PMID: 38322286 PMCID: PMC10844539 DOI: 10.3389/fonc.2023.1192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an extremely heterogeneous malignant tumor with a high morbidity and mortality. Circular RNAs (circRNAs) are noncoding RNAs with high stability, organ/tissue/cell-specific expression and are conserved across species. Accumulating evidence suggested that circRNAs play crucial roles as microRNA sponges, protein sponges, scaffolds, recruiters and could even polypeptide encoders. Many studies have since revealed that circRNAs were aberrantly expressed in HCC and acted as crucial modulators of HCC carcinogenesis and progression. Furthermore, circRNAs have also been identified as potential diagnostic and prognostic biomarkers for HCC. In this review, we thoroughly outline and evaluate the function of circRNAs in HCC development, with an emphasis on the specific molecular pathways by which they participated in the formation and progression of HCC, and we address their potential for serving as clinical biomarkers in HCC.
Collapse
Affiliation(s)
- Zhi-di Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmacology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Lu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shang Liang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ling-hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Weidle UH, Nopora A. Hepatocellular Carcinoma: Up-regulated Circular RNAs Which Mediate Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:500-521. [PMID: 37889063 PMCID: PMC10614070 DOI: 10.21873/cgp.20401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranges as number two with respect to the incidence of tumors and is associated with a dismal prognosis. The therapeutic efficacy of approved multi-tyrosine kinase inhibitors and checkpoint inhibitors is modest. Therefore, the identification of new therapeutic targets and entities is of paramount importance. We searched the literature for up-regulated circular RNAs (circRNAs) which mediate efficacy in preclinical in vivo models of HCC. Our search resulted in 14 circRNAs which up-regulate plasma membrane transmembrane receptors, while 5 circRNAs induced secreted proteins. Two circRNAs facilitated replication of Hepatitis B or C viruses. Three circRNAs up-regulated high mobility group proteins. Six circRNAs regulated components of the ubiquitin system. Seven circRNAs induced GTPases of the family of ras-associated binding proteins (RABs). Three circRNAs induced redox-related proteins, eight of them up-regulated metabolic enzymes and nine circRNAs induced signaling-related proteins. The identified circRNAs up-regulate the corresponding targets by sponging microRNAs. Identified circRNAs and their targets have to be validated by standard criteria of preclinical drug development. Identified targets can potentially be inhibited by small molecules or antibody-based moieties and circRNAs can be inhibited by small-interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) for therapeutic purposes.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
11
|
El-Aziz MKA, Dawoud A, Kiriacos CJ, Fahmy SA, Hamdy NM, Youness RA. Decoding hepatocarcinogenesis from a noncoding RNAs perspective. J Cell Physiol 2023; 238:1982-2009. [PMID: 37450612 DOI: 10.1002/jcp.31076] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Being a leading lethal malignancy worldwide, the pathophysiology of hepatocellular carcinoma (HCC) has gained a lot of interest. Yet, underlying mechanistic basis of the liver tumorigenesis is poorly understood. The role of some coding genes and their respective translated proteins, then later on, some noncoding RNAs (ncRNAs) such as microRNAs have been extensively studied in context of HCC pathophysiology; however, the implication of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in HCC is indeed less investigated. As a subclass of the ncRNAs which has been elusive for long time ago, lncRNAs was found to be involved in plentiful cellular functions such as DNA, RNA, and proteins regulation. Hence, it is undisputed that lncRNAs dysregulation profoundly contributes to HCC via diverse etiologies. Accordingly, lncRNAs represent a hot research topic that requires prime focus in HCC. In this review, the authors discuss breakthrough discoveries involving lncRNAs and circRNAs dysregulation that have contributed to the contemporary concepts of HCC pathophysiology and how these concepts could be leveraged as potential novel diagnostic and prognostic HCC biomarkers. Further, this review article sheds light on future trends, thereby discussing the pathological roles of lncRNAs and circRNAs in HCC proliferation, migration, and epithelial-to-mesenchymal transition. Along this line of reasoning, future recommendations of how these targets could be exploited to achieve effective HCC-related drug development is highlighted.
Collapse
Affiliation(s)
- Mostafa K Abd El-Aziz
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Caroline J Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rana A Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
12
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Lin J, Lin Z, Hua Y, Chen Y. Circ_0031242 regulates the functional properties of hepatocellular carcinoma cells through the miR-944/MAD2L1 axis. Histol Histopathol 2023; 38:303-316. [PMID: 36125054 DOI: 10.14670/hh-18-519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) possess key functions in the pathogenesis of hepatocellular carcinoma (HCC). Nonetheless, the actions of individual circRNAs in HCC remain undefined. METHODS circ_0031242, miR-944, and MAD2L1 expression were quantified by qRT-PCR. Transwell assay was utilized to examine cell invasion and migration. Glucose consumption and lactate production were measured to assess the impact on glycolysis. The relationships among circ_0031242, MAD2L1, and miR-944 were examined via luciferase reporter assay. RESULTS circ_0031242 was notably augmented in HCC. Loss of function of circ_0031242 hindered cell proliferation, invasion, migration, glycolysis, and promoted apoptosis, as well as impeding HCC tumor growth. circ_0031242 directly targeted miR-944. Inhibition of miR-944 counteracted the effects of si-circ_0031242 on HCC cells. Additionally, miR-944 was proved to directly target MAD2L1 in HCC cells. Moreover, the promotion of MAD2L1 was able to rescue the inhibition of high miR-944 expression on HCC cell progression. Meanwhile, circ_0031242 involved the post-transcriptional modulation of MAD2L1 through miR-944. CONCLUSION This study suggested that circ_0031242 regulated tumor cell progression and tumor growth through the miR-944/MAD2L1 axis in HCC.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zenghai Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Yaqiong Hua
- Department of Medicine, Shenzhen Letu Biotechnology Co., Ltd., Guangdong, China
| | - Yan Chen
- Department of Medicine, Shenzhen Letu Biotechnology Co., Ltd., Guangdong, China
| |
Collapse
|
15
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
16
|
Wei M, Tian Y, Lv Y, Liu G, Cai G. Identification and validation of a prognostic model based on ferroptosis-associated genes in head and neck squamous cancer. Front Genet 2022; 13:1065546. [PMID: 36531250 PMCID: PMC9751480 DOI: 10.3389/fgene.2022.1065546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Ferroptosis is that under the action of ferrous iron or ester oxygenase, unsaturated fatty acids highly expressed on the cell membrane are catalyzed to undergo lipid peroxidation, thereby inducing cell death. In this study, we used ferroptosis marker genes to identify 3 stable molecular subtypes (C1, C2, C3) with distinct prognostic, mutational, and immune signatures by consensus clustering; TP53, CDKN2A, etc. Have higher mutation frequencies in the three subtypes. C3 has a better prognosis, while the C1 subtype has a worse prognosis. WGCNA is used to identify molecular subtype-related gene modules.After filting, we obtained a total of 540 genes related to the module feature vector (correlation>0.7).We performed univariate COX regression analysis on these genes, and identified a total of 97 genes (p < 0.05) that had a greater impact on prognosis, including 8 ''Risk" and 89 ''Protective" genes. After using lasso regression, we identified 8 genes (ZNF566, ZNF541, TMEM150C, PPAN, PGLYRP4, ENDOU, RPL23 and MALSU1) as ferroptosis-related genes affecting prognosis. The ferroptosis prognosis-related risk score (FPRS) was calculated for each sample in TCGA-HNSC dataset. The results showed that FPRS was negatively correlated with prognosis.The activated pathways in the PFRS-high group mainly include immune-related pathways and invasion-related pathways. We assessed the extent of immune cell infiltration in patients in our TCGA-HNSC cohort by using the expression levels of gene markers in immune cells. The FPRS-high group had a higher level of immune cell infiltration. We found that the expression of immune checkpoints was significantly up-regulated in the FPRS-low group and the FPRS-high group had a higher probability of immune escape and a lower probability of benefiting from immunotherapy. In this work, we constructed a scoring Ferroptosis-related prognostic model that can well reflect risk and positive factors for prognosis in patients with head and neck squamous cell carcinoma. It can be used to guide individualized adjuvant therapy and chemotherapy for patients with head and neck cancer. Therefore, it has a good survival prediction ability and provides an important reference for clinical treatment.
Collapse
Affiliation(s)
- Ming Wei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang, China,*Correspondence: Yunxia Lv, ; Guancheng Liu, ; Gengming Cai,
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China,*Correspondence: Yunxia Lv, ; Guancheng Liu, ; Gengming Cai,
| | - Gengming Cai
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China,*Correspondence: Yunxia Lv, ; Guancheng Liu, ; Gengming Cai,
| |
Collapse
|
17
|
Meng H, Niu R, Huang C, Li J. Circular RNA as a Novel Biomarker and Therapeutic Target for HCC. Cells 2022; 11:cells11121948. [PMID: 35741077 PMCID: PMC9222032 DOI: 10.3390/cells11121948] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Circular RNA (circRNA) is a kind of endogenous non-coding RNA (ncRNA), which is produced by the reverse splicing of precursor mRNA (pre mRNA). It is widely expressed in a variety of biological cells. Due to the special formation mode, circRNA does not have a 5′ terminal cap and 3′ poly (A) tail structure. Compared with linear RNA, circRNA is more stable to exonuclease and ribonuclease. In addition, circRNA is structurally conserved, has a stable sequence and is tissue-specific. With the development of high-throughput sequencing and bioinformatics technology, more and more circRNAs have been found. CircRNA plays an important pathophysiological role in the occurrence and development of alcoholic liver injury (ALI), hepatic fibrosis (HF), hepatocellular carcinoma (HCC), and other liver diseases. Our group has been committed to the research of liver disease diagnosis and treatment targets. We review the function and mechanism of circRNA in ALI, HF and HCC, expecting to provide new ideas for the diagnosis, treatment, and prognosis of liver diseases.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
| | - Ruowen Niu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- Correspondence: (C.H.); (J.L.)
| |
Collapse
|
18
|
Knockdown of hsa_circ_0001964 inhibits hepatocellular carcinoma cell proliferation by inactivating PI3K/AKT signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
20
|
Yang Q, Li Y, Wang Y, Qiao X, Liu T, Wang H, Shen H. The circRNA circSIAE Inhibits Replication of Coxsackie Virus B3 by Targeting miR-331-3p and Thousand and One Amino-Acid Kinase 2. Front Cell Infect Microbiol 2022; 11:779919. [PMID: 35141166 PMCID: PMC8820919 DOI: 10.3389/fcimb.2021.779919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Coxsackie virus B3 (CVB3), an enterovirus, is the main pathogen causing viral myocarditis, pericarditis, hepatitis and other inflammation-related diseases. Non-coding RNAs with a closed loop molecular structure, called circular RNAs (circRNAs), have been shown to be involved in multiple virus-related processes, but roles and mechanisms in CVB3 infection have not been systematically studied. In this study, when HeLa cells were infected with CVB3, the expression of hsa_circ_0000367 (circSIAE) was significantly decreased as demonstrated by real-time quantitative PCR assays. We found that circSIAE downregulated the expression of miR-331-3p through direct binding and inhibited the replication of CVB3 in HeLa and 293T cells. The analysis of signals downstream of miR-331-3p suggested that miR-331-3p promotes CVB3 replication, viral plaque formation and fluorescent virus cell production through interactions with the gene coding for thousand and one amino-acid kinase 2 (TAOK2). In conclusion, this study found that circSIAE can target TAOK2 through sponge adsorption of miR-331-3p to inhibit the replication and proliferation of CVB3 virus, providing an early molecular target for the diagnosis of CVB3 infection.
Collapse
Affiliation(s)
- Qingru Yang
- Medical College, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Jiangyin Municipal Center for Disease Control and Prevention, Jiangyin, China
| | - Yuhan Li
- Medical College, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- Medical College, Jiangsu University, Zhenjiang, China
| | - Xiaorong Qiao
- Medical College, Jiangsu University, Zhenjiang, China
| | - Tingjun Liu
- Medical College, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| | - Hongxing Shen
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| |
Collapse
|
21
|
Ji Y, Yang S, Yan X, Zhu L, Yang W, Yang X, Yu F, Shi L, Zhu X, Lu Y, Zhang C, Lu H, Zhang F. CircCRIM1 Promotes Hepatocellular Carcinoma Proliferation and Angiogenesis by Sponging miR-378a-3p and Regulating SKP2 Expression. Front Cell Dev Biol 2021; 9:796686. [PMID: 34869393 PMCID: PMC8634842 DOI: 10.3389/fcell.2021.796686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence has demonstrated that circular RNAs have an important function in tumorigenesis and cancer evolvement. CircCRIM1 has been shown to be a poor prognostic element in multiple human malignancies. However, the clinical significance and mechanism of circCRIM1 in hepatocellular carcinoma (HCC) is still unclear. The present study confirmed the expression level of circCRIM1 using quantitative real-time PCR. In addition, circCRIM1 siRNA and overexpression vectors were used for transfection into LM3 or Huh7 cells to down- or up-regulate the expression of circCRIM1. In vitro and in vivo experiments were performed to explore the function of circCRIM1 in HCC. RNA pull-down, RNA immunoprecipitation, fluorescent in situ hybridization, and luciferase reporter assays were conducted to confirm the relationship between miR-378a-3p and circCRIM1 or S-phase kinase-associated protein 2 (SKP2) in HCC. Then, circCRIM1 was up-regulated in HCC and its expression level was significantly associated with poor prognosis and clinicopathologic characteristics. CircCRIM1 enhanced the proliferation and angiogenesis of HCC cells in vitro and promoted xenograft growth in vivo. Moreover, circCRIM1 upregulated the expression of SKP2 by functioning as a sponge for miR-378a-3p. These findings suggest that circCRIM1 boosts the HCC progression via the miR-378-3p/SKP2 axis and may act as a crucial epigenetic therapeutic molecule target in HCC.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shikun Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueqi Yan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhu
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Wenjie Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinchen Yang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yu
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Longqing Shi
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Xi Zhu
- Department of Infectious Disease, The First People's Hospital of Kunshan Affliated with Jiangsu University, Zhenjiang, China
| | - Yunjie Lu
- Department of Hepatobiliary Surgery, The Third Hospital Affiliated to Soochow University, Changzhou, China
| | - Chuanyong Zhang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Lu
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Liver Transplantation, Hepatobiliary/Liver Transplantation Center, Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
23
|
Shi Z, Gan G, Xu X, Zhang J, Yuan Y, Bi B, Gao X, Xu P, Zeng W, Li J, Ye Y, Zhou A, Zhang N, Liu W, Lin S, Mi J. Kynurenine derivative 3-HAA is an agonist ligand for transcription factor YY1. J Hematol Oncol 2021; 14:153. [PMID: 34563230 PMCID: PMC8465765 DOI: 10.1186/s13045-021-01165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
The 3-hydroxyanthranilic acid (3-HAA), a derivative of kynurenine, was reported to suppress tumor growth. However, the function of 3-HAA largely remains unclear. Here, we report that 3-hydroxyanthranilic acid (3-HAA) is lower in tumor cells, while adding exogenous 3-HAA induces apoptosis in hepatocellular carcinoma by binding YY1. This 3-HAA binding of YY1 leads to phosphorylation of YY1 at the Thr 398 by PKCζ, concomitantly enhances YY1 chromatin binding activity to increase expression of target genes. These findings demonstrate that 3-HAA is a ligand of YY1, suggesting it is a promising therapeutic candidate for HCC.
Collapse
Affiliation(s)
- Zhaopeng Shi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guifang Gan
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Xu
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieying Zhang
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yuan
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Bi
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianfu Gao
- Shanghai Profleader Biotech Co., Ltd, Shanghai, China
| | - Pengfei Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jixi Li
- School of Life Science, Fudan University, Shanghai, China
| | - Youqiong Ye
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naixia Zhang
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.
| | - Shuhai Lin
- School of Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.
| | - Jun Mi
- Basic Medical Institute, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Huang Z, Xia H, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Kang P, Su Z, Cui Y, Yam JWP, Xu Y. The Mechanism and Clinical Significance of Circular RNAs in Hepatocellular Carcinoma. Front Oncol 2021; 11:714665. [PMID: 34540684 PMCID: PMC8445159 DOI: 10.3389/fonc.2021.714665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
25
|
Shen H, Liu B, Xu J, Zhang B, Wang Y, Shi L, Cai X. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. J Hematol Oncol 2021; 14:134. [PMID: 34461958 PMCID: PMC8407006 DOI: 10.1186/s13045-021-01145-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies globally. Despite aggressive and multimodal treatment regimens, the overall survival of HCC patients remains poor. MAIN: Circular RNAs (circRNAs) are noncoding RNAs (ncRNAs) with covalently closed structures and tissue- or organ-specific expression patterns in eukaryotes. They are highly stable and have important biological functions, including acting as microRNA sponges, protein scaffolds, transcription regulators, translation templates and interacting with RNA-binding protein. Recent advances have indicated that circRNAs present abnormal expression in HCC tissues and that their dysregulation contributes to HCC initiation and progression. Furthermore, researchers have revealed that some circRNAs might serve as diagnostic biomarkers or drug targets in clinical settings. In this review, we systematically evaluate the characteristics, biogenesis, mechanisms and functions of circRNAs in HCC and further discuss the current shortcomings and potential directions of prospective studies on liver cancer-related circRNAs. CONCLUSION CircRNAs are a novel class of ncRNAs that play a significant role in HCC initiation and progression, but their internal mechanisms and clinical applications need further investigation.
Collapse
Affiliation(s)
- Hao Shen
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Boqiang Liu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Junjie Xu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yifan Wang
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Liang Shi
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Xiujun Cai
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
26
|
Ma G, Li G, Fan W, Xu Y, Song S, Guo K, Liu Z. Circ-0005105 activates COL11A1 by targeting miR-20a-3p to promote pancreatic ductal adenocarcinoma progression. Cell Death Dis 2021; 12:656. [PMID: 34183642 PMCID: PMC8239051 DOI: 10.1038/s41419-021-03938-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Growing evidence indicates that circular RNAs (circRNAs) are closely involved in tumorigenesis, but the association between circRNAs and pancreatic ductal adenocarcinoma (PDAC) is far from clear. Here, we focused on the functional investigation of circ-0005105, a newly identified circRNA, in PDAC progression. In the present study, we assessed circ-0005105 expression in PDAC tissues and cell lines with quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The biological functions of circ-0005105 in cellular proliferation and invasion were identified through gain- and loss-of-function experiments in vitro and in vivo. The interaction between circ-0005105 and the microRNA (miR)-20a-3p-COL11A1 (collagen type XI alpha 1) axis was examined using luciferase reporter and RNA immunoprecipitation assays. We found that circ-0005105 expression was upregulated in both PDAC tissues and cell lines. Higher circ-0005105 expression correlated positively with the malignant clinical phenotype and poor prognosis of patients with PDAC. Gain- and loss-of-function analysis showed that circ-0005105 facilitated both in vitro and in vivo cellular proliferation and invasion. Mechanistically, circ-000510 served as a competing endogenous RNA (ceRNA) of miR-20a-3p and indirectly modulated COL11A1 expression, leading to activation of epithelial-mesenchymal transition (EMT). Rescue experiments suggested that the oncogenic activity of circ-0005105 was dependent on the modulation of the miR-20a-3p-COL11A1 axis. More importantly, COL11A1 overexpression was significantly associated with poor prognosis in PDAC, and silencing COL11A1 reduced PDAC cell tumorigenicity and metastasis. Taken together, our findings confirm for the first time that circ-0005105 has critical functions by regulating the miR-20a-3p-COL11A1 axis. In the clinic, circ-0005105 can act as a potential prognostic marker and therapeutic target in PDAC.
Collapse
MESH Headings
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/secondary
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Collagen Type XI/genetics
- Collagen Type XI/metabolism
- Databases, Genetic
- Disease Progression
- Epithelial-Mesenchymal Transition
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Gang Ma
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Wufeng Fan
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yuanhong Xu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shaowei Song
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Kejian Guo
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Hou Y, Sun J, Huang J, Yao F, Chen X, Zhu B, Zhao D. Circular RNA circRNA_0000094 sponges microRNA-223-3p and up-regulate F-box and WD repeat domain containing 7 to restrain T cell acute lymphoblastic leukemia progression. Hum Cell 2021; 34:977-989. [PMID: 33677796 DOI: 10.1007/s13577-021-00504-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Circular RNAs (circRNAs) exert crucial regulatory effects in the pathogenesis of multiple tumors. This work aimed to probe into the role of circ_0000094 in T cell acute lymphoblastic leukemia (T-ALL). In this work, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to quantify circ_0000094, miR-223-3p, and F-box and WD repeat domain containing 7 (FBW7) mRNA expressions in lymph node samples from T-ALL patients; Western blot was adopted to examine FBW7 protein expression in T-ALL cells; cell proliferation was detected by cell counting kit-8 (CCK-8) experiment; apoptosis was examined by flow cytometry; Transwell experiments were applied to assess T-ALL cell migration and invasion; the interactions among circ_0000094 and miR-223-3p, and miR-223-3p and FBW7 were validated by bioinformatics prediction, dual-luciferase reporter gene assay, and RNA immunoprecipitation experiment. We reported that, circ_0000094 expression was markedly reduced in T-ALL and circ_0000094 was predominantly located in the cytoplasm; gain-of-function and loss-of-function assays verified that circ_0000094 overexpression remarkably suppressed T-ALL cell proliferation, migration, and invasion, and enhanced apoptosis while knocking down circ_0000094 enhanced the malignant phenotypes of T-ALL cells; "rescue experiments" implied that miR-223-3p mimics partly reversed the inhibitory effects on the malignant phenotype of T-ALL cells due to the circ_0000094 up-regulation; circ_0000094 was proved to be a molecular sponge for miR-223-3p, and it could up-regulate the expression of FBW7 via repressing miR-223-3p expression. Taken together, it was concluded that circ_0000094 impedes T-ALL progression by modulating the miR-223-3p/FBW7 axis.
Collapse
Affiliation(s)
- Yan Hou
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.,Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China
| | - Junjie Sun
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China
| | - Jie Huang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China
| | - Fengzhi Yao
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China
| | - Xuelian Chen
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, China.
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
| |
Collapse
|
28
|
Jiang Y, Xiao F, Wang L, Wang T, Chen L. Hsa_circ_0099198 facilitates the progression of retinoblastoma by regulating miR-1287/LRP6 axis. Exp Eye Res 2021; 206:108529. [PMID: 33676964 DOI: 10.1016/j.exer.2021.108529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Retinoblastoma (RB) is an intraocular malignancy that occurs in children. Circular RNAs (circRNAs) have been confirmed to play an essential role in tumorigenesis and development. This study aimed to ascertain the role and potential mechanism of hsa_circ_0099198 in RB. The levels of circ_0099198, microRNA-1287 (miR-1287) and low-density lipoprotein receptor-related protein 6 (LRP6) were determined by real-time quantitative polymerase chain reaction and Western blot. Cell proliferation was assessed by colony formation assay. Cell cycle arrest and apoptosis were evaluated by flow cytometry. Cell migration and invasion were tested using transwell assay. The activity of caspase-3/caspase-9 was examined with commercial kits. The interaction among circ_0099198, miR-1287 and LRP6 were verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay or RNA pull-down assay. Xenograft experiment was used to assess tumor growth in vivo. circ_0099198 and LRP6 levels were increased, while miR-1287 level was reduced in RB cells. circ_0099198 silencing suppressed proliferation and metastasis and expedited cell cycle arrest and apoptosis in Y79 and So-RB50 cells. In addition, depletion of circ_0099198 inhibited RB cell progression via regulating miR-1287/LRP6 axis. Moreover, knockdown of circ_0099198 blocked the growth of xenograft tumors. circ_0099198 contributed to RB progression by sponging miR-1287 and up-regulating LRP6, which provided novel biomarkers for RB therapy.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Fan Xiao
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Lin Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Ting Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Linlin Chen
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China.
| |
Collapse
|
29
|
Ely A, Bloom K, Maepa MB, Arbuthnot P. Recent Update on the Role of Circular RNAs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1-17. [PMID: 33542907 PMCID: PMC7851377 DOI: 10.2147/jhc.s268291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
After being overlooked for decades, circular RNAs (circRNAs) have recently generated considerable interest. circRNAs play a role in a variety of normal and pathological biological processes, including hepatocarcinogenesis. Many circRNAs contribute to hepatocarcinogenesis through sponging of microRNAs (miRs) and disruption of cellular signaling pathways that play a part in control of cell proliferation, metastasis and apoptosis. In most cases, overexpressed circRNAs sequester miRs to cause de-repressed translation of mRNAs that encode oncogenic proteins. Conversely, low expression of circRNAs has also been described in hepatocellular carcinoma (HCC) and is associated with inhibited production of tumor suppressor proteins. Other functions of circRNAs that contribute to hepatocarcinogenesis include translation of truncated proteins and acting as adapters to regulate influence of transcription factors on target gene expression. circRNAs also affect hepatocyte transformation indirectly. For example, the molecules regulate immune surveillance of cancerous cells and influence the liver fibrosis that commonly precedes HCC. Marked over- or under-expression of circRNA expression in HCC, with correlating plasma concentrations, has diagnostic utility and assays of these RNAs are being developed as biomarkers of HCC. Although knowledge in the field has recently surged, the myriad of described effects suggests that not all may be vital to hepatocarcinogenesis. Nevertheless, investigation of the role of circRNAs is providing valuable insights that are likely to contribute to improved management of a serious and highly aggressive cancer.
Collapse
Affiliation(s)
- Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
30
|
Chen J, Yang J, Fei X, Wang X, Wang K. CircRNA ciRS-7: a Novel Oncogene in Multiple Cancers. Int J Biol Sci 2021; 17:379-389. [PMID: 33390857 PMCID: PMC7757028 DOI: 10.7150/ijbs.54292] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
circular RNA ciRS-7 (ciRS-7) is a type of endogenous circular RNA (circRNA) with a closed circular structure. Since Hansen first demonstrated that ciRS-7 could serve as a microRNA sponge in 2013, researchers have paid increased attention to this circRNA. ciRS-7 plays a crucial role in regulating RNA transcription, downstream gene expression, and protein production. Moreover, ciRS-7 acts as an oncogene and promotes tumor progression through competitively inhibiting miR-7 in various types of cancers. ciRS-7 has been identified to be closely associated with breast cancer, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, cervical cancer, osteosarcoma, melanoma, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, pancreatic cancer, laryngeal squamous cell carcinoma, and cholangiocarcinoma. In this review, we summarize the biological characteristics, molecular mechanisms, and future challenges of ciRS-7 in multiple tumors.
Collapse
Affiliation(s)
- Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
31
|
Chen J, Li X, Yang L, Li M, Zhang Y, Zhang J. CircASH2L Promotes Ovarian Cancer Tumorigenesis, Angiogenesis, and Lymphangiogenesis by Regulating the miR-665/VEGFA Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2020; 8:595585. [PMID: 33330483 PMCID: PMC7711110 DOI: 10.3389/fcell.2020.595585] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecologic cancer-related deaths. Emerging research has revealed a close relationship between circular RNAs (circRNAs) and ovarian cancer development, metastasis, and prognosis. The objective of our research was to further explore the relationship between circASH2L and ovarian cancer. Quantitative real-time polymerase chain reaction was used to detect the differential expression of circRNAs between normal ovaries and ovarian cancer tissues. The impact of circASH2L on the proliferation, invasion, and tumorigenicity of ovarian cancer cells was evaluated using gain- and loss-of-function experiments. The molecular mechanisms of circASH2L function were investigated using bioinformatics analysis, RNA fluorescence in situ hybridization, western blots, and dual-luciferase reporter assays. The results showed that circASH2L was remarkably upregulated in ovarian cancer. The invasion and growth of ovarian cancer cells were suppressed by circASH2L knockdown in vitro, and downregulation of circASH2L restrained both angiogenesis and lymphangiogenesis of tumor xenografts in vivo. Furthermore, circASH2L was mostly distributed in the cytoplasm, where it competes with vascular endothelial growth factor A (VEGFA) for binding to miR-665. These findings indicate that circASH2L has an oncogenic function in ovarian cancer. In conclusion, circASH2L plays a critical role in regulating ovarian cancer cell tumorigenesis, angiogenesis, and lymphangiogenesis through the miR-665/VEGFA axis and, therefore, is a possible candidate target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Mengmeng Li
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
32
|
Zhao X, Wang Y, Yu Q, Yu P, Zheng Q, Yang X, Gao D. Circular RNAs in gastrointestinal cancer: Current knowledge, biomarkers and targeted therapy (Review). Int J Mol Med 2020; 46:1611-1632. [PMID: 33000182 PMCID: PMC7521476 DOI: 10.3892/ijmm.2020.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a type of endogenous non‑coding RNAs that are connected at the 3' and 5' ends by exon or intron cyclization, which forms a covalently closed loop. They are stable, well conserved, exhibit specific expression in mammalian cells and can function as microRNA (miRNA or miR) sponges to regulate the target genes of miRNAs, which influences biological processes. Such as tumor proliferation, invasion, metastasis, apoptosis and tumor stage. circRNAs represent promising candidates for clinical diagnosis and treatment. In the present review, the biogenesis, classification and functions of circRNAs in tumors are briefly summarized and discussed. In addition, the participation of circRNAs in signal transduction pathways regulating gastrointestinal cancer cellular functions is highlighted.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Wang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Yu
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiaoyu Zheng
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xue Yang
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
33
|
Sun R, Li H, Li J, Shen S, Cui G, Dong G. CircRNA circ-0038718 promotes hepatocellular carcinoma progression through sponging miR-139-3p. Biochem Biophys Res Commun 2020; 533:845-852. [PMID: 33008587 DOI: 10.1016/j.bbrc.2020.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022]
Abstract
Hepatocellular Carcinoma (HCC) is the main histological subtype of liver malignancy with poor prognosis. A growing body of evidence showed that Circular RNAs (circRNAs) are related to HCC tumorigenesis and progression. In this study, we investigated the function and regulation of circ-0038718 in HCC. We found that circ-0038718 was frequently elevated in HCC specimens and cell lines. High expression levels of circ-0038718 were correlated with unfavorable prognosis in HCC patients. Furthermore, we demonstrated that knockdown of circ-0038718 attenuated HCC cell proliferation and metastatic abilities, while overexpression of circ-0038718 resulted the converse effect. Silencing circ-0038717 inhibited HCC xenograft tumor development in vivo. Mechanistically, circ-0038718 acted as the sponge of tumor-suppressive miR-139-3p to regulate HCC progression. Rescue experiments suggested the oncogenic activity of circ-0038718 was partially exerted via modulating miR-139-3p expression. Inhibition of miR-139-3p abrogated the regulatory effect of circ-0038718 in HCC cells. In summary, our results unveiled that circ-0038718 could serve as an crucial regulator of HCC progression and provide a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Gang Dong
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|